一种基于GIS的中小流域设计洪水模型

文档序号:24649061发布日期:2021-04-13 16:48阅读:237来源:国知局
一种基于GIS的中小流域设计洪水模型
一种基于gis的中小流域设计洪水模型
技术领域
1.本发明涉及暴雨洪水计算领域,特别是涉及一种基于gis的中小流域设计洪水模型。


背景技术:

2.中小流域,特别是缺资料或者无资料流域,设计洪水模型的基本思想是将降雨和地理特性资料通过产汇流分析计算转化为径流,主要研究途径分为三类:1.地区经验综合法;2.水文流域模型法;3.形态勘测法(洪水调查法);其中,地区经验综合法是根据降雨、径流等实测资料建立区域的综合函数关系,再将综合函数关系外延到缺资料地区;该方法准确可靠,但是需要研究区内有充足的代表性水文站点,并且工作量较大。水文流域模型法是利用降雨资料模拟径流过程;该方法只要降雨资料充足,就能进行径流模拟,但是在计算缺资料地区的设计洪水时,由于受到非地区性规律参数的影响,计算精度不高。形态勘测法是通过历史洪水调查研究获取研究流域的数场历史洪峰流量;此方法的困难是历史洪水调查往往调查不到足够准确的多场洪水,因而带有估算性质。
3.目前,水文科学正面临着由传统水文学向现代水文学的过渡阶段,而现代水文学在缺资料流域水文研究的基本思路是充分利用计算机遥感技术获取流域的基本自然地理信息,运用系统论的现代科学手段,同时结合空间计算技术,探索地表信息流的动力学机制和时空特性,以便对流域的水文性状(降雨、产汇流规律等)进行数值模拟。


技术实现要素:

