连接不完美匹配nurbs面片以形成适于有限元分析的计算机模型的制作方法

文档序号:8259038阅读:437来源:国知局
连接不完美匹配nurbs面片以形成适于有限元分析的计算机模型的制作方法
【技术领域】
[0001] 本发明总的涉及计算机辅助工程分析,更具体地涉及用于连接不完美匹配非均匀 有理基础样条(Non-UniformRationalBasisSplines,NURBS)面片以形成适于有限兀分 析(FEA)的计算机模型的方法和系统。
【背景技术】
[0002] 随着计算机技术的进步,计算机辅助工程(CAE)和计算机辅助设计(CAD)已经被 用于协助工程师/科学家来设计各种行业(例如,汽车、航空等)中的产品。一种首先发展 的CAE技术是有限元分析(FEA),它是在行业中广泛用于建模和求解与复杂系统(例如三维 非线性结构设计和分析)相关的工程问题的计算机方法。FEA的名字源于被考虑的物体的 几何形状被规定的方式。
[0003]FEA软件提供了几何形状描述的模型、以及模型(有时候指的是FEA网格模型)内 的每个点的相关材料特性。在这个模型中,被分析的系统的几何形状由各种尺寸的实体、壳 体以及梁表示,它们被称为单元。单元的顶点被称为节点。所述模型由有限数量的单元组 成,它们被赋予材料名称,从而将单元与材料特性关联起来。因此所述模型表示被分析的物 体沿着它周围的环境所占据的物理空间。然后FEA软件引用了表格,在表格中每种材料类 型的特性(例如,应力_应变构成等式、杨氏模量、泊松比、导热性)都被制成表格。此外, 还规定了物体的边界条件(也就是,负荷、物理约束等)。用这种方式,创建物体及其环境的 模型。
[0004] 此外,被称为计算机辅助设计(CAD)的行业被发展用于表示产品的几何形状,例 如表面建模。在CAD中,使用了主要基于NURBS的曲线和表面。通常,产品的设计被封装在 CAD系统中,并从CAD数据生成FEA网格模型。因此,FEA网格模型由产品的近似几何形状 表示。通常采用半自动化方式执行这样的FEA网格模型的生成。为了克服这些缺陷,开发 出了基于NURBS的FEA。
[0005] 由于CAD和FEA的不同要求,存在与基于NURBS的FEA相关的缺点。其中的一个 缺点与剪裁NURBS表面描述相关。特别地,剪裁NURBS表面包括下层的规则NURBS表面,具 有定义下层的表面面片被显示或者不被显示的附加剪裁线。虽然剪裁NURBS在CAD中运行 良好,但是它在FEA中的使用仍是当前研究中的主题,并不是最先进的。代替直接使用原始 的剪裁NURBS表示,它将首先会被剪切为一组较小的规则NURBS面片。接下来必须为该较 小的规则NURBS面片创建一组新的NURBS参数,以适用于FEA(例如,维持面片边界处的连 续性)。但是创建一组NURBS参数是冗长且困难的任务。
[0006] 因此,期望有用于连接不完美匹配NURBS面片以形成适于有限元分析的计算机模 型的方法和系统。

