基于仿生颜色感应模型的视频烟雾事件智能检测方法

文档序号:9766173阅读:487来源:国知局
基于仿生颜色感应模型的视频烟雾事件智能检测方法
【技术领域】
[0001]本发明一般涉及计算机智能监控视频处理领域,具体涉及基于仿生颜色感应模型的视频烟雾事件智能检测方法。
【背景技术】
[0002]火灾是指在时间或空间上失去控制的燃烧所造成的灾害。在各种灾害中,火灾是最经常、最普遍地威胁公众安全和社会发展的主要灾害之一。火灾对人类生命财产和社会安全构成了极大的威胁,给人类社会生产生活带来了巨大损失,由此引发的重大安全事故比比皆是。为了防止火灾发生和减少火灾危害,保护人民生命和财产安全,人们对自动火灾检测系统的需求日益增长。这些系统的成功,取决于烟雾、气体、温度等物理量的适当检测,因为这些物理量可提供火灾初期的快速、可靠的报警信号。目前应用比较广泛的火灾烟雾检测器,大致有离子式烟雾检测器、吸气式烟雾检测器、二极管式光电烟雾检测器、反射光式烟雾检测器等。这些监测方法容易受空间高度、热障、易爆、有毒等环境条件的限制,并且对森林、田野等室外场景适用性不强。本发明提出的基于仿生颜色感应模型的视频烟雾事件智能检测方法,能够应用在监控摄像头进行实时监控,对视频监控区域内出现的烟雾能在短时间内及时准确地进行警报,适用于多种室外场景,且不受空间、热障等环境条件的限制,具有报警速度快、准确率高、适用性强等特点,能大大减少火灾造成的损失,保障人民的生命财产安全。

