一种河流突发性水污染分析与风险图编制方法与流程

文档序号:20443080发布日期:2020-04-17 22:33阅读:401来源:国知局
一种河流突发性水污染分析与风险图编制方法与流程

本发明属于水环境的应急防灾领域,具体涉及一种河流突发性水污染分析与风险图编制方法。



背景技术:

随着社会经济的不断发展,城市规划建设的进程不断加快,我国的水环境问题日益恶化,尤其是突发性水污染事件频现,对水环境和供水系统造成了严重、恶劣的影响。由于突发性水污染事故具有不确定性,事故预测和风险规避有一定的难度,且事故一旦发生,影响范围极广,危害极大。因此,建立完善的突发性水污染状况的应急体系,完成水污染风险图的绘制成为水污染应急防治亟待解决的重点问题。

突发性水污染问题具有事故发生的不确定性、危害的紧急性、影响的长期性等特点,现有研究主要通过风险源识别与评价、建立水质模型、水污染预警等方法来模拟事故发生的过程及危害,取得了一定成果,但也存在一定的局限性:①传统的数值模拟研究重点关注浓度的变化,对其他水污染指标如区域受影响的时间及污染团到达特定断面的时间关注较少,应急预案的实施效率较低;②一维水质模型不能反映污染物横向的浓度分布,且模拟的精度不足;③以往绘制的污染风险图中包含信息不全面,不规范,且可视化效果较差。

本发明将针对以上问题,提供一种基于一、二维水动力水质耦合模型的丰、枯水时期的河流突发性水污染的模拟分析与风险图编制方法。

通过对公开专利文献的检索,并未发现与本专利申请相似的公开专利文献。



技术实现要素:

本发明的目的在于克服现有技术的不足,,提供一种河流突发性水污染分析与风险图编制方法,该方法集风险源识别,数值模拟及事故预警为一体,精确地模拟了水污染指标如区域受影响的时间及污染团到达特定断面的时间,为水环境管理者制定应急预案及事故后处理提供技术支持;绘制的水污染风险图能够实现水污染信息的可视化,提升我国水污染风险管理水平,促进我国水环境治理和生态文明建设。

本发明解决其技术问题是通过以下技术方案实现的:

一种河流突发性水污染分析与风险图编制方法,其特征在于:所述方法的步骤为:

1)突发性水污染情景设定:根据对突发性水污染特点及影响分析,设定两种突发性水污染事件,分别为企业污水泄露和交通运输事故,研究水域为河流干流;

2)建立水动力水质耦合模型:水质模型用于模拟污染物在水体中迁移、扩散及衰减转化过程,运用一、二维模型对步骤1)中的情景进行模拟,分析河道水污染风险;

一维水动力水质模型

水动力基本方程为:

水质模型基本方程为:

其中:c为整个断面的平均浓度,单位为mg/m3;

q为流量,单位为m3/s;

a为过水断面面积,单位为m2;

u为断面平均流速,单位为m/s;

d为纵向弥散系数,单位为m2/s;

s为各种源和漏的代数和;

b)二维水动力水质模型

水流连续方程为:

水流动量方程为:

其中:t为时间;

x、y为空间坐标系;

η为水位;

h为静止水深;

u为x方向的流速;

v为y方向的流速;

pa为当地气压;

ρ为水密度;

ρ0为参考水密度;

f为科里奥利参量;

txx、txy、tyx、tyy为水平粘滞应力;

isx、ibx、ixy、iby为水流切应力分量;

us、vs为源汇项水流流速;

水质模型基本方程为:

其中:c为污染物的浓度,单位为mg/l;

t为时间,单位为d;

ux、uy分别为x、y方向的水流速度,单位为m/s;

dx、dy分别为x、y方向的扩散(离散)系数,m2/s;

k为污染物的降解速率常数,单位为s-1;

为△t时间内,由于流速引起污染物在x、y方向的浓度变化;

为由于紊动扩散引起的污染物在x、y方向的浓度变化;

3)模拟结果分析:

a)一维模拟结果分析:

①取水口污染物分析:河流干流沿岸一般分布着大量的取水口,在假定污染源位置的前提下,根据一维水动力水质耦合模型模拟各取水口的浓度变化过程线;