4.鉴于以上所述现有技术的缺点,本发明的目的在于提供一种基于gis的中小流域设计洪水模型,使模型的参数客观化,尽量避免人为调试或选取参数的主观性,从而加强模型的通用性,以解决缺资料地区中小流域设计洪水精度不高的问题。
5.本发明提供一种基于gis的中小流域设计洪水模型,所述模型包括以下步骤:
6.1.确定研究流域,提取研究流域的特征属性;
7.1.1.通过收集研究流域的自然地域资料和水文气象资料,分析影响汇流的主要因素,包括流域的形状、地形地势、河流长度、地表和河床特征;
8.1.2.利用gis技术,通过遥感数据提取研究领域的地理参数,包括研究流域的面积、河道长度、坡度的分布作为研究流域的特征属性;
9.2.设计研究流域水位及出口断面河宽的计算;
10.2.1.根据实测洪水流量资料,运用适线法分析计算t
s
年一遇的设计洪水流量;
11.2.2.根据实测的出口断面资料,运用曼宁公式计算出口断面流量,并绘制水位-流量曲线、水位-河宽曲线;
12.2.3.根据研究流域的设计洪峰流量查找水位-流量曲线,得到对应的出口断面水位,再根据出口断面水位查找水位-河宽曲线,得到对应的出口断面河宽;
13.3.根据暴雨洪水手册,确定设计频率为p的设计暴雨量及其时间分配;
14.4.设计研究流域产流量计算;
15.4.1.根据暴雨洪水同频率的思想,设计暴雨强度计算公式;
16.4.2.利用gis技术,提取流域地形、土壤、植被的特征数据,并根据流域地形、土壤、植被的特征数据计算降雨的蒸发量、填洼量、植物截流量、下渗量;
17.4.3.判断暴雨强度是否大于研究流域下垫面土壤的下渗量,若大于,研究流域有产流量,否则,研究流域没有产流量;
18.5.设计研究流域汇流量计算;
19.5.1.设计河网的蓄泄过程;
20.5.2.设计河网的出流过程;
21.6.设计研究流域退水过程。
22.于本发明的一实施例中,设计暴雨强度计算公式为:
[0023][0024]
或者h
p
=s
p
·
t
1-n
ꢀꢀꢀꢀ
(2)
[0025]
其中,为设计频率为p平均暴雨强度;s
p
为雨力;t为设计暴雨的历时;n暴雨指数;h
p
为设计频率为p的设计暴雨量。
[0026]
于本发明的一实施例中,判断暴雨强度是否大于研究流域下垫面土壤的下渗强度的计算公式为:
[0027][0028]
其中,i
t
为t时刻的暴雨强度,f
t
为研究流域在t时刻的土壤下渗量。
[0029]
于本发明的一实施例中,土壤下渗量f
t
的计算公式为:
[0030][0031]
其中,f
t
为t时刻的土壤下渗量;η为经验参数;f
c
为土壤趋于田间持水量时的稳定下渗量;
[0032]
使用霍顿公式将公式(4)转化为:
[0033]
f
t
=f
c
+(f
0-f
c
)e-βt
ꢀꢀꢀꢀꢀ
(5)
[0034]
其中,f0为干旱土壤的初始下渗量;β为下渗公式经验指数。
[0035]
于本发明的一实施例中,设计河网的蓄泄过程包括以下步骤:
[0036]
5.1.1计算河网的蓄水量:
[0037][0038]
其中,w
t
为时间为t的河网蓄水量,单位为m3;l
w
为河网总长,单位为m;为河网平均河宽,单位为m;为河网平均水位,单位为m;
[0039]
5.1.2采用曼宁公式计算出口断面的流量:
[0040][0041]
其中,q
t
为时间为t时间的出口断面流量,单位为m3/s,n为糙率;a为出口断面面积,
m2;r为出口断面水力半径,单位为m;χ为出口断面湿周,单位为m;j为出口河段比降;
[0042]
5.1.3假定:则建立出口断面流量q
t
与河网的蓄水量w
t
的函数关系,转换出口断面的流量计算公式(7)为:
[0043][0044]
得到w
t
=β-0.6
q
t0.6
ꢀꢀꢀꢀꢀꢀ
(8)
[0045]
其中,式中系数:
[0046][0047]
于本发明的一实施例中,设计河网的出流过程包括以下步骤:
[0048]
5.2.1联解河网的蓄泄关系式(8)和河网水量平衡式(9),得到:
[0049][0050]
其中,i
t
为t时刻的河流入流流量;
[0051]
5.2.2对公式(10)取差分,得到:
[0052][0053]
并将上式改写为:
[0054][0055]
5.2.3联解(8)和(11),得到:
[0056][0057]
5.2.4根据公式(12)已知入流过程,利用迭代计算求出出流过程。
[0058]
于本发明的一实施例中,设计研究流域退水过程具体步骤为:
[0059]
6.1退水时河网入流停止,水量平衡式:
[0060][0061]
6.2将公式(8)代入公式(13),整理积分得到河网退水方程,得到:
[0062][0063]
其中,q0为河网总入流终止时刻的出口断面流量。
[0064]
于本发明的一实施例中,所述t
s
为100。
[0065]
如上所述,本发明的一种基于gis的中小流域设计洪水模型,具有以下有益效果:本发明充分利用现代gis、遥感技术,提取研究流域地形、土壤、植被等流域下垫面特性数据,在此基础上,建立具有物理概念基础的缺资料地区中小流域设计洪水计算模型,使模型的参数客观化,尽量避免人为调试或选取参数的主观性,从而加强模型的通用性,以解决缺资料地区中小流域设计洪水精度不高的难题。
附图说明
[0066]
图1显示为本发明实施例中公开的径流形成示意图。
[0067]
图2显示为本发明实施例中公开的参数k1k2与流域面积f的相关图。
具体实施方式
[0068]
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
[0069]
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
[0070]
本发明将研究流域内降雨形成的出口断面的径流过程分为两个阶段:1.降雨经过植被截流、蒸发、填洼、下渗等损失转化为净雨的阶段;2.净雨经过坡地、河网汇流,在研究流域出口断面形成径流的阶段;前者称为流域产流过程,后者称为流域汇流过程。
[0071]
