基于深度神经网络的生物质活性炭吸附亚甲基蓝性能预测方法

文档序号:29315454发布日期:2022-03-19 21:34阅读:372来源:国知局
基于深度神经网络的生物质活性炭吸附亚甲基蓝性能预测方法

1.本发明属于功能材料智能预测技术领域,具体涉及一种生物质碳材料亚甲基蓝吸附性能预测方法。


背景技术:

2.准确的宏观预测模型是提升污染物吸附性能的基础。利用常规的控制变量法进行吸附试验,各影响因素对吸附效率的相对贡献需要大量的数据验证,同时受试验条件的随机性影响往往偏差较大。以常见的生物质制备的活性炭为代表,由于生物质活性炭制备条件以及吸附环境等变量与最终的吸附能力间关系具有强非线性,全过程各要素之间无法做到有机关联。由于有限的数据集之间存在复杂的非线性关联,简单的统计模型建模无法解释吸附的机理变化,传统的机器学习也往往由于样本个数的稀少无法稳定地进行预测。对于这些复杂数据集,深度学习模型更为有效。通过自适应矩估计(adam,adaptive moment estimation)算法、线性整流(relu,rectified linear unit)激活函数和dropout函数等方法的合理选用及调参,深度学习模型在应对深层网络时可以有效抑制过拟合,提高模型拟合度与预测准确率,充分利用训练样本的有效信息。adam算法是目前使用最广泛,优化效果最佳的优化算法之一,在本发明所建立的深度学习模型训练过程中,针对传统机器学习训练过程中学习率固定且较小而导致的网络收敛速度慢的问题,采用adam算法解决训练时间长的问题;引入dropout函数,通过减少神经元之间复杂的共适应关系,可以很好地应对过拟合问题,提高了网络的预测能力;使用relu函数作为激活函数,缓解了梯度消失问题。
3.langmuir和freundlich等经验模型可以描述吸附等温平衡,但这些方法无法评估吸附结果与操作条件之间的非线性联系,且吸附平衡模型的假设条件经常与实际偏离较远,得到的信息偏差较大。动力学模型受制于颗粒微观结构与传质速率的关系研究,所适用的局限性大,依赖于单一有限的实验数据或经验数据,也比较容易失真。对于复杂数据集,深度学习模型通常比传统的吸附动力学和热力学模型更为灵活。以活性炭吸附亚甲基蓝为例,常规的吸附热力学、动力学实验中,往往比较难于定性评估生物质活化条件、吸附环境因子等的相对及绝对贡献,从而也制约了活性炭原材料和制备工艺的最佳选择。深度学习模型不仅可以快速准确地预测吸附过程,还可以分析吸附率与制备原料、制备条件、吸附条件、吸附剂其他性能等全生命周期各变量之间的复杂关系,有助于发掘生物质碳材料制备的最佳工艺和吸附最佳条件,对于指导生物质碳材料的制备和吸附反应的进行具有深远的意义。
4.传统机器学习模型已被成功地证明具有建模和预测自变量和因变量之间复杂非线性数学关系的能力。其中,人工神经网络(ann)的提出受到了生物神经元过程的启发,这些元素的连接类似于人脑和神经,可以学习从输入数据到输出数据的映射结构,而无需确定明确的数学关系。面对有限的几十个样本个数,传统机器学习往往无法完整评估实验过程中活性炭制备条件及环境条件变化范围的所有值,此时训练出来的模型很容易产生过拟
