电大目标电磁散射特性快速降维分析方法
【技术领域】
[0001] 本发明属于目标电磁散射特性数值计算技术领域,特别是一种电大目标电磁散射 特性快速降维分析方法。
【背景技术】
[0002] 电磁计算的数值方法如矩量法(M0M),有限元法(FEM),时域有限差分方法(FDTD) 可以很好地解决电小尺寸物体的散射,但在计算电大物体的散射时,对计算机的配置要求 过高。近似方法如射线跟踪、物理光学等高频方法则只能求解规则形状的电大物体的散射。 迭代推进方法是用于求解目标散射问题的一种比较新型的方法,世界上许多国家主要在空 间场的迭代递推、电流的迭代递推和时域场的迭代递推等方面做了大量的研究并取得一定 的研究成果。抛物线方程方法属于迭代推进方法,它是波动方程的一种近似形式,假设电磁 波能量在沿着抛物线轴向的锥形区域内传播。抛物线方程方法为求解电磁散射提供了一种 准确、高效的计算方法,但是它存在的主要缺陷是只能对抛物线方向近轴区域内的电磁散 射进行计算,抛物线的轴向受到入射场方向的限制,并且现有技术仅将三维问题降为二维 问题进行求解,存在运算量大、速度慢的缺点。
【发明内容】
[0003] 本发明的目的在于提供一种快速、准确的电大目标电磁散射特性快速降维分析方 法,该方法对于场值的行列求解相互独立,通过并行加速求解,能够快速得到电磁散射特性 参数。
[0004] 实现本发明目的的技术解决方案为:一种电大目标电磁散射特性快速降维分析方 法,步骤如下:
[0005] 步骤1、建立物体的离散模型,确定抛物线的轴向方向作为x轴,采用网格对物体 沿抛物线的轴向方向进行离散处理,形成垂直于x轴的若干个切面,通过求解剖分的三角 形网格与切面交点确定每个切面所切物体的边界点,再通过四面体网格来判断所有节点的 位置;
[0006] 步骤2、构造矩阵方程,在x轴,y轴、z轴方向采用CN差分格式,并写成交替方向 隐式差分格式获取相邻两个切面间的关系,最后在散射体表面根据切向电场分量为〇的方 程以及抛物线方程,联立构造出矩阵方程;
[0007] 步骤3、令x轴方向为待求的散射方向,依次对沿x轴方向的各个切面上的节点电 场值进行递推求解,通过不断更新边界点的信息以及方程的右边向量来求解下一个切面上 各个离散节点处的电场值;
[0008] 步骤4、对各个切面上的节点电场值进行递推,求解最后一个切面上的节点电场 值,根据远近场转换求解目标散射体双站RCS。
[0009] 本发明与现有技术相比,其显著优点为:(1)方程形成简单:将一个三维问题转化 为一系列的二维问题进行求解,矩阵形成快捷简便;(2)每个面的场值行列计算互相独立, 可通过并行提高计算效率;(3)求解矩阵为三对角矩阵,可通过追赶法求解,提高计算速 度。
[0010] 下面结合附图对本发明作进一步详细描述。
【附图说明】
[0011] 图1是本发明能量沿抛物线轴向传播示意图。
[0012] 图2是本发明某一切面上未知量分布的示意图。
[0013] 图3是本发明入射场方向与矢量抛物线轴向示意图。
[0014] 图4是本发明实施例中散射体双站RCS曲线图。
【具体实施方式】
[0015] 下面结合附图及具体实施例对本发明作进一步详细描述。
[0016] 结合附图1~5,本发明电大目标电磁散射特性快速降维分析方法,该方法基于交 替方向隐式抛物线方程,具体步骤如下:
[0017] 步骤1、建立物体的离散模型,确定抛物线的轴向方向作为x轴,如图1所示,采用 网格对物体沿抛物线的轴向方向进行离散处理,形成垂直于x轴的若干个切面,通过求解 剖分的三角形网格与切面交点确定每个切面所切物体的边界点,再通过四面体网格来判断 所有节点的位置,即通过所有节点与四面体的几何关系判断节点是散射体的内部点、外部 点或者边界点,具体如下:
[0018] 对物体进行三角面元的面剖分,确定轴方向每个切面的方程,获取物体表面的一 些离散的节点信息。垂直于x轴即为抛物线轴向,形成很多切面,这些切面与三角形相交, 通过节点的几何信息求解出与切面的交点,再将与该交点距离最近的标准网格点标记为散 射体在当前切面的边界点并求出该点法向。同时对散射体进行四面体的体剖分,对每个切 面上的点进行循环判断,通过判断某点是否处于四面体内部来区分该点处于散射体内部或 者散射体外部,如果该点处于四面体的内部则认为该点为散射体的内部点,否则认为该点 处在空气层,并对这些点进行标记。通过八叉树快速寻找散射体的边界点和内部点,并可通 过对非空数组的并行加快寻找;认为离空气盒边界一定距离的点为PML层内的点。