研究流域的形状、地形地势、河流长度、地表和河床特性,都会影响研究流域内的水流运动;研究流域的形状可以通过流域面积与河流长度间接反应,例如:干流长、面积小、形状狭长的流域,则汇流时间长,反之汇流时间短;地形地势通常通过坡度表示,研究流域坡面的坡度与比降对流域汇流能够产生重大影响;地表和河床特性与地区植被、土壤、岩石性质有关,岩石破碎地区易于造成砾石、卵石河床;地表和河床特性可以认为是分区性因素,而流域的形状、地形地势、河流长度则是非分区性因素。
[0072]
遵循这一基本思想,充分利用现代gis、遥感技术,提取研究流域地形、土壤、植被等流域下垫面特性数据,提供一种基于gis的中小流域设计洪水模型,所述中小流域设计洪水模型包括以下步骤:
[0073]
1.确定研究流域,提取研究流域的特征属性;
[0074]
1.1.通过收集研究流域的自然地域资料、水文气象资料,分析影响汇流的主要因素;
[0075]
1.2.利用gis技术,通过遥感数据提取研究领域的地理参数,包括研究流域的面积、河道长度、坡度的分布等作为研究流域的特征属性;
[0076]
2.设计研究流域水位及出口断面河宽的计算;
[0077]
2.1.根据流域实测流量资料,运用适线性法则推求百年一遇的设计洪峰流量;
[0078]
2.2.根据实测的出口断面资料,运用曼宁公式计算出口断面流量,并绘制水位-流量曲线、水位-河宽曲线;
[0079]
2.3.根据研究流域的设计洪峰流量查找水位-流量曲线,得到对应的出口断面水位,再根据出口断面水位查找水位-河宽曲线,得到对应的出口断面河宽;
[0080]
3.根据暴雨洪水手册,确定设计频率为p的设计暴雨量及其时间分配;
[0081]
4.设计研究流域产流量计算;
[0082]
如图1所示,降雨除了直接落在水面上之外,一般不会立刻形成径流,而是在扣除植被截留、蒸发、填洼、下渗等损失之后才形成地表或者地下径流;扣损后的净雨在研究流
域坡地上向河槽汇集,在河网中流动就形成河川径流;
[0083]
在暴雨形成过程中,将径流损失划分为两个过程:初损和后损;初损主要包括蒸发量、填洼量、植物截留量,后损则为产流期间的下渗量。
[0084]
因此根据暴雨洪水同频率的思想,设计暴雨计算公式为:
[0085][0086]
或者h
p
=s
p
·
t
1-n
ꢀꢀꢀꢀꢀ
(2)
[0087]
其中,为设计频率为p平均暴雨强度(mm/h);s
p
为雨力(mm/h);t为设计暴雨的历时(h);n暴雨指数;h
p
为设计频率为p的设计暴雨量。
[0088]
根据产流原理,当满足蒸发量、植物截流量、填洼量后,t时刻的暴雨强度i
t
大于研究流域下垫面土壤的下渗强度f
t
时,才会有径流产生,即:
[0089][0090]
其中,i
t
为t时刻的暴雨强度,f
t
为流域t时刻的土壤下渗强度。
[0091]
产流阶段初损和后损的计算如下:
[0092]
1.蒸发量
[0093]
雨期蒸发在一次暴雨过程中比重很小,通常可合并在植物截留中考虑;
[0094]
2.填洼量
[0095]
在降雨产流过程中,填洼能够改变地表径流方向,进而影响地表径流的形成过程;填洼量与地表洼坑的面积与深度密切相关;采用gis技术,利用全球公开可获取的dem数据,提取填洼量。
[0096]
3.植物截流量
[0097]
植物截留通常包括树冠截留和林下低草植物截留以及林下枯枝枯叶截留三部分,采用gis技术,对遥感影像资料进行处理,提取流域的土地利用/土地覆被数据,确定各流域不同植被类型的截流量;
[0098]
4.下渗量
[0099]
当降雨连续降落在干燥土壤的表层时,一部分随着地面流走,一部分由包气带上界面不断下渗进入土层;水分从土表进入土层的过程就成为下渗;水分在毛管力、土壤颗粒吸附力及重力的共同作用下继续向下运动,按水分的运动特征及在此过程中所受的作用力,下渗又可分为渗润、渗漏、渗透这三个阶段。
[0100]
渗润阶段:下渗水分在毛管力和分子力的共同作用下,被土粒吸附形成吸湿水,进而形成薄膜水;这一阶段属于降水初期,下渗强度比较大,并且与土壤含水量呈反相关关系。
[0101]
渗漏阶段:水分在重力和毛管力的综合作用下,随着土壤孔隙继续向下渗透,直到将土壤孔隙填充饱和为止;这一阶段的土壤已经具有了一定湿度,下渗强度变化变缓;当土壤中的含水量达到田间持水量时(包气带蓄满),下渗则主要受重力控制,地面下渗的水量逐渐充填非毛管空隙。
[0102]
渗透阶段:当土壤中所有孔隙被水填满之后,即达到饱和,水分受重力作用而呈现稳定流动的状态;这一阶段的特征是土壤含水量达到饱和,土壤下渗强度小而稳定,这是因
为重力比之于分子力和毛管力,是一个很小的力。
[0103]
前两个阶段属于非饱和水流运动,最后一个阶段属于饱和水流的稳定运动;
[0104]
在天然条件下,实际的下渗过程受土壤特性、土壤表面坡度(地形条件)和暴雨强度等多种因素共同影响,因此其过程往往复杂多变,具有不稳定性和不连续性。
[0105]
土壤对下渗的影响,主要与土壤前期含水量与土壤的透水性有关,前期含水量越大,土壤吸水能力越弱,下渗率也就越小。一般来讲,土壤的质地越粗,孔隙直径就越大,其透水性也就越好,相应的下渗能力也就越大。
[0106]
地面起伏程度不同,坡面漫流的速度也不同。一般来说,在相同情况下,坡度越小,漫流的速度越慢,历时也就越短,不易形成给水,下渗量也就越小。
[0107]
除了以上因素外,下渗过程还受耕作措施、地面覆盖物和下渗水质好坏等因素影响;在植被丰富的地区,由于受到枯枝落叶的滞水作用,下渗时间会增长,地表径流减少,下渗量也相应的增加。
[0108]
下渗量一般由菲利浦公式来描述,它的大小直接影响着径流量的大小,即:
[0109][0110]
其中,f
t
为t时刻的土壤下渗率;η为经验参数;f
c
为土壤趋于田间持水量时的稳定下渗率(实际上也是土壤饱和后的下渗率,所以稳定下渗率又称饱和下渗率);
[0111]
水文学中常使用霍顿公式,即:
[0112]
f
t
=f
c
+(f
0-f
c
)e-βt
ꢀꢀꢀꢀꢀ
(5)
[0113]
其中,f0为干旱土壤的初始下渗率;β为下渗公式经验指数;
[0114]
按照蓄满产流的观点,设计条件下植物截留和填洼量已经得到满足,前期土壤含水量蓄满,土壤下渗达到稳定下渗率f
c