合的问题,即面对与训练样本相差较大的实验条件时,预测效果较差。抑制过拟合最有效的方法是增加训练样本数量,然而增加样本数量后,模型缺乏复杂度,便无法充分利用训练样本的有效信息。因此,为了提高复杂度往往需要增加网络层数、神经元个数等参数,而这同样也会产生过拟合问题。并且当网络层数大于五层的时候又容易产生梯度爆炸或梯度消失问题。如果没有样本可以增加,为抑制过拟合,往往需要添加权重正则化算法,或者采用模型集成的方法,训练并组合多个模型。此时,训练和测试模型就变得费时费力。因此,即使在面对只有几十个样本的情况下,包括人工神经网络、随机森林等在内的传统机器学习模型也无法完整进行全生命周期评估,如无法评估吸附实验过程中活性炭制备条件及环境条件变化范围的所有值,并且此时训练出来的模型很容易产生过拟合的问题。增加训练样本后,为了提高网络复杂度往往需要增加参数,例如增加网络层数、增加每层神经元个数等,但是当网络层数大于5层的时候却又容易产生梯度消失问题,需要进一步解决。


技术实现要素:

5.本发明要克服现有技术的上述缺点,提供一种基于深度神经网络的生物质活性炭吸附亚甲基蓝性能预测方法。
6.针对现有的生物质材料吸附亚甲基蓝的预测模型,提供一种深度学习方法,提高预测准确率;针对现有的动力学模型和机器学习模型在描述和预测吸附过程中样本集狭窄的问题,增加训练及预测过程中的样本量以确保模型在特征变化域内的普适性;针对活性炭制备条件、活性炭主要参数、吸附条件的联合分析,为吸附材料的选取和吸附过程的参数取值提供方向。
7.一种基于深度神经网络的生物质活性炭吸附亚甲基蓝性能预测方法,技术方案是:
8.一种基于深度神经网络的生物质活性炭吸附亚甲基蓝性能预测方法,包括以下步骤:
9.1.使用铜藻制备的活性炭进行亚甲基蓝吸附条件实验,获取单一来源吸附数据。在web of science,万方数据库2000-2020中,以“神经网络/neural network”、“吸附/adsorption”为关键词,进行生物质碳材料的数据材料采集,选取其中广泛存在的碳吸附性能评定因子“亚甲基蓝”,得到多组多重来源亚甲基蓝吸附数据建立数据库,亚甲基蓝吸附数据包括活性炭制备工艺参数、活性炭特性和吸附环境参数;
10.2.将收集到的数据进行初步筛选和归一化,将数据库内的单一来源亚甲基蓝吸附数据和多组多重来源亚甲基蓝吸附数据按照比例划分为训练集和测试集;
11.3.由于吸附数据中个别变量不是数字数据类型,因此有必要使用编码系统将这些值转换为模型可接受的数据类型。
12.4.搭建深度神经网络(dnn,deep neural network)预测模型,使用训练集进行训练,以活性炭制备工艺参数、活性炭孔特性以及吸附环境参数作为输入参数,通过dnn预测模型计算出亚甲基蓝去除率,以评价dnn预测模型的精度;
13.5.使用训练后的dnn预测模型对亚甲基蓝去除率进行预测并使用评价指标进行评价,通过heatmap可视化多重来源亚甲基蓝吸附数据的吸附各变量之间的相互影响。
14.优选地,步骤1中得到150组多重来源数据。
estimation)算法动态调整学习率、加速网络收敛;采用dropout函数缓解过拟合;使用线性整流函数(relu,rectified linear unit)函数作为激活函数缓解梯度消失问题。本发明有效解决了传统机器学习作为预测模型在处理有限样本数据上的上述缺陷,同时也适用于数据量更大情况下的吸附预测,并能够通过关键影响因子的定量调整获得对制备工艺的决策优化。
35.本发明所取得的有益效果:
36.本发明的一种基于深度神经网络的生物质活性炭吸附亚甲基蓝性能预测方法,基于已有的活性炭制备工艺参数、活性炭特性和吸附环境参数,利用深度学习的方法构建预测模型,可以用于对未知亚甲基蓝吸附数据的筛选。与传统的实验-表征开发手段相比,极大的节约了成本,加快了开发速度,具有高效、低耗、可靠性高等优点,而且普适性强,可推广应用于各种不同生物质类型的亚甲基蓝吸附设计与开发。有助于分析吸附量与各变量之间的复杂关系,发掘生物质碳材料制备的最佳工艺和吸附最佳条件,为吸附材料的选取和吸附过程的参数取值提供方向。
