一种基于Box-Cox变化的储能电池剩余寿命预测方法与流程

文档序号:25586139发布日期:2021-06-22 17:01阅读:174来源:国知局
一种基于Box-Cox变化的储能电池剩余寿命预测方法与流程

本发明涉及储能电池剩余寿命预测方法技术领域,具体为一种基于box-cox变化的储能电池剩余寿命预测方法。



背景技术:

电池的剩余寿命是指在一定的充放电情况下,电池的最大可用容量衰减退化到某一规定的失效阈值所需要经历的循环寿命的循环周期数量。电池剩余寿命的预测是一个基于电池历史数据运用到一定的数学手段对其残余寿命进行预测计算的过程。目前,电池剩余寿命预测的方法主要分为:1、经验预测法(包括单指数模型,双指数模型,线性模型,多项式模型,verhulst模型等);2、滤波预测法(包括:卡尔曼滤波,扩展卡尔曼滤波,无迹卡尔曼滤波,粒子滤波,无迹例子滤波等)。其中经验预测法,虽然具有良好的在线运算能力,但是预测性太差,难以满足电池的实际使用需求;而滤波预测法,虽然可以改善经验预测法的精度和收敛性,但是又增加了算法对模型的依赖性,以及复杂的数据计算。

但在目前现有的技术手段中,对于上述两种方法的缺点尚未有一种有效的技术方法,可以有效地改善电池剩余寿命的预测精度和收敛能力,因此本发明提供一种基于box-cox变化的储能电池剩余寿命预测方法。



技术实现要素:

本发明的目的在于提供一种基于box-cox变化的储能电池剩余寿命预测方法,以解决上述背景技术中提出的问题。

为了解决上述技术问题,本发明提供如下技术方案:一种基于box-cox变化的储能电池剩余寿命预测方法,该方法包括以下步骤:

s1、首先在电池历史容量数据库中提取电池的历史容量数据;

s2、对步骤s1中提取的电池历史容量数据进行线性化处理;

s3、通过极大似然估计法对步骤s2中的参数λ进行求解;

s4、通过最小二乘法求解电池容量衰减轨迹拟合方程的参数;

s5、判断当前的电池容量是否在帚颈之前;

s6、如果是,则求解电池剩余寿命;如果不是,则重复步骤s1-s5。

进一步的,在步骤s2中,利用以下公式对电池的历史容量数据进行box-cox线性化处理:

其中:为经过box-cox变换后的历史容量观测值,λ为box-cox变换系数,cmax为经过box-cox变换前的历史容量观测值。

进一步的,在步骤s3中,利用以下公式对参数λ进行求解:

其中:l(λ)为对数自然函数,n为电池历史容量观测值的样本数,c为电池历史容量观测向量,k为电池历史容量所对应的循环次数向量,t为k向量的转置,b为参数,b=(ktk)-1ktc。

进一步的,通过步骤s1-s3的box-cox变换后,此时电池历史容量数据已经线性化了,则电池容量的衰减轨迹拟合方程为:

其中a为拟合后电池容量衰减轨迹拟合方程的斜率,b为拟合后电池容量衰减轨迹拟合方程的偏差。

进一步的,在步骤s4中,利用以下公式求解电池容量衰减轨迹拟合方程的参数:

进一步的,通过最小二乘法得到拟合方程的两个参数a和b之后,从而可以求解出电池容量失效阈值所对应的循环次数n,即拟合方程为:

进一步的,在步骤s5中,判断当前的电池容量是否在帚颈之前的方法为:

(1)、通过多次小电流的对电池的初始化充放电,建立电池电压v和充放电容量的映射关系表;

(2)、开始进行实际使用下的正常的电池工作的充放电,并记录每一次的电池电压和充电容量的映射关系表;

(3)、设置一个电压差值的上限阈值λ,并实时的判断当前循环次数下的电压v2和上次的循环次数下的电压v1的电压差值δv值的大小:

若λ>δv,则继续查找另外一个δv;

若λ≤δv,则记录下此时的电池容量,此容量即为电池的“帚颈”。

进一步的,在步骤s6中,如果判断当前的电池容量在帚颈之前,则记录步骤s5的当前充放电环境条件下的电池容量失效阈值的循环次数n和此时的电池充放电循环次数nn,则电池的剩余寿命ns为:

ns=n-nn;

如果判断当前的电池容量不是在帚颈之前,则对电池帚颈后面的性能衰减曲线,再使用一次box-c0x变化,过程重复s1-s5的步骤,然后记录此时当前充放电环境条件下的电池容量失效阈值的循环次数n和此时的电池充放电循环次数nn,则电池的剩余寿命nn为:

ns=n-nn。

进一步的,在步骤(1)中,建立电池电压v和充放电容量的映射关系表的具体的方法为:

首先:对电池进行小电流的充放电初始化,对每一节单体电池,有:

