一种基于深度神经网络的医疗图像信息识别方法及系统与流程

文档序号:14715192发布日期:2018-06-16 01:12阅读:223来源:国知局
一种基于深度神经网络的医疗图像信息识别方法及系统与流程

本发明涉及数字医疗技术领域,尤其涉及一种基于深度神经网络的医疗图像信息识别方法及系统。



背景技术:

目前我国心脑血病和慢性病患者众多,全国有心血管病患者约3亿,至少有5.8亿人具有至少一种或以上的与慢病有关的危险因素,到2030年,中国的慢病负担将增长50%。2016年,国务院七部委联合发布《关于印发推进家庭医生签约服务指导意见的通知》(国医改办发〔2016〕1号),要求到2017年,家庭医生签约服务覆盖率达到30%以上,重点人群签约服务覆盖率达到60%以上,重点人群主要包括高血压、糖尿病、结核病等慢性疾病患者。到2020年,力争将签约服务扩大到全人群,形成长期稳定的契约服务关系,基本实现家庭医生签约服务制度的全覆盖。权威调查数据显示,在大医院看病的人群中有70%的患者并不需要现场治疗,只需要在线或者移动端进行问诊服务即可,可以大大解决这部分人群的需求,减轻医生的工作负担,提高医疗服务水平和效率。

然而,在在线问诊时,对于一些检查的图片可以直接上传进行处理,直接给出诊断意见或情况说明,但是由于在在线问诊对图像处理的准确度和速度上存在很大的缺陷,特别是关系到病人的病情情况,容不得半点的耽误,因此需要更加精确的图像处理技术进行支持。



技术实现要素:

本发明的目的在于克服现有技术的不足,本发明提供了一种基于深度神经网络的医疗图像信息识别方法及系统解决了现有的医疗图像匹配慢和不准确的问题。

为了解决上述技术问题,本发明实施例提供了一种基于深度神经网络的医疗图像信息识别方法,所述医疗图像信息识别方法,包括:

对获取到的待识别医疗图像信息进行图像预处理,获取预处理后的待识别医疗图像信息;

采用训练好的深度神经网络模型对所述预处理后的待识别医疗图像信息进行深层次特征提取处理,获取所述待识别医疗图像信息的深层次特征;

采用所述待识别医疗图像信息的深层次特征与医疗图像特征库中的医疗图像特征一一进行识别匹配处理,取至少一个以上的相似医疗图像信息;

获取至少一个以上的相似医疗图像信息对应的文本信息;

对所述至少一个以上的相似医疗图像信息对应的文本信息进行关键字提取处理,获取文本信息的关键字;

根据所述关键字向用户反馈与所述待识别医疗图像信息相匹配的医疗服务信息。

优选地,所述对获取到的待识别医疗图像信息进行图像预处理,包括:

对所述待识别医疗图像信息进行灰度化处理,获取灰度化处理后的待识别医疗图像信息;

对所述度化处理后的待识别医疗图像信息进行图像区域提取处理,获取图像区域提取处理后的待识别医疗图像信息;

对所述图像区域提取处理后的待识别医疗图像信息进行图像增强处理,获取预处理后的待识别医疗图像信息。

优选地,所述深度神经网络模型的训练过程,包括:

构建初始神经网络训练模型,所述初始神经网络模型包括输入层、第一卷积池化层、第二卷积池化层、第三卷积池化层、全连接层和输出层;

对用于训练的待训练图像信息依次进行灰度化、图像区域提取和图像增强预处理,获取预处理后的待训练图像信息;

将所述预处理后的待训练图像信息输入所述初始神经网络训练模型进行模型训练,通过所述模型训练调整所述初始神经网络训练模型中第一卷积池化层、第二卷积池化层、第三卷积池化层、全连接层的参数设置;

判断所述初始神经网络训练模型中第一卷积池化层、第二卷积池化层、第三卷积池化层、全连接层的参数设置是否区域稳定,若是,则完成训练,获取训练好的深度神经网络模型;若否,则返回上一步继续进行训练。

优选地,所述采用所述待识别医疗图像信息的深层次特征与医疗图像特征库中的医疗图像特征一一进行识别匹配处理,包括:

采用Softmax分类器对所述待识别医疗图像信息的深层次特征与医疗图像特征库中的医疗图像特征一一进行识别匹配处理,获取至少一个以上与所述待识别医疗图像信息的深层次特征相似的医疗图像特征。