[0115]
因此,湿润地区设计条件下的f
c
就是平均后损按照流域稳定下渗扣损,利用gis提取流域地形、土壤、植被的强大功能,结合土壤学的下渗实验成果,直接确定f
c

[0116]
5.设计研究流域汇流量计算;
[0117]
5.1.设计河网的蓄泄过程
[0118]
5.1.1河网蓄水类似水库,蓄水量
[0119][0120]
其中,w
t
为河网蓄水量,单位为m3,l
w
为河网总长,单位为m,为河网平均河宽,单位为m;为河网平均水深,单位为m。
[0121]
5.1.2采用曼宁公式计算出口断面的流量qt
[0122][0123]
其中,qt为出口断面流量,单位为m3/s,n为糙率;a为出口断面面积,单位为m2;r为出口断面水力半径,单位为m;χ为出口断面湿周,单位为m;j为出口河段比降;
[0124]
5.1.3假定:则可建立出口断面流量q
t
与河网蓄水量w
t
函数关系,即为河网蓄泄关系;
[0125]
其中,b为出口断面河宽,单位为m;h为出口断面平均水深,单位为m,k1、k2为无量纲
参数;
[0126]
将公式(7)可转化成:
[0127][0128]
得到:
[0129]
w
t
=β-0.6
q
t0.6
ꢀꢀꢀꢀꢀ
(8)
[0130]
式中系数:
[0131][0132]
5.2.设计河网的出流过程
[0133]
5.2.1联解河网蓄泻关系式(8)与河网水网平衡式(9),得到
[0134][0135]
i
t
为t时刻的河流入流流量,m3/s;其余公式同前;
[0136]
5.2.2对(10)式取差分得到:
[0137][0138]
上式改写为:
[0139][0140]
5.2.3联解(8)和(11),得到:
[0141][0142]
5.2.4根据公式(12)已知入流过程,利用迭代计算求出出流过程。
[0143]
6.设计研究流域退水过程
[0144]
6.1退水时河网入流停止,水量平衡式为:
[0145][0146]
6.2将公式(8)代入(13)式,整理积分得到河网退水方程,即:
[0147][0148]
其中,q0为河网总入流中止时刻的出口断面流量。
[0149]
上述模型共有6个参数,