①充电时:uchar=ocv+ir电池内阻;

②放电时:udis=ocv-ir电池内阻;

①中的公式+②中的公式得:ocv=(uchar+udis)/2;

其中ocv为开路电压,uchar为充电电压,udis为放电电压;

然后:通过插针soc-ocv表,得到电池初始的电池容量,实时的测量电池的充当电电流,使用安时积分法得到实时的电池容量,公式如下:

最后:将不同电压下的对应的电池容量数值对应光系建立映射关系表。

进一步的,在步骤(2)中,将每次得到的电池电压和充电容量的映射关系表的容量值对应的电压值v2与上次得到的电池电压和充电容量的映射关系表的容量值对应的电压值v1相减,可得到电压差值δv为:δv=v2-v1。

与现有技术相比,本发明所达到的有益效果是:

1、本发明通过加入电池的扫帚效应,使用多次box-cox变化结合最大似然估计法和最小二乘法拟合预测电池衰减效果,不仅改善了电池剩余寿命的预测精度和收敛能力,而且免于做大量的电池离线老化实验,提高了实际的应用性和方便性。

附图说明

附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:

图1是本发明整体的流程图;

图2是本发明判断帚颈的放电扫帚效应示意图;

图3是本发明判断帚颈的充电扫帚效应示意图;

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

请参阅图1-3,本发明提供技术方案:一种基于box-cox变化的储能电池剩余寿命预测方法,该方法包括以下步骤:

s1、首先在电池历史容量数据库中提取电池的历史容量数据;

s2、对步骤s1中提取的电池历史容量数据进行线性化处理;

s3、通过极大似然估计法对步骤s2中的参数λ进行求解;

s4、通过最小二乘法求解电池容量衰减轨迹拟合方程的参数;

s5、判断当前的电池容量是否在帚颈之前;

s6、如果是,则求解电池剩余寿命;如果不是,则重复步骤s1-s5。

进一步的,在步骤s2中,利用以下公式对电池的历史容量数据进行box-cox线性化处理:

其中:为经过box-cox变换后的历史容量观测值,λ为box-cox变换系数,cmax为经过box-cox变换前的历史容量观测值。

进一步的,在步骤s3中,利用以下公式对参数λ进行求解:

其中:l(λ)为对数自然函数,n为电池历史容量观测值的样本数,c为电池历史容量观测向量,k为电池历史容量所对应的循环次数向量,t为k向量的转置,b为参数,b=(ktk)-1ktc。

进一步的,通过步骤s1-s3的box-cox变换后,此时电池历史容量数据已经线性化了,则电池容量的衰减轨迹拟合方程为:

其中a为拟合后电池容量衰减轨迹拟合方程的斜率,b为拟合后电池容量衰减轨迹拟合方程的偏差。

进一步的,在步骤s4中,利用以下公式求解电池容量衰减轨迹拟合方程的参数:

进一步的,通过最小二乘法得到拟合方程的两个参数a和b之后,从而可以求解出电池容量失效阈值所对应的循环次数n,即拟合方程为:

进一步的,在步骤s5中,判断当前的电池容量是否在帚颈之前的方法为:

(1)、通过多次小电流的对电池的初始化充放电,建立电池电压v和充放电容量的映射关系表;

(2)、开始进行实际使用下的正常的电池工作的充放电,并记录每一次的电池电压和充电容量的映射关系表;

(3)、设置一个电压差值的上限阈值λ,并实时的判断当前循环次数下的电压v2和上次的循环次数下的电压v1的电压差值δv值的大小:

若λ>δv,则继续查找另外一个δv;

若λ≤δv,则记录下此时的电池容量,此容量即为电池的“帚颈”。

进一步的,在步骤s6中,如果判断当前的电池容量在帚颈之前,则记录步骤s5的当前充放电环境条件下的电池容量失效阈值的循环次数n和此时的电池充放电循环次数nn,则电池的剩余寿命ns为:

ns=n-nn;

如果判断当前的电池容量不是在帚颈之前,则对电池帚颈后面的性能衰减曲线,再使用一次box-cox变化,过程重复s1-s5的步骤,然后记录此时当前充放电环境条件下的电池容量失效阈值的循环次数n和此时的电池充放电循环次数nn,则电池的剩余寿命nn为:

ns=n-nn。

进一步的,在步骤(1)中,建立电池电压v和充放电容量的映射关系表的具体的方法为:

首先:对电池进行小电流的充放电初始化,对每一节单体电池,有:

①充电时:uchar=ocv+ir电池内阻;

②放电时:udis=ocv-ir电池内阻;

①中的公式+②中的公式得:ocv=(uchar+udis)/2;

其中ocv为开路电压,uchar为充电电压,udis为放电电压;

然后:通过插针soc-ocv表,得到电池初始的电池容量,实时的测量电池的充当电电流,使用安时积分法得到实时的电池容量,公式如下:

最后:将不同电压下的对应的电池容量数值对应光系建立映射关系表。

进一步的,在步骤(2)中,将每次得到的电池电压和充电容量的映射关系表的容量值对应的电压值v2与上次得到的电池电压和充电容量的映射关系表的容量值对应的电压值v1相减,可得到电压差值δv为:δv=v2-v1。

具体实施方式为:使用时,首先提取电池的历史容量数据,通过box-cox变换,将非线性的容量衰减轨迹线性化,公式如下:

其中:为经过box-cox变换后的历史容量观测值,λ为box-cox变换系数,cmax为经过box-cox变换前的历史容量观测值;

然后通过极大似然估计法对参数λ进行求解,公式如下:

其中:l(λ)为对数自然函数,n为电池历史容量观测值的样本数,c为电池历史容量观测向量,k为电池历史容量所对应的循环次数向量,t为k向量的转置,b为参数,b=(ktk)-1ktc;

此时经过box-cox变换后,电池历史容量数据已经线性化了,其电池容量的衰减轨迹拟合方程为:其中a为拟合后电池容量衰减轨迹拟合方程的斜率,b为拟合后电池容量衰减轨迹拟合方程的偏差;

然后通过最小二乘法求解电池容量衰减轨迹拟合方程的参数,公式如下:

通过最小二乘法得到拟合方程的两个参数a和b之后,从而可以求解出电池容量失效阈值所对应的循环次数n,即拟合方程为:中的n值;又因为动力电池在充放电末期的强非线性特点,即会产生“电池扫帚效应”,在多次充放电数据的相交点,该相交点在业内称为电池的“帚颈”,在帚颈之前电池的电池性能衰减曲线相同,超过“帚颈”后电池的性能衰减成不规律的非线性;此时我们判断当前的电池容量是否在帚颈之前,如果是,则记录步骤s5的当前充放电环境条件下的电池容量失效阈值的循环次数n和此时的电池充放电循环次数nn,则电池的剩余寿命ns为:

ns=n-nn;

如果不是,则对电池帚颈后面的性能衰减曲线,再使用一次box-cox变化,过程重复s1-s5的步骤,然后记录此时当前充放电环境条件下的电池容量失效阈值的循环次数n和此时的电池充放电循环次数nn,则电池的剩余寿命nn为:

ns=n-nn;

其中判断当前的电池容量在帚颈之前还是之后的方法为:

(1)通过多次小电流的对电池的初始化充放电,建立电池电压v和充放电容量的映射关系表,其具体的方法为:

首先,对电池进行小电流的充放电初始化,对每一节单体电池,有:

①充电时:uchar=ocv+ir电池内阻

②放电时:udis=ocv-ir电池内阻

又因为电池内阻r与充放电的电流有关,不同的电流会导致产生不同的电池内阻,但本方法使用小电流进行电池的初始化,可避免这个问题;

①+②得:ocv=(uchar+udis)/2;

其中ocv为开路电压,uchar为充电电压,udis为放电电压;

现有技术为了得到电池的开路电压ocv,必须将电池静置一段时间后(>8h),从而让电池的化学性能稳定,得到准确的ocv,但这样的话不但需要大量的时间而且电池实际应用时很少会有长时间的静止的条件允许,通过本方法便可以方便快捷的得到电池的ocv;

然后,通过插针soc-ocv表,得到电池初始的电池容量,实时的测量电池的充当电电流,使用安时积分法得到实时的电池容量;

最后:将不同电压下的对应的电池容量数值对应光系建立映射关系表;

(2)开始进行实际使用下的正常的电池工作的充放电,并记录每一次的电池电压和充电容量的映射关系表;并把每次得到的电池电压和充电容量的映射关系表的容量值对应的电压值v2与上次得到的电池电压和充电容量的映射关系表的容量值对应的电压值v1相减,得到电压差值δv为:δv=v2-v1

(3)设置一个电压差值的上限阈值λ,并实时的判断当前循环次数下的电压v2和上次的循环次数下的电压v1的电压差值δv值的大小:

若λ>δv,则继续查找另外一个δv

若λ≤δv,则记录下此时的电池容量,此容量即为电池的“帚颈”;

此方法通过加入电池的扫帚效应,使用多次box-cox变化结合最大似然估计法和最小二乘法拟合预测电池衰减效果,不仅改善了电池剩余寿命的预测精度和收敛能力,而且免于做大量的电池离线老化实验,提高了实际的应用性和方便性。

本发明的工作原理:

参照说明书附图1-3,本发明通过加入电池的扫帚效应,使用多次box-cox变化结合最大似然估计法和最小二乘法拟合预测电池衰减效果,不仅改善了电池剩余寿命的预测精度和收敛能力,而且免于做大量的电池离线老化实验,提高了实际的应用性和方便性。

需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。

最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1