优选地,所述对所述至少一个以上的相似医疗图像信息对应的文本信息进行关键字提取处理中的关键字提取方法包括:TF-IDF关键字提取算法、基于语义的统计语言模型、TF-IWF文档关键字自动提取算法、基于分离模型的文中关键字提取算法、基于语义的中文文本关键字提取(SKE)算法、基于朴素贝叶斯模型的中文关键字提取算法。

另外,本发明另一实施例提供了一种基于深度神经网络的医疗图像信息识别系统,所述医疗图像信息识别系统,包括:

预处理模块:用于对获取到的待识别医疗图像信息进行图像预处理,获取预处理后的待识别医疗图像信息;

特征提取模块:用于采用训练好的深度神经网络模型对所述预处理后的待识别医疗图像信息进行深层次特征提取处理,获取所述待识别医疗图像信息的深层次特征;

特征匹配模块:用于采用所述待识别医疗图像信息的深层次特征与医疗图像特征库中的医疗图像特征一一进行识别匹配处理,取至少一个以上的相似医疗图像信息;

文本信息获取模块:用于获取至少一个以上的相似医疗图像信息对应的文本信息;

关键字提取模块:用于对所述至少一个以上的相似医疗图像信息对应的文本信息进行关键字提取处理,获取文本信息的关键字;

服务反馈模块:用于根据所述关键字向用户反馈与所述待识别医疗图像信息相匹配的医疗服务信息。

优选地,所述预处理模块包括:

灰度化单元:用于对所述待识别医疗图像信息进行灰度化处理,获取灰度化处理后的待识别医疗图像信息;

图像区域提取单元:用于对所述度化处理后的待识别医疗图像信息进行图像区域提取处理,获取图像区域提取处理后的待识别医疗图像信息;

图像增强单元:用于对所述图像区域提取处理后的待识别医疗图像信息进行图像增强处理,获取预处理后的待识别医疗图像信息。

优选地,所述深度神经网络模型的训练过程,包括:

构建初始神经网络训练模型,所述初始神经网络模型包括输入层、第一卷积池化层、第二卷积池化层、第三卷积池化层、全连接层和输出层;

对用于训练的待训练图像信息依次进行灰度化、图像区域提取和图像增强预处理,获取预处理后的待训练图像信息;

将所述预处理后的待训练图像信息输入所述初始神经网络训练模型进行模型训练,通过所述模型训练调整所述初始神经网络训练模型中第一卷积池化层、第二卷积池化层、第三卷积池化层、全连接层的参数设置;

判断所述初始神经网络训练模型中第一卷积池化层、第二卷积池化层、第三卷积池化层、全连接层的参数设置是否区域稳定,若是,则完成训练,获取训练好的深度神经网络模型;若否,则返回上一步继续进行训练。

优选地,所述特征匹配模块包括:

Softmax分类单元:用于采用Softmax分类器对所述待识别医疗图像信息的深层次特征与医疗图像特征库中的医疗图像特征一一进行识别匹配处理,获取至少一个以上与所述待识别医疗图像信息的深层次特征相似的医疗图像特征。

优选地,所述关键字提取模块中的关键字提取方法包括:TF-IDF关键字提取算法、基于语义的统计语言模型、TF-IWF文档关键字自动提取算法、基于分离模型的文中关键字提取算法、基于语义的中文文本关键字提取(SKE)算法、基于朴素贝叶斯模型的中文关键字提取算法。

采用本发明实施例,解决了用户在获取医疗图像信息后,采用训练好的神经网络模型进行图像特征提取,能在保证提取速度不变的情况下,特征提取质量提高,保证后续的识别正确率,增加用户的体验度。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见的,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。

图1是本发明实施例中的基于深度神经网络的医疗图像信息识别方法的流程示意图;

图2是本发明实施例中的基于深度神经网络的医疗图像信息识别系统的结构组成示意图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。

图1是本发明实施例中的基于深度神经网络的医疗图像信息识别方法的流程示意图,如图1所示,所述医疗图像信息识别方法,包括:

S11:对获取到的待识别医疗图像信息进行图像预处理,获取预处理后的待识别医疗图像信息;