根据《农田灌溉水质标准》gb5084-2005规范中对农田灌溉用水水质基本控制项目浓度的规定,化学需氧量对于水作作物应小于150mg/l,旱作作物要控制在200mg/l以内。本发明约定当取水口处cod浓度首次达到150mg/l的时间为污染物到达时间,当取水口处cod浓度下降到小于150mg/l的时刻与到达时刻的时间差,即为影响时间;

②河道污染风险分析:根据《地表水环境质量标准》中对水质类别的划分,ⅰ类、ⅱ类水中cod的浓度小于15mg/l、ⅲ类水cod浓度介于15mg/l-20mg/l之间,ⅳ类水cod浓度介于20mg/l-30mg/l之间,ⅴ类水中cod浓度介于30mg/l-40mg/l,大于40mg/l为劣ⅴ类水;在设定突发性水污染事故的情景下,可以绘制不同位置不同时刻的cod浓度变化曲线;

b)二维模拟结果分析:在设定突发性水污染事故的情景下,二维模型考虑了横向扩散,在水动力条件下,污染团沿着主河槽向下游迁移扩散,模拟污染物平面上的浓度分布,绘制不同位置不同时刻的cod浓度变化过程平面图;

4)水污染风险图绘制:参照洪水风险图的种类,将河流水污染风险图分为污染物浓度分布图、污染物到达时间图、影响时间图等三类,并在其上叠加监测站网、污染源、取水工程信息及水源地分布等信息;将计算得到的污染物浓度分布、污染物到达时间及污染物影响时间矢量化,与其他的矢量图层叠加,最后还要对图中的符号、文字及颜色等进行设计、渲染;

(1)一维结果的矢量化:模拟计算的结果以沿程断面浓度变化的形式表征污染物的扩散及传输规律,提取不同断面的污染物最大浓度及不同时刻的浓度,并认为浓度沿河道中心线分布;经过差值加密的断面与河道中心线矢量图层叠加,并给各个交点赋予浓度值。结合浓度分级标准,以浓度值字段为对象,将浓度值进行分级,并与河道面矢量图层叠加,分级赋予不同的颜色,形成最大浓度的空间分布图及不同时刻的污染物浓度分布图;

根据模拟的结果分析各个河道断面受到污染的起始时刻,并按照一定的间隔将时间分级,在gis中处理河道图层shp,按照分级点的控制距离将不同的时间类别赋予不同的颜色,即得到到达时间分布图层。影响时间分布层的处理方法与到达时间处理方法相同;

(2)二维结果的矢量化:二维模拟结果存储在沿河道分布的网格中,每个网格点按照时间序列存储了该点的空间位置信息和污染物的浓度值;根据网格的坐标信息,创建空间矢量图层;污染物浓度分布是空间中的连续场,为了实现污染物浓度扩散的连续二维场,在gis中对浓度矢量图层进行idw差值处理,按照分级标准将不同的分级赋予不同的颜色,即得到污染物浓度分布矢量图;通过c++编程,提取分析污染物的到达时间及影响历时,以网格编号作为不同文件之间转换的连接的唯一属性,将分析提取的文件处理成与河道网格对应的矢量图层,最后按照分级标准,赋予不同的颜色,表征污染物影响的变化;

(3)根据步骤3)中的一、二维模拟结果,分别进行矢量化,绘制最大浓度分布图、不同时刻浓度分布图、污染物到达时间及影响时间分布图等不同种类的突发性水污染风险图。

而且,所述情景设置的参数为:

(a)水文条件:考虑到不同时期上游来流量大小不同,污染物扩散和稀释的能力不同,对下游各水取水口的应急时间影响也较大;设定的两种水文条件为枯水期和丰水期的流量过程;

(b)水质条件:根据当地水环境现状的分析,确定当地水质状况,设定浓度本底值。

本发明的优点和有益效果为:

1、本发明一种河流突发性水污染分析与风险图编制方法,集风险源识别,数值模拟及事故预警为一体,精确地模拟了水污染指标如区域受影响的时间及污染团到达特定断面的时间,为水环境管理者制定应急预案及事故后处理提供技术支持。

2、本发明一种河流突发性水污染分析与风险图编制方法,在一维水动力水质耦合模型的基础上,建立了二维水动力水质耦合模型,模拟了污染物横、纵向上的浓度分布,反映了污染物扩散的客观规律。

3、本发明一种河流突发性水污染分析与风险图编制方法,同时基于gis平台绘制的水污染风险图能够实现水污染信息的可视化,提升我国水污染风险管理水平,促进我国水环境治理和生态文明建设。