土壤趋于田间持水量时的稳定下渗率f
c
(实际上也是土壤饱和后的下渗率,所以稳定下渗率又称饱和下渗率)

计点暴雨量h
p


流域面积f,

河流总长度l
w


主河流比降j,

出口断面所在河段糙率n。
[0150]
在设计条件下,湿润地区的土壤饱和下渗率f
c
,利用gis和土壤遥感资料提取流域土壤质地和分布后确定,h
p
由地区暴雨公式确定,l
w
、b、j由地形图量取,或者由dem数据通过
gis提取,出口断面所在河段糙率n通过实地调查结合各地暴雨手册确定。
[0151]
实施例一:以云南省7个典型的中小流域为例说明设计暴雨计算方法,并给出云南省南部7个中小流域的设计暴雨计算结果;
[0152]
(1)设计点暴雨量计算
[0153]

1、6、24设计点暴雨量的计算:根据设计流域重心位置在《云南省暴雨洪水手册》上查找“暴雨等值线图”中年最大1小时、6小时、24小时百年一遇的雨量均值及其相应的变差系数,并根据cs=3.5cv在附表中查出百年一遇的模比系数,如表一所示,按照公式计算出相应频率下1小时、6小时、24小时的设计点暴雨量:
[0154][0155]
式中,h
p
为暴雨历时(t)分别为1小时、6小时、24小时;频率为p(%)的设计点暴雨量,单位为mm;为暴雨历时(t)分别为1小时、6小时、24小时的暴雨均值,单位为mm;kp为模比系数查表值。
[0156]
表1 p-ⅲ型曲线kp值表(cs=3.5cv)
[0157][0158][0159]