具体的,对获取到的待识别医疗图像信息依次进行灰度化处理、图像区域处理、图像增强处理,在经过一系列这些处理之后,获取到预处理之后的待识别医疗图像信息。

图像灰度化处理可采用分量法、最大值法、平均值法或加权平均法进行,用户可根据实际需求进行选择,在本发明实施例中并未规定使用的灰度化处理方法;图像区域处理是首先采用Sobel边缘检测算子提取边缘,然后进行轮廓提取,提取待识别医疗图像信息的轮廓,再依据待识别医疗图像信息的轮廓的延展性和平滑性,去除不符合图像延展方向的分支,并对残缺的待识别医疗图像信息的轮廓进行延长,获取延长图像记为x1;采用Prewitt算子检测图像中边缘,变为二值图像,而后通过图像两边的图像起点和终点位置,取其两端中点连线为基线,选用最小二乘法对中间线进行拟合,然后取两边相同距离的点集组成图像轮廓获取轮廓中间的图像记为x2;采用延长图像记为x1和轮廓中间的图像记为x2进行叠加,获取完整的待识别医疗图像信息的区域图像记为x3;采用基于直方图方法进行图像增强处理。

S12:采用训练好的深度神经网络模型对所述预处理后的待识别医疗图像信息进行深层次特征提取处理,获取所述待识别医疗图像信息的深层次特征;

具体的,首先是对深度神经网络模型的训练,其中训练过程:

构建初始神经网络训练模型,所述初始神经网络模型包括输入层、第一卷积池化层、第二卷积池化层、第三卷积池化层、全连接层和输出层;

对用于训练的待训练图像信息依次进行灰度化、图像区域提取和图像增强预处理,获取预处理后的待训练图像信息;将所述预处理后的待训练图像信息输入所述初始神经网络训练模型进行模型训练,通过所述模型训练调整所述初始神经网络训练模型中第一卷积池化层、第二卷积池化层、第三卷积池化层、全连接层的参数设置;判断所述初始神经网络训练模型中第一卷积池化层、第二卷积池化层、第三卷积池化层、全连接层的参数设置是否区域稳定,若是,则完成训练,获取训练好的深度神经网络模型;若否,则返回上一步继续进行训练。

将预处理后的待识别医疗图像信息输入训练好的深度神经网络模型中进行深层特征提取处理,图像在经过训练好的深度神经网络模型中的各层处理,最后提取出待识别医疗图像信息的深层次特征。

S13:采用所述待识别医疗图像信息的深层次特征与医疗图像特征库中的医疗图像特征一一进行识别匹配处理,获取至少一个以上的相似医疗图像信息;

具体的,将获取到的待识别医疗图像信息的深层次特征与医疗图像特征库中的医疗图像特征一一进行匹配,其中采用的Softmax分类器中的分类方式进行分类匹配,获取至少一个获取至少一个以上与所述待识别医疗图像信息的深层次特征相似的医疗图像特征,并且根据深层次特征相似的医疗图像特征获取到对应的相似医疗图像信息;在本发明实施例中,在分类匹配中存在匹配阈值,分类匹配阈值设为100,也可以是1到100之间的任意一个数,当匹配值在阈值的范围内时,选取一个或者多个相似特征,根据相似特征获取相似医疗图像信息。

S14:获取至少一个以上的相似医疗图像信息对应的文本信息;

具体的,通过这些相关性的医疗图像信息一般存在于相关性医疗文献库中,其可以提取相关性的文本信息,这些文献库相关内获取,为后续关键字获取提供依据。

S15:对所述至少一个以上的相似医疗图像信息对应的文本信息进行关键字提取处理,获取文本信息的关键字;

具体的,对上述中的相似医疗图像信息中所关联的文本信息进行关键字提取,在关键字提取算法中,可以使用下列算法中的任意一种进行:TF-IDF关键字提取算法、基于语义的统计语言模型、TF-IWF文档关键字自动提取算法、基于分离模型的文中关键字提取算法、基于语义的中文文本关键字提取(SKE)算法、基于朴素贝叶斯模型的中文关键字提取算法。