附图说明

图1为本发明的流程框图。

具体实施方式

下面通过具体实施例对本发明作进一步详述,以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。

如图1所所示,一种河流突发性水污染分析与风险图编制方法,其特征在于:所述方法的步骤为:

1)突发性水污染情景设定:根据对突发性水污染特点及影响分析,突发性水污染一般是由企业污水泄露、交通运输事故、输油管道破裂等因素引起。本发明设定两种突发性水污染事件,分别为企业污水泄露和交通运输事故,研究水域为河流干流。通过对污染物原因的分析,河道主要污染物为cod及氨氮,考虑到农业灌溉用水对氨氮的浓度没有限制,所以本发明以cod作为代表污染物。设定上述两种方案污染源中含有大量的cod。其中企业排放的污水中cod浓度为5000mg/l,排放持续时间2h;而运输化学物品的车辆泄露的污染物中cod浓度设定为8000mg/l,排放持续时间为0.5h。

情景设置中:

(1)水文条件:考虑到不同时期上游来流量大小不同,污染物扩散和稀释的能力不同,对下游各水取水口的应急时间影响也较大。本发明设定两种水文条件:枯水期和丰水期的流量过程。

(2)水质条件:据黄河水环境现状的分析,黄河整体水质保持在ⅲ类水以上,设定浓度本底值cod为20mg/l。

2)建立水动力水质耦合模型:水质模型用于模拟污染物在水体中迁移、扩散及衰减转化过程。本发明主要运用一、二维模型对上述不同情景进行模拟,分析河道水污染风险。

(1)一维水动力水质模型

①本发明利用有限差分法中的显格式求解一维水动力基本方程。具体过程如下:

其中:为已知层j上相邻3点的带权平均数。设权重分配系数为∝,则水动力方程可离散为:

水质模型基本方程

针对较短河段,一般假定水流处于稳定状态,断面沿程变化不大。所以,水质模型基本方程可简化为如下方程:

式中:k1为污染物衰减率系数,单位为1/d。

应用隐式差分方法对方程进行求解,f表示水质要素变化函数

将上面三式带入水质方程得到差分方程:

通过边界条件、初始条件对上式求解。

(2)二维水动力方程

①实际模拟河流的边界不规则,有限体积法采用非结构化网格,在解决不规则边界时,能够真实的模拟各种水力要素。本发明采用有限体积法对方程组进行离散。

利用高斯定理,将体积分转化成面积分,可得到有限体积法的基本方程

式中,v为每一个三角形网格,n为单位边界a的外法向单位向量,da为面积分微元,dv为体积分微元。

对控制体单元取平均,上式可化为

式中,△v为每个单元的体积,m为总单元总数,aj为j的面积,fn.j为法向通量。

②水质方程模型参数

水质参数是影响模型精度决定水质的重要因素。经过概化的模型需要确定的横向扩散系数和纵向扩散系数。其中横向扩散系数是二维模型区别于一维模型的重要参数,可采用天然河流横向扩散系数常用的经验公式:

dy=∝hu*

式中:h为河流的平均水深,m;

u*为摩阻流速,m/l;

i为河流的平均水力坡度;

g为重力加速度,m2/s;

∝—量纲为1的横向扩散系数。

3)模拟结果分析:

(1)一维模拟结果分析

①取水口污染物分析

河流干流沿岸一般分布着大量的取水口,在假定污染源位置的前提下,一维水动力水质耦合模型可以模拟出各取水口的浓度变化过程线。

根据《农田灌溉水质标准》gb5084-2005规范中对农田灌溉用水水质基本控制项目浓度的规定,化学需氧量对于水作作物应小于150mg/l,旱作作物要控制在200mg/l以内。本发明约定当取水口处cod浓度首次达到150mg/l的时间为污染物到达时间,当取水口处cod浓度下降到小于150mg/l的时刻与到达时刻的时间差,即为影响时间。

②河道污染风险分析

本发明设置的本底浓度值为ⅲ类水中cod的浓度20mg/l,即认为河道某处的cod浓度首次大于20mg/l的时间为到达时间。根据污染物扩散的规律,cod的浓度会先升高,到达峰值浓度,随后浓度会下降,当cod浓度下降到小于20mg/l,即认为此时刻为污染物离开的时间,该时间与到达时间的差值,即为影响时间。