附图说明
37.图1是本发明的dnn预测生物碳基材料亚甲基蓝吸附能力网络结构图。
38.图2是本发明的dnn预测生物碳基材料亚甲基蓝吸附能力网络流程图。
39.图3是本发明的单一来源数据预测准确率图。
40.图4是本发明的多重来源数据预测准确率图。
41.图5是本发明的多重来源数据heatmap热力图。
具体实施方式
42.为使本领域的技术人员更好地理解本发明的技术方案,下面结合实施例对本发明提供的基于深度学习的生物质碳材料吸附性能预测方法进行详细描述。以下实施例仅用于说明本发明而非用于限制本发明的范围。
43.本发明所称dnn,deep neural network,是一种深度神经网络,属于一种深度学习模型。
44.本发明所述的dnn网络结构图图分别如图1、图2所示:
45.以下结合实施例详细叙述本发明的技术方案。
46.实施例1:
47.一种基于深度神经网络的生物质活性炭吸附亚甲基蓝性能预测方法,包括如下步骤:
48.1.使用铜藻制备的活性炭进行亚甲基蓝吸附条件实验,获取单一来源吸附数据。在web of science,万方数据库2000-2020中,以“神经网络/neural network”、“吸附/adsorption”为关键词,进行生物质碳材料的数据材料采集,选取其中广泛存在的碳吸附性能评定因子“亚甲基蓝”,得到多组多重来源亚甲基蓝吸附数据建立数据库,亚甲基蓝吸附数据包括活性炭制备工艺参数、活性炭特性和吸附环境参数;
49.2.将收集到的数据进行初步筛选和归一化,将数据库内的单一来源亚甲基蓝吸附数据和多组多重来源亚甲基蓝吸附数据按照比例划分为训练集和测试集;
50.3.由于吸附数据中个别变量不是数字数据类型,因此有必要使用编码系统将这些值转换为模型可接受的数据类型。
51.4.搭建深度神经网络(dnn,deep neural network)预测模型,使用训练集进行训练,以活性炭制备工艺参数、活性炭孔特性以及吸附环境参数作为输入参数,通过dnn预测模型计算出亚甲基蓝去除率,以评价dnn预测模型的精度;
52.5.使用训练后的dnn预测模型对亚甲基蓝去除率进行预测并使用评价指标进行评价,通过heatmap可视化多重来源亚甲基蓝吸附数据的吸附各变量之间的相互影响。
53.步骤1中,活性炭制备工艺参数为生物质种类、活化剂种类、活化温度、活化时间、液料比中的一种或多种;活性炭特性为比表面积(bet)、平均孔径、平均孔容、粒径中的一种或多种;吸附环境参数为吸附温度、吸附时间、活性炭添加量、亚甲基蓝溶液初始浓度、ph中的一种或多种。本实施例分别选择以下具体信息,
54.使用铜藻制备的活性炭进行亚甲基蓝吸附条件实验,获取单一来源吸附数据。
55.活性炭制备工艺参数:活化时间;
56.活性炭特性:比表面积;
57.吸附环境参数:吸附时间、ph。
58.步骤2中,初步筛选包括删除含有缺失值的数据。将数据库中的数据进行归一化处理,将所有值映射到(0,1)区间。将数据库内的单一来源亚甲基蓝吸附数据按照随机划分方法以7:3的比例划分为两份,其中训练集占比70%,测试集占比30%;训练集用于dnn模型训练,模型训练完成后,使用测试集测试模型的精度。
59.其中,归一化采用以下公式:
[0060][0061]
上式中,y为归一化后的数据,x为原始数据,x
min
为原始数据的最小值,x
max
为原始数据的最大值。
[0062]
步骤4搭建的dnn预测模型的结构为:输入层,隐藏层和输出层。网络总层数在5-10层内,dropout率0-0.6间,学习率0.001,迭代次数3000-4000次。
[0063]
