高速轻载机构非线性动态系统结构拓扑参数优化方法

文档序号:9471759阅读:595来源:国知局
高速轻载机构非线性动态系统结构拓扑参数优化方法
【技术领域】
[0001] 本发明属于机械部件结构优化设计的技术领域,具体设及一种高速轻载机构非线 性动态系统结构拓扑参数优化方法。
【背景技术】
[0002] 高速机构的精密运动主要设及运动速度与运动精度两个指标。其中,对于高速机 构而言,当运动加速度达到一定程度时,机构的动力学特性将会发生较大的变化,即机构呈 现"柔性化"特性,进而导致运些工况下机构呈现高度的非线性,给机构的后续动力学分析 及优化带来极大困难。
[0003] 机构高速运动时,刚体运动与弹性振动互相禪合,可W考虑为柔性多体动力学模 型:
[0004]
(1)
[000引式中,M,K,C,q分别表示质量矩阵、刚度矩阵、阻尼矩阵和载荷向量。下标r和f分 别表示刚体(rigidbody)和弹性(flexiblebody)。
[0006] 展开为刚体动力学:
[0007] =A㈱ (2):
[0008] 展开为柔体动力学:
[0009] M捧+CfA户端户卢.屯说 (3)
[0010] 要提高系统的性能,需要对弹性体进行结构优化。
[0011] 现有高速机构的设计结构优化方法有:
[0012] 1)结构优化方法,主要是根据最大载荷设计各构件,不能考虑机构中各构件的相 互影响,按照最大载荷优化的结构往往是保守的。
[0013] 2)柔性多体动力学优化方法,能够考虑构件互相影响,采用的方法主要有逐点法 和最危险工况法。其中,逐点法计算量非常庞大。最危险工况法试图用单点工况替代整体, 降低计算量,但研究表明,危险工况并不总是发生在同一个地方。
[0014] 3)等效静态载荷方法,是国外教授提出的比较简洁而行之有效的方法,将非线性 分析在时间点上离散,获得各离散点的等效静态载荷,然后调用多工况线性静态优化,优化 迭代收敛后再通过非线性分析更新等效载荷,直至惯性载荷不再发生变化。
[0015] 现有最广泛使用的方法是等效静态载荷方法(注:原方法忽略了结构阻尼,与实 际情况有偏差),原理如下:
[0016] 构造位移等效平衡方程:
[0017] K"z, =q',(r)-M片-M,A-C,A (4)
[0018] 记为等效静态平衡方程:
[001 引KffZf=feq妨
[0020] 其中,等效静态载荷:
[0021] (6)
[0022] 在各个时间点上离散,消除了时间参数t,变成了一系列静态响应方程。于是,优化 流程如下:
[0023] (1)非线性动力学仿真;
[0024] (2)等效载荷计算;
[00巧](3)线性结构静力学优化;
[0026] FindbG护
[0027]
[0028] 该方法很简洁,实际是建立了非线性优化与线性静态优化的桥梁,已经在 Hyperworks,LS-DYNA软件中实现,并广泛应用于汽车碰撞、机翼等结构的优化中取得非常 好的效果。
[0029] 上述方法主要缺点是:初始阶段,线性结构需要进行几十次的迭代,结构修改量非 常大,优化结果已经偏离了实际工况,即便通过非线性分析进行等效静态载荷的更新,获取 最优结构的优化路径发生了变化。对于一般工程应用,外载荷远大于惯性载荷的情形,结果 相差不大。但是对于外载荷几乎为零的高速轻载机构,主要载荷是惯性载荷,与设计变量密 切相关,载荷假设对高速轻载结构会产生较大的误差,无法满足对性能要求极高的微电子 制造装备优化设计需求。
[0030] 上述论述内容目的在于向读者介绍可能与下面将被描述和/或主张的本发明的 各个方面相关的技术的各个方面,相信该论述内容有助于为读者提供背景信息,W有利于 更好地理解本发明的各个方面,因此,应了解是W运个角度来阅读运些论述,而不是承认现 有技术。

【发明内容】

[0031] 本发明的目的在于避免现有技术中的不足而提供一种高速轻载机构非线性动态 系统结构拓扑参数优化方法,解决现有方法在结构优化过程中忽略了惯性载荷的影响而不 能适应于高速轻载机构的问题。
[0032] 本发明的目的通过W下技术方案实现:
[0033] 提供一种高速轻载机构非线性动态系统结构拓扑参数优化方法,包括W下步骤:
[0034]a.建立含有运动学自由度的非线性有限元模型;
[0035]b.对a步骤中的有限元模型进行非线性动力学分析,获得模型在各时间步上的刚 度与位移信息;
[0036]C.根据b步骤获取的各时间步上的刚度与位移信息,计算获得多时间步上的等效 静态载荷;
[0037]d.根据期望的结构优化模型,WC步骤获取的等效静态载荷集合作为优化模型参 数,进行一次优化步长捜索,获得一组新的结构设计变量;
[0038]e.根据d步骤中获取的新的结构设计变量来更新有限元模型中的材料参数,或有 限元模型的厚度信息,获得更新后的有限元模型;
[0039]f.对e步骤中获得更新后的有限元模型重新依次执行b-c-d步骤的操作,获得更 新后的有限元模型多时间步对应的等效静态载荷;
[0040]g.将步骤f中所述的新一轮计算与上一轮计算所获得的多时间步对应等效静态 载荷的绝对差值之和与预设的收敛阔值进行比较;若小于预设阔值,则收敛条件满足,终止 第一阶段的结构优化;否则,重复d-e-f步骤直至满足收敛条件;
[0041] h.将满足g步骤中收敛条件的最终结构设计变量对应的相对密度信息转换成厚 度信息,获得拓扑参数优化结果。
[0042] 其中,步骤a中所述有限元模型为:
[0043]FindbGR。
[0044]tominimizef(b,z)
[0045] subject to K化)z(s)-f巧化,s) = 0 ;s = 1,…,1
[004引 g.j (b, z)《0 ; j = 1,…,m
[0047] 0. 0< bmin《b1. 0;i=1,…,n
[004引其中,b为设计变量向量,记号s表示在非线性分析时间步的序号,K(b)表示设计 变量向量对应的刚度矩阵,Z(s)为第S时间步处的节点位移向量,fpq(b,S)表示第S时间 步处的设计变量向量对应的等效静态载荷,g,(b,z)表示约束条件,1表示动态分析过程的 离散时间步总数,m表示优化模型中的约束数量,n表示设计变量向量中的元素数量。
[0049] 本发明的有益效果:本发明将等效载荷考虑为设计变量的函数,重新构造优化模 型,并提出了相应的求解方法,可W在满足优化条件下尽可能降低残余振幅,与标准等效静 态载荷相比,相同运动条件下的振幅可W降低一半,大幅提升高速轻载机构的性能,满足高 速轻载机构不同的设计需求。
【附图说明】
[0050] 利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限 审IJ,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可W根据W下附图获得 其它的附图。
[0051]图1是高速轻载机构非线性动态系统结构拓扑参数优化方法的流程示意图。
【具体实施方式】
[0052]为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实 施例对本发明作进一步详细的描述,需要说明的是,在不冲突的情况下,本申请
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1