一种提高图像评价结果可信度的两模态医学图像融合方法

文档序号:8923211阅读:1323来源:国知局
一种提高图像评价结果可信度的两模态医学图像融合方法
【技术领域】
[0001] 本发明属于医疗器械领域,涉及一种提高图像评价结果可信度的两模态医学图像 融合方法。 技术背景
[0002] 医学图像往往涉及人体的各种组织器官,具有数据巨量性、灰度模糊性、结构复杂 性、噪声显著性等特点,一般情况下,病灶部位在整幅影像中所占的比例极低,所以在临床 诊断中对图像的背景信息要求较高,如果不对图像进行处理,会对诊断结果的判断造成影 响,但是,在对图像进行处理时,选择不同的隶属度函数会导致评价结果出现差异,并且会 对评价结果的可信度产生影响。
[0003] 图像的边缘轮廓、纹理等重要信息与高频系数的选择有直接关系。因为图像的局 部特征不是由单一的像素所表达的,是由局部区域中几个像素共同表现出来,而且各高频 系数之间具有较强的相关性,如果选择基于单个像素点的融合规则,则不能很好的反映该 区域特征信息。因此,选择合适的图像融合规则,才能保持图像之间的相关性,保留原图的 有用信息,使获得的融合图像具有更好的视觉效果。

【发明内容】

[0004] 本发明目的针对现有技术的不足,提供一种提高图像评价结果可信度的两模态医 学图像融合方法,该方法是基于双树复小波和组合隶属度函数的自适应PET/CT图像融合 方法,该方法避免了隶属度函数选择上的主观性,以及融合系数的固定性,提高了评价结果 的可信度;并且,保持了图像之间的相关性,保留原图的有用信息,使获得的融合图像具有 更好的视觉效果。
[0005] 本发明的目的通过以下技术方案予以实现:
[0006] -种提高图像评价结果可信度的两模态医学图像融合方法,所述方法包括以下步 骤:
[0007] (1)对已配准的PET和CT图像进行双树复小波变换,得到低频子带和高频子带;
[0008] (2)根据低频子带的特点,采用自适应组合隶属度函数的融合规则;
[0009] (3)高频子带系数的选取,采用基于区域能量和加权相结合的融合规则;
[0010] 进一步地,步骤(1)具体是对已配准的PET和CT图像中的PET图像进行DTCWT变 换,得到2个低频子带和6个方向,S卩±15°,±45°和±75°的高频子带;
[0011] 进一步地,步骤(1)具体对已配准的PET和CT图像中的CT图像进行DTCWT变换, 得到2个低频子带和6个方向,S卩±15°,±45°和±75°的高频子带;
[0012] 进一步地,所述自适应组合隶属度函数的融合规则,即:
[0014] 式中,wn是函数1的权重,5个隶属度函数,分别是高斯隶属度函数、钟形隶 属度函数、sigmoid函数型隶属度函数、三角形隶属度函数和梯形隶属度函数;
[0015] 进一步地,所述基于区域能量和自适应加权相结合的融合规则,即:选定一个阈值 T(Te(0,0. 5)),如果小于T或者大于等于1/T,则选择能量较大的作为结果图像的高频 子带系数;否则利用区域能量进行自适应加权计算低频子带融合的系数,具体如下:
[0017] 利用区域能量最终得到4、叫如下:
[0019] 本发明的有益效果:
[0020] 本发明提供的一种提高图像评价结果可信度的两模态医学图像融合方法,基于双 树复小波和组合隶属度函数的自适应PET/CT图像融合方法,该方法避免了隶属度函数选 择上的主观性,以及融合系数的固定性,提高了评价结果的可信度;并且,保持了图像之间 的相关性,保留原图的有用信息,使获得的融合图像具有更好的视觉效果。和其他像素级融 合方法,如极大法、极小法、加权平均法、IHS变换和小波变换进行比较,该方法将CT图像和 PET图像中的结构融合的效果最好,并且在病灶位置,骨骼边缘与软组织之间等细节处,本 方法的融合效果更好;在评价指标方面,应用本方法得到的结果图像,较之应用其他方法得 到的结果,指标信息熵、标准差、与CT图像的互信息和与PET图像的互信息显著提升。
【附图说明】
[0021] 图1为已配准的CT图像;
[0022] 图2为已配准的PET图像;
[0023] 图3为极大法融合后图像;
[0024] 图4为极小法融合后图像;
[0025] 图5为加权平均法融合后的图像;
[0026] 图6为IHS变换融合后的图像;
[0027] 图7为小波变换融合后的图像;
[0028] 图8为本发明一种提高图像评价结果可信度的两模态医学图像融合方法融合后 的图像
【具体实施方式】
[0029] 以下结合附图通过实例对本发明的技术方案做进一步说明:
[0030] 实施例1 :
[0031](1)对已配准的PET和CT图像中的PET图像进行DTCWT变换,得到2个低频子带 和6个方向,g卩±15°,±45°和±75°的高频子带;
[0032] (2)对已配准的PET和CT图像的CT图像进行DTCWT变换,得到2个低频子带和6 个方向,即±15°,±45°和±75°的高频子带;
[0033] (3)根据低频子带的特点,充分考虑病灶部位在整幅图像中所占的面积较小,合 理处理医学图像的背景对凸现病灶至关重要的实际,采用自适应组合隶属度函数的融合规 则;
[0034] 设待融合图像CT为A(i,j),PET为B(i,j),大小均为MXN。对图像A(i,j)和 B(i,j)分别进行2层DTCWT分解。
[0035] 组合隶属度函数的表示如下:
[0037] 式中,wn是函数1的权重,fnS5个隶属度函数,分别是高斯隶属度函数、
[0038] 钟形隶属度函数、sigmoid函数型隶属度函数、三角形隶属度函数和梯形隶属度函 数,其表达式如表1所示:
[0039]表1隶属度函数
[0040]
[0041] 利用层次分析法确定各函数的权重wn,首先构造判断矩阵A和比例标度表,见表 2,
[0043] 表2比例标度表
[0044]
[0045] 由此可计算5个函数的的权重向量
[0046] wn= [0. 3270 0. 1413 0. 1413 0. 1413 0. 2492] T〇
[0047] 再对其进行一致性检验。判断矩阵中判断质量的标准是用一致性来衡量的。一致 性指标
通过计算取得入=5. 05,由此可得
'。当n= 5 时,查阅表3,得RI= 1. 12。
,当CR< 0. 1时,矩阵有较好 的一致性。因此,5个函数的的权重向量\为[0.3270 0.
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1