步骤4和5中的评价指标为相关性系数r、拟合度r2、均方误差mse和均方根误差rmse中的一种或多种。
[0064]
本实施例选取拟合度r2和均方误差mse作为判断模型精度的评价指标,其公式如下:
[0065]
拟合度r2的公式为:
[0066][0067]
均方误差mse的公式为:
[0068][0069]
式中,n为样本总数,x
ti
代表真实值,x
pi
代表预测值,代表所有真实值的平均值。
[0070]
步骤5中,测试集中的数据作为未知的亚甲基蓝吸附数据并未参与dnn模型的训练,使用训练完成的预测模型对测试集的亚甲基蓝去除率进行预测,预测结果如图3所示,模型预测值和真实值之间的拟合度达到99.8%,均方误差约为0.018%。由此可知该模型具
有较高的精确度,可以用于单一来源生物质活性炭吸附亚甲基蓝的性能预测。
[0071]
实施例2:
[0072]
一种基于深度神经网络的生物质活性炭吸附亚甲基蓝性能预测方法,技术方案同实施例1,其不同之处在于:
[0073]
步骤1中,在web of science,万方数据库2000-2020中,以“神经网络/neutral network”、“吸附/adsorption”为关键词,进行生物质碳材料的数据材料采集,选取其中广泛存在的碳吸附性能评定因子“亚甲基蓝”,得到150组多重来源亚甲基蓝吸附数据。
[0074]
活性炭制备工艺参数:生物质种类、活化剂种类、活化温度、活化时间、液料比;
[0075]
活性炭特性:比表面积、平均孔径、粒径;
[0076]
吸附环境参数:吸附温度、吸附时间、活性炭添加量、亚甲基蓝溶液初始浓度、ph。
[0077]
步骤2中,初步筛选包括删除含有缺失值的数据。将数据库中的数据进行归一化处理,将所有值映射到(0,1)区间。将数据库内的多重来源亚甲基蓝吸附数据按照随机划分方法以7:3的比例划分为两份,其中训练集占比70%,测试集占比30%;训练集用于dnn模型训练,模型训练完成后,使用测试集测试模型的精度。
[0078]
其中,归一化采用以下公式:
[0079][0080]
上式中,y为归一化后的数据,x为原始数据,x
min
为原始数据的最小值,x
max
为原始数据的最大值。
[0081]
步骤3中选用独热(one-hot)编码系统将生物质种类、活化剂种类、液料比、粒径、亚甲基蓝溶液初始浓度中的一种或多种转化为模型可接受的二进制数据类型。本实施例选择以下具体信息,
[0082]
生物质种类、活化剂种类、液料比、粒径、亚甲基蓝溶液初始浓度。
[0083]
步骤5中,使用训练完成的预测模型对测试集的亚甲基蓝去除率进行预测,预测结果如图4所示,模型预测值和真实值之间的拟合度达到99.3%,均方误差约为0.04%。由此可知该模型具有较高的精确度,可以用于多重来源生物质活性炭吸附亚甲基蓝的性能预测。
[0084]
步骤5中,多重来源亚甲基蓝吸附数据的吸附各变量之间的相互影响通过heatmap可视化如图5所示。对于一种特定的生物量,吸附温度、活化温度、比表面积、活性炭添加量可确定为与亚甲基蓝吸附相关的最具影响的参数。说明该模型有助于发掘该生物质碳材料制备的最佳工艺和吸附最佳条件,为吸附材料的选取和吸附过程的参数取值提供方向。
[0085]
上面结合实施例对本发明的实例作了详细说明,但是本发明并不限于上述实例,在生物质碳材料的制备和吸附反应领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出的各种变化,也应视为本发明的保护范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1