【发明内容】

[0007] 这部分用于概述本发明的某些方面并简要介绍一些优选的实施例。可以对此处的 这部分以及摘要和名称做出简化和省略,以避免使得这部分的目的变得不明显。这样的简 化或省略并不用于限制本发明的范围。
[0008] 本申请公开了用于连接不完美匹配NURBS面片以形成适于有限元分析的计算机 模型的方法和系统。根据本发明的一方面,在计算机系统中接收第一和第二NURBS面片的 定义。第一和第二NURBS面片将沿着物理边界连接在一起,物理边界在第一面片的第一曲 线和第二面片的第二曲线中定义,第一曲线具有第一组控制点,第一组控制点具有相关的 权重和对应的第一节点矢量;第二曲线具有第二组控制点,第二组控制点具有相关的权重 和对应的第二节点矢量。第一曲线和第二曲线采用不同的控制点、权重和节点矢量定义。两 个曲线的节点矢量均被标准化,使得参数长度分别等于物理长度。
[0009] 表示物理边界的共同曲线被确定。所述共同曲线可以是第一曲线和第二曲线之间 的重叠部分。接下来,采用以下方式调整(例如,按比例缩放和移位)第一和第二曲线节点 矢量值:设置u= 0将会得到投影点#,设置u=L。将会得到投影点# (参照图7C-7E)。 在重叠部分具有较少数量的控制点的曲线被指定为主曲线,另一曲线被指定为从曲线。
[0010] 通过计算从曲线的控制点与主曲线的控制点的依赖度,得到用于沿着物理边界数 值连接第一和第二NURBS面片的一组线性约束等式。面片和沿着物理边界的这组约束等式 一起,使得从中创建的计算机模型适用于有限元分析。
[0011] 根据另一方面,使用主曲线和从曲线之间的虚拟插入和虚拟移除技术、或者选择 性地使用图7F所示的S的伪逆来确定依赖度。
[0012] 通过以下结合附图对【具体实施方式】的详细描述,本发明的其他目的、特征和优点 将会变得显而易见。
【附图说明】
[0013] 参照以下的描述、后附的权利要求和附图,将会更好地理解本发明的这些和其它 特征、方面和优点,其中:
[0014] 图1A-1C共同示出了根据本发明的实施例的用于连接不完美匹配NURBS面片以形 成适于有限元分析的计算机模型的示范性过程的流程图;
[0015] 图2是根据本发明的一个实施例的沿着物理边界连接在一起的示范性NURBS面片 的不意图;
[0016] 图3A-3B是根据本发明的实施例的示范性的部分重叠的NURBS面片的示意图;
[0017] 图4是根据本发明的实施例的两个示范性不完美匹配NURBS面片、以及它们的相 关控制点和节点矢量的平面图;
[0018] 图5A-5C是根据本发明的实施例的示范性创建控制点依赖度的示意图;
[0019] 图6A-6B是根据本发明的实施例的使用图1A-1B所示的示范性过程创建的示范性 计算机模型的示意图;
[0020] 图7A-7F是采用根据本发明的一个实施例的示范性方法连接在一起的不完美匹 配NURBS面片的一系列示意图;以及
[0021] 图8是计算机系统的主要组件的功能框图,本发明的实施例可在该计算机系统中 实施。
【具体实施方式】
[0022] 在以下的描述中,列出了许多特殊的细节,以提供对本发明的透彻理解。但是对于 本领域的技术人员来说,很明显,本发明可以被实施而不需要这些特定的细节。此处的描述 和表示是本领域的技术人员的常用手段,用于最有效地将它们的作用的实质传达给本领域 的技术人员。在其它的例子中,没有详细描述已知的方法、程序和组件,以避免不必要地使 本发明的某些方面变得不明显。
[0023] 此处提及的"一个实施例"或者"实施例"意味着参照实施例描述的特定的特点、 结构或者特征可以被包括在本发明的至少一个实施例中。说明书中各处的短语"在一个实 施例中"的出现不必全部指代相同的实施例,也不是排斥其他实施例的单独或者选择性的 实施例。此外,表示本发明的一个或多个实施例的过程流程图或者示意图中的方框的顺序 并不固有地表示本发明中任何特定的顺序或者暗示任何限制。
[0024] 此处将参照图1A-8讨论本发明的实施例。但是本领域的技术人员将会明白,此 处参照这些附图给出的详细描述是用于解释的目的,本发明可延伸到这些限制的实施例之 外。
[0025] 首先参照图1A-1C,共同示出了根据本发明的一个实施例的用于连接不完美匹配 NURBS面片以形成适于有限元分析的计算机模型的示范性过程100的流程图。过程100优 选地在软件中实施,并参照其他附图进行理解,例如图2-8。
[0026] 过程100开始于步骤102,在其上安装有应用模块的计算机系统(例如,图8的计 算机800)中接收第一和第二NURBS面片的定义。所述应用模块可以是用于创建基于NURBS 的有限元分析计算机模型的软件。有时候,用于该目的的软件被称为预处理器(用于预处 理输入文件,使其变得适于工程分析(例如有限元分析))。如图2所示,第一和第二NURBS 面片202-204将沿着物理边界210 (例如,物理曲线或者共享曲线)连接在一起。物理边 界210在第一NURBS面片202的第一曲线212和第二NURBS面片204的第二曲线214中定 义。第一曲线212由第一组控制点、它们的相关权重和对应的第一组节点矢量值表示,第二 曲线214由第二组控制点、它们的相关权重和对应的第二组节点矢量值表示。根据本发明 的一方面,第一曲线212和第二曲线214被不同地定义,但却在某公差范围内表示相同的物 理边界210。换句话说,第一曲线212和第二曲线214是部分匹配或者不完美匹配的。公差 可以由应用模块的用户规定或者采用已知的方法在应用模块内部定义。
[0027] 接下来,在步骤104,第一曲线的节点矢量值被标准化,使得参数长度等于它的物 理长度。类似地,在步骤106,第二曲线的节点矢量值被标准化。标准化曲线的一个示范性 程序是首先计算曲线的物理长度(例如,通过数值积分),然后表示曲线的节点矢量被按比 例缩放,使得第一和最后的节点矢量值之间的差异匹配物理长度。
[0028] 在步骤111,确定表示物理边界的共同曲线(或者共享曲线)。所述共同曲线可以 是第一和第二曲线之间的重叠部分。两个示范性的部分重叠的NURBS面片在图3A-3B中示 出。
[0029] 接下来,在步骤112,采用以下方式调整(例如,按比例缩放和移位)第一和第二 曲线节点矢量值:设置u= 0将会得到投影点#,设置u=L。将会得到投影点為2 (参照图 7C-7E)。换句话说,作为调整的结果,第一和第二投影点分别对应于共同曲线的起始和结束 位置。
[0030] 接下来步骤113,沿着重叠部分具有较少数量的控制点的第一和第二曲线中的一 个被指定为主曲线,另一个被指定为从曲线。图4是沿着物理边界410连接在一起的两个 示范性NURBS面片402-404的示意图,分别具有第一曲线412和第二曲线414。第一曲线 412由第一组控制点422 (空心点)定义,第二曲线414由第二组控制点424 (实心点)定 义。第一曲线412被指定为主曲线,第二曲线414被指定为从曲线,因为
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1