其中TF-IDF关键字提取算法的主要思想是:如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。TF-IDF实际上是:TF*IDF,TF词频(Term Frequency),IDF逆向文件频率(Inverse Document Frequency)。TF表示词条在文档d中出现的频率。IDF的主要思想是:如果包含词条t的文档越少,也就是n越小,IDF越大,则说明词条t具有很好的类别区分能力。如果某一类文档C中包含词条t的文档数为m,而其它类包含t的文档总数为k,显然所有包含t的文档数n=m+k,当m大的时候,n也大,按照IDF公式得到的IDF的值会小,就说明该词条t类别区分能力不强。但是实际上,如果一个词条在一个类的文档中频繁出现,则说明该词条能够很好代表这个类的文本的特征,这样的词条应该给它们赋予较高的权重,并选来作为该类文本的特征词以区别与其它类文档。

S16:根据所述关键字向用户反馈与所述待识别医疗图像信息相匹配的医疗服务信息。

具体的,根据上述步骤中的算法计算,获取到的关键字,根据这些关键字向用户推荐与用户输入的待识别医疗图像信息相关的医疗服务;并且给出相应的医疗建议。

图2是本发明实施例中的基于深度神经网络的医疗图像信息识别系统的结构组成示意图,如图2所示,本发明另一实施例提供了一种基于深度神经网络的医疗图像信息识别系统,所述医疗图像信息识别系统,包括:

预处理模块11:用于对获取到的待识别医疗图像信息进行图像预处理,获取预处理后的待识别医疗图像信息;

特征提取模块12:用于采用训练好的深度神经网络模型对所述预处理后的待识别医疗图像信息进行深层次特征提取处理,获取所述待识别医疗图像信息的深层次特征;

特征匹配模块13:用于采用所述待识别医疗图像信息的深层次特征与医疗图像特征库中的医疗图像特征一一进行识别匹配处理,取至少一个以上的相似医疗图像信息;

文本信息获取模块14:用于获取至少一个以上的相似医疗图像信息对应的文本信息;

关键字提取模块15:用于对所述至少一个以上的相似医疗图像信息对应的文本信息进行关键字提取处理,获取文本信息的关键字;

服务反馈模块16:用于根据所述关键字向用户反馈与所述待识别医疗图像信息相匹配的医疗服务信息。

优选地,所述预处理模块11包括:

灰度化单元:用于对所述待识别医疗图像信息进行灰度化处理,获取灰度化处理后的待识别医疗图像信息;

图像区域提取单元:用于对所述度化处理后的待识别医疗图像信息进行图像区域提取处理,获取图像区域提取处理后的待识别医疗图像信息;

图像增强单元:用于对所述图像区域提取处理后的待识别医疗图像信息进行图像增强处理,获取预处理后的待识别医疗图像信息。

优选地,所述深度神经网络模型的训练过程,包括:

构建初始神经网络训练模型,所述初始神经网络模型包括输入层、第一卷积池化层、第二卷积池化层、第三卷积池化层、全连接层和输出层;

对用于训练的待训练图像信息依次进行灰度化、图像区域提取和图像增强预处理,获取预处理后的待训练图像信息;

将所述预处理后的待训练图像信息输入所述初始神经网络训练模型进行模型训练,通过所述模型训练调整所述初始神经网络训练模型中第一卷积池化层、第二卷积池化层、第三卷积池化层、全连接层的参数设置;

判断所述初始神经网络训练模型中第一卷积池化层、第二卷积池化层、第三卷积池化层、全连接层的参数设置是否区域稳定,若是,则完成训练,获取训练好的深度神经网络模型;若否,则返回上一步继续进行训练。

优选地,所述特征匹配模块13包括:

Softmax分类单元:用于采用Softmax分类器对所述待识别医疗图像信息的深层次特征与医疗图像特征库中的医疗图像特征一一进行识别匹配处理,获取至少一个以上与所述待识别医疗图像信息的深层次特征相似的医疗图像特征。

优选地,所述关键字提取模块15中的关键字提取方法包括:TF-IDF关键字提取算法、基于语义的统计语言模型、TF-IWF文档关键字自动提取算法、基于分离模型的文中关键字提取算法、基于语义的中文文本关键字提取(SKE)算法、基于朴素贝叶斯模型的中文关键字提取算法。

采用本发明实施例,解决了用户在获取医疗图像信息后,采用训练好的神经网络模型进行图像特征提取,能在保证提取速度不变的情况下,特征提取质量提高,保证后续的识别正确率,增加用户的体验度。

本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或光盘等。

另外,以上对本发明实施例所提供的一种基于深度神经网络的医疗图像信息识别方法及系统进行了详细介绍,本文中应采用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1