由于黄河沿岸的取水口都用于农业灌溉,农业灌溉对水质的要求远远低于饮用水的标准,低于地表水水质标准要求。根据《地表水环境质量标准》中对水质类别的划分,ⅰ类、ⅱ类水中cod的浓度小于15mg/l、ⅲ类水cod浓度介于15mg/l-20mg/l之间,ⅳ类水cod浓度介于20mg/l-30mg/l之间,ⅴ类水中cod浓度介于30mg/l-40mg/l,大于40mg/l为劣ⅴ类水。在设定突发性水污染事故的情景下,可以绘制不同位置不同时刻的cod浓度变化曲线。

(2)二维模拟结果分析

在设定突发性水污染事故的情景下,除了绘制不同位置不同时刻的cod浓度变化曲线外,二维模型考虑了横向扩散,在水动力条件下,污染团沿着主河槽向下游迁移扩散,模拟污染物平面上的浓度分布,绘制不同位置不同时刻的cod浓度变化过程平面图。

4)水污染风险图绘制:水污染风险图是反应河流突发性水污染风险专题图;参照洪水风险图的种类,将河流水污染风险图分为污染物浓度分布图、污染物到达时间图、影响时间图等三类,并在其上叠加监测站网、污染源、取水工程信息及水源地分布等信息。

水污染风险图的绘制主要是在污染源识别、污染物分析、情景设定、水污染事件数值模拟基础上进行研究。一、二维水质模型模拟结果的表现形式不同,绘制水污染风险图的技术方法也存在一定的差异。但主要的思路相同,将计算得到的污染物浓度分布、污染物到达时间及污染物影响时间矢量化,与其他的矢量图层叠加。最后还要对图中的符号、文字及颜色等进行设计、渲染等。

(1)一维结果的矢量化

模拟计算的结果以沿程断面浓度变化的形式表征污染物的扩散及传输规律,提取不同断面的污染物最大浓度及不同时刻的浓度,并认为浓度沿河道中心线分布。经过差值加密的断面与河道中心线矢量图层叠加,并给各个交点赋予浓度值。结合浓度分级标准,以浓度值字段为对象,将浓度值进行分级,并与河道面矢量图层叠加,分级赋予不同的颜色,形成最大浓度的空间分布图及不同时刻的污染物浓度分布图。

根据模拟的结果分析各个河道断面受到污染的起始时刻,并按照一定的间隔将时间分级,在gis中处理河道图层shp,按照分级点的控制距离将不同的时间类别赋予不同的颜色,即得到到达时间分布图层。影响时间分布层的处理方法与到达时间处理方法相同。

(2)二维结果的矢量化

二维模拟结果存储在沿河道分布的网格中,每个网格点按照时间序列存储了该点的空间位置信息和污染物的浓度值。根据网格的坐标信息,创建空间矢量图层。污染物浓度分布是空间中的连续场,为了实现污染物浓度扩散的连续二维场,在gis中对浓度矢量图层进行idw差值处理,按照分级标准将不同的分级赋予不同的颜色,即得到污染物浓度分布矢量图。通过c++编程,提取分析污染物的到达时间及影响历时,以网格编号作为不同文件之间转换的连接的唯一属性,将分析提取的文件处理成与河道网格对应的矢量图层,最后按照分级标准,赋予不同的颜色,表征污染物影响的变化。

(3)根据步骤3)中的一、二维模拟结果,分别绘制不同种类的突发性水污染风险图。

①最大浓度分布图

提取设定情景模拟的整个过程各个断面的cod浓度最大值,综合考虑《地表水环境质量标准》和《农田灌溉水质标准》gb5084-2005及模拟计算的浓度,将浓度按照标准划分类别,分类赋予不同的颜色,表征不同的污染程度。

②不同时刻浓度分布图

绘制不同时刻的污染物浓度分布情况,便于掌握河道水质的污染变化情况。此情景下的突发性水污染事件在模拟开始后48h,河道中cod的浓度基本恢复到ⅲ类水标准。绘制2h、6h、12h、24h及48h的cod浓度分布图。

③污染物到达时间及影响时间分布图

根据河道污染分析结果,将到达时间及影响时间综合分级,确定污染物到达时间及影响时间分布图。

尽管为说明目的公开了本发明的实施例和附图,但是本领域的技术人员可以理解:在不脱离本发明及所附权利要求的精神和范围内,各种替换、变化和修改都是可能的,因此,本发明的范围不局限于实施例和附图所公开的内容。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1