[0019] 通过上面的方法可得到各个切面上物体边界的节点,结合每个面上散射体外的参 考点,构成了一个切面上总的未知量,各个切面的未知量分别由每个面上散射体外部固有 的离散参考点和边界点相加得到。某个切面上未知量的分布示意图如图2所示,根据各个 点的几何位置关系以及坐标关系确定出点所在的位置的属性,具体判断准为:对于所有规 则网格点,距离切面上下左右一个波长的标记为PML,将最接近的物体表面的标准网格点标 记为边界点,其余在物体内部的仍为内部点,在物体外部的标记为外部点。
[0020] 以上即可完成目标的建模,为下面的矩阵构造以及求解奠定了基础。
[0021] 步骤2、构造矩阵方程,在x轴,y轴、z轴方向采用CN差分格式,并写成交替方向 隐式差分格式获取相邻两个切面间的关系,最后在散射体表面根据切向电场分量为〇的方 程以及抛物线方程,联立构造出矩阵方程,具体步骤如下:
[0022] (2. 1)首先,我们给出小角度抛物线方程:
[0023]
(9)
[0024] 式(9)中k为波数,i为虚数;将(9)式写成CN差分形式,在\和\+1之间引入中 点I= 利用中心差分的微分形式:
[0025]
[0026] 其中xm、xm+1分别为x轴方向第m个点和第m+1个点,匕为xm、xm+1的中间点,Ax 为xm、xm+1之间的距离,u(xm,y;,zj,u(xm+1,y;,zj分别为第m个面和第m+1个面上第i行第 j列处的波函数。
[0027] 二阶偏导写成如下形式:
[0028]
CIO)
[0029] 将(10)式代入(9)式则有:
[0030]
L0031」 式屮气H、《,,,、气.m:分别为弟m个囬上分布在弟i列的连续的三个点(i,j-1)、 (i,j)、(i,j+1)的场值,分别为第m个面上分布在第j列的连续的三个点 (i_l,j)、(i,j)、(i+l,j)的场值,C1,分别为第m+1面上分布在第i列的连 续的三个点(i,j_l)、(i,j)、(i,j+l)的场值,〇 iC分别为第m+1面上分布在 第j列的连续的三个点(i-1,j)、(i,j)、(i+1,j)的场值,Ax、Ay、Az分别为x、y、z轴方 向上标准网格点的长度,k为波数,i为虚数。
[0032] 式(11)化简为:
[0033]
[0037]
[0035] 定义算子:SzUl, ] = Ul, j+1+Ul, ]「21^,pSyUl, ] =Ulj+Uk厂2Ul,』[0036] 则(12)式可化为:
[0039] 将(13)式两边同时进行变换:[0040]
[0038]
[0041] 弓丨入中间项则式(14)分解为两步:
[0043]将算子 5zUi,.j=Uiw+Uij「211;」,5yUi,.j=U;u+Uiu,.厂211;」代入(15)得到基于 交替方向隐式抛物线方程表示为:
[0044]
[0045] (17)
[0046] 由式(16)看出能够由前一个面按行求出中间面上的未知值,式(17)能够由中间 面上的值按列求出下一个面上的值。式中《^分别为中间面上分布在第j 行的连续的三个点a-i,j)、(i,j)、(i+i,j)的场值<+1/2、?分别为中间面上 分布在第i行的连续的三个点(i,j-l)、(i,j)、(i,j+l)的场值。
[0047] 矢量抛物线方程由x、y、z轴三个方向上的标量抛物线方程构成:
[0048]
(18)
[0049] (2. 2)按照上面的推导,可将(18)式写成x、y、z三个方向的交替方向隐式格式, 在PML媒质中,基于交替方向隐式抛物线方程表示为:
(20)
[0052]式中,〇 ()代表电损耗的函数,〇。代表电损耗的系数,S代表趋肤深度的系数 0 (y) = 0 〇 (y/5)2,0 (z) = 〇 〇 (z/s):
n = 120 ?!,r0 = 1〇 3;
[0053] (2. 3)金属边界条件的添加以及递推求解,具体步骤如下:
[0054] 对于目标边界点,假设P为散射体表面上的点,n= (nx,ny,nz)为P点的法向方向, 在金属表面切向电场为零,由!ixE= 0,将电场用各个分量来表不:
[0055]nxEy ⑵ _nyEx ⑵=0
[0056]nxEz (P) _nzEx (P) = 0 (21)
[0057] nyEz ⑵ _nzEy ⑵=0
[0058]式中,Ex (P)、Ey (P)、Ez (P)分别为P点电场在x轴、y轴、z轴方向的分量;
[0059] 定义场量为x轴方向传播波函数:
[0060] (22)
[0061] 式中,#代表散射电场值,y代表变换后的散射场值;
[0062] 则进行如下变换,由式(21)、(22)得对应的三个方程:
[0063]
(.23)
[0064] 其中在球坐标系下,入射场为:
[0065]
[0