其他历时设计点暴雨量的计算:根据(16)和公式(17)计算各个流域1-6小时、6-24小时的递增指数(即1-n,n为衰减指数),分别以n2和n3表示,则其他历时的设计点暴雨量则采用公式(18)和公式(19)进行计算;
[0160][0161][0162]
历时(t)为2、3
……
5h:
[0163][0164]
历时(t)为7、8
……
23h:
[0165][0166]
式中,h
i
为各时段的暴雨量。
[0167]
(2)设计面暴雨量计算
[0168]
根据设计流域重心位置在手册附图中查找暴雨时深关系所属分区,并在表2中查找面积折减系数,在根据公式(20)计算1小时至24小时的设计面暴雨量;
[0169]
暴雨点面折算公式:
[0170]
h
ftp
=α
ft
·
h
点tp
ꢀꢀꢀꢀꢀ
(20)
[0171]
表2云南省分区综合时~面关系表
[0172]
[0173]
[0174]
[0175][0176]
(3)设计的时程分配计算
[0177]
总量相等的一次暴雨可以形成不同的降雨过程,从而导致洪水的不同洪峰流量、洪水总量及洪水过程,对水利工程将有不同的影响。设计暴雨时程分配的计算方法为:先由各相邻两历时的设计面雨量依次相减推求集水区域每小时的设计面雨量,再依据暴雨分区综合雨型表查得工程所在暴雨分区的排序。
[0178]
长短历时暴雨关系是用指数n2、n3来表示,需用实测面雨量分析计算,限于资料条件,唯以点雨量近似地用在面上,显然点雨量的长短历时关系不同于面雨量,一般规律是n点<n面。
[0179]
表3云南省24小时暴雨分区雨型表
[0180]
[0181][0182]
(4)设计暴雨计算成果整理
[0183]
根据设计点雨量和面雨量的计算以及设计暴雨时程计算的成果,整理出了云南南部的7个中小流域成果表,详见表4至表6。
[0184]
表4暴雨特性分布表
[0185][0186]
表5设计暴雨过程(一)
[0187]
[0188][0189]
表6设计暴雨过程(二)
[0190][0191]
在设计暴雨洪水计算中,净雨分析应该考虑初损和后损两部分。其中初损主要考虑植物截留、蒸发和填洼,后损主要考虑稳渗,而通常情况下,雨期蒸发在一次暴雨过程中比重很小,通常可合并在植物截流中考虑。
[0192]
在森林面积比重大的流域,植物截留主要包括树冠截留和林下枯枝落叶截留,其截流量将占到降雨量的相当比例。树冠截留和林下枯枝落叶截留已经有相当可观的试验研究,试验提供的数据可供降雨径流计算研究使用。
[0193]
(1)填洼
[0194]
在非稻田河网区,填洼量在一次暴雨过程中比重很小,且对不同地区的流域差异较小,现在根据dem数据,利用btopmc模型,可近似估计填洼深度,如表8所示:
[0195]
(2)植物截流
[0196]
由于缺乏实测条件,所以利用遥感资料进行处理,提取各研究流域的土地特性(种类、面积等),再查阅相关的文献,拟定不同流域植被类型的截流量,按照组成比例加权法推求各个流域的植物截流量,如表9所示:
[0197]
(3)下渗
[0198]
云南南部属于湿润地区,多为蓄满产流,将土壤的平均稳定下渗作为后损强度,由于条件有限,则用遥感资料提取各块地质组成(砂、壤、粘粒组成百分比);由于纯砂石、壤土、黏土的饱和渗透率按组成比例加权求取地块的饱和渗透率,再按各块面积占流域面积的加权求得各地的平均饱和渗透率,各类土粒的渗透系数参考表7所示,下渗损失结果参见表10;
[0199]
表7各类土粒的渗透系数值
[0200][0201]
(4)产流计算成果整理
[0202]
产流过程中的填洼、植物截留和下渗损失详见表8至表10。
[0203]
表8流域填洼一览表
[0204]
序号ly1ly2ly3ly4ly5ly6ly7流域富宁落却孟朗披枝漫沙田上果绿水河填洼量(mm)6.74.65.54.84.48.65.9
[0205]
表9流域植物截留一览表
[0206]
[0207][0208]
表10流域下渗一览表
[0209][0210]
(5)流域汇流计算
[0211]
流域的汇流是指一次降水过程经过蓄渗转化成坡面漫流和壤中径流,再经过河网汇流形成流域出口断面的径流过程。其实质是依据净雨过程推求出口断面的流量过程。目前汇流计算的方法很多,如数学物理法、概念性模型和系统分析法等,其共同点在于反应流域汇流过程的基本特性。
[0212]
(1)河网汇流
[0213]
坡地汇流时间短,仅在特小流域需要考虑,因此不考虑坡地汇流,直接将扣损后的净雨过程作为河网总入流。
[0214]
根据前文推求的设计洪水对应的出口断面河宽,利用公式(1)至公式(8)调试得到k1*k2的取值,以及相应的设计洪峰流量及洪水过程线,并尝试探索k1*k2与流域面积f的相关关系。相关成果详见表11。
[0215]
(2)河网汇流整理成果表
[0216]
表11两种方法计算100年一遇设计洪峰流量成果对比
[0217][0218]
由表11可以发现:根据模型法推求的设计洪洪峰流量与利用实测流量资料推求的100年一遇设计洪水成果,误差小于10%;并且通过建立k1k2与流域面积之间的相关关系可以发现,如图2所示;相关系数为0.65,大于0.5,说明二者关系较为良好。由此可以证明,基于gis的中小流域设计洪水模型,在缺资料地区的应用具有较好的实用价值。
[0219]
综上所述,本发明使模型的参数客观化,尽量避免人为调试或选取参数的主观性,从而加强模型的通用性,以解决缺资料地区中小流域设计洪水精度不高的难题;所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
[0220]
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1