【发明内容】

[0003]本发明针对当前火灾烟雾检测技术的不足,提供了基于仿生颜色感应模型的视频烟雾事件智能检测方法。本发明的目的在于短时间内对视频中出现的烟雾进行智能检测,及时进行警报,应用场景不受空间、热障等环境条件影响,具体技术方案如下。
[0004]基于仿生颜色感应模型的视频烟雾事件智能检测方法,包括以下步骤:
(a)从本地磁盘读入一个视频文件,支持avi/flv/mp4/rmvb/rm格式视频;
(b)使用高斯混合背景建模方法进行背景建模;
(c)使用步骤(b)得到的背景模型对当前帧进行前景提取;
(d)对步骤(C)中提取的前景目标进行初步判断,利用帧差结果排除静止的前景,设定饱和度阈值去除非烟雾干扰物;
(e)在步骤(d)中对前景目标筛选完毕后,进行前景的颜色直方图统计,利用颜色直方图统计结果特征最终判断前景是否为烟雾。
[0005]进一步地,步骤(b)具体包括以下步骤:
(b-7)取视频开头的若干帧图像进行等权重图像混合;
(b-8)将混合得到的图像进行高斯平滑;
(b-9)再将图像转化为灰度图像;
(b-ΙΟ)对灰度图像进行卷积操作计算一阶X-和J-方向的图像差分,x、y为图像坐标,将X-和1-方向的图像差分结果等权重相加得到新的差分图像;
(b-ι I)将差分图像转化为RGB图像;
(b-12)用高斯混合模型对RGB图像进行背景建模。
[0006]上述基于仿生颜色感应模型的视频烟雾事件智能检测方法中,步骤(b)包括以下步骤:
(b-Ι)取视频开头的若干帧图像进行等权重图像混合;
(b-2)将混合得到的图像进行高斯平滑;
(b-3)将图像转化为灰度图像;
(b-4)对灰度图像进行卷积操作计算一阶X-和方向的图像差分,将X-和方向的图像差分结果等权重相加得到新的差分图像;
(b-5)将差分图像转化为RGB图像;
(b-6)对RGB图像进行高斯混合背景建模。
[0007]上述基于仿生颜色感应模型的视频烟雾事件智能检测方法中,步骤(c)包括以下步骤:
(c-1)将当前帧图像进行高斯平滑;
(c-2)将图像转化为灰度图像;
(c_3)对灰度图像进行卷积操作计算一阶X-和y-方向的图像差分,将X-和方向的图像差分结果等权重相加得到新的差分图像;
(c-4)将差分图像转化为RGB图像;
(c-5)利用步骤(b)建立的背景模型对RGB图像进行前景提取;
(c-6)对前景图像进行中值滤波操作;
(c-7)对前景图像进行膨胀操作;
(c-8)填充前景图像,只保留前景图像中最大连通域作为前景目标。
[0008]上述基于仿生颜色感应模型的视频烟雾事件智能检测方法中,步骤(d)包括以下步骤:
(d-Ι)记录当前帧及它之前的若干帧的前景图像,将这些前景图像进行与操作;
(d-2)将当前帧图像与视频第一帧图像做差;
(d-3)将前景相与结果图像对应差图像的部分进行平均饱和度计算,若饱和度在设定阈值之内,则初步判断为烟雾疑似物,继续进一步判断;否则不是,返回读取视频下一帧处理;
(d-4)使用帧差法对当前帧和上一帧图像做差;
(d-5)将帧差结果和前景相与结果再进行与操作,若相与结果为空,则认为前景是静止物体,返回读取视频下一帧处理;否则继续下面步骤判断处理;
(d-6)记录当前帧的位置,与上一个通过上面步骤判断的帧的位置进行比较,若为相邻帧,继续进行烟雾判断;否则返回读取视频下一帧处理。
[0009]上述基于仿生颜色感应模型的视频烟雾事件智能检测方法中,步骤(e)包括以下步骤:
(e-Ι)将通过步骤(d)判断的图像转化为灰度图像;
(e-2)计算步骤(d)中前景相与结果对应的灰度图像的部分的颜色直方图; (e-3)记录当前帧及它之前的若干帧的颜色直方图,计算当前帧的颜色直方图与之前的若干帧的颜色直方图的相似性,从而确定颜色直方图是否稳定;
(e-4)计算颜色直方图的分布宽度,确定颜色直方图是否分布较窄;
(e-5)计算颜色直方图的主要分布位置,确定颜色直方图是否偏右;
(e_6)如果颜色直方图稳定、分布较窄且偏右,或者颜色直方图不稳定、分布不窄且不偏右,则认为检测到烟雾,进行警报;否则不是烟雾。
[0010]上述基于仿生颜色感应模型的视频烟雾事件智能检测方法中,步骤(e-4)中,颜色直方图分布宽度的计算方法是计算颜色直方图的平均值与方差之和,如果和大于设定的阈值,则认为颜色直方图分布较窄,否则不是。
[0011]上述基于仿生颜色感应模型的视频烟雾事件智能检测方法中,步骤(e-5)中,颜色直方图分布位置的计算方法是统计颜色直方图中大于平均值的点的个数与它们的坐标之和,如果坐标之和除以个数的商大于直方图宽度的三分之二,则认为颜色直方图分布靠右,否则不是。
[0012]本发明采用高斯混合背景建模方法将视频中前景目标提取出来,这是烟雾智能检测的最基本操作;烟雾具有移动缓慢、饱和度低的特点,为了排除前景目标中的快速运动物体的干扰,取最新若干帧的前景进行与操作,然后进行饱和度的判断,同时为了排除视频中途出现的静止物体的干扰,取最近两帧帧差结果和前景相与的结果再做与操作,要求与的结果不为空;通过饱和度和帧差的判断之后,对前景相与的结果进行颜色直方图统计,根据观察,烟雾颜色分布较均匀,且趋于稳定,因此对颜色直方图进行分析,判断前景最终是否为烟雾。
[0013]与现有技术相比,本发明具有如下优点和技术效果:
现在的烟雾检测技术一般都是基于传感器获取烟雾的一些信息,再进行判断预警,容易受空间高度、热障、易爆、有毒等环境条件的限制,对室外场景适用性不强。本发明不受空间、热障等环境条件的限制,能够应用在监控摄像头进行实时监控,对视频监控区域内出现的烟雾能在短时间内及时准确地进行警报,适用于多种室外场景,且具有报警速度快、准确率高、适用性强等特点。
【附图说明】
[0014]图1为实施方式中基于仿生颜色感应模型的视频烟雾事件智能检测方法的流程图。
【具体实施方式】
[0015]以下结合附图对本发明的实施方式作进一步说明,但本发明的实施不限于此,需指出的是,以下若有未特别详细说明之过程,均是本领域技术人员可参照现有技术实现的。
[0016]如图1,基于仿生颜色感应模型的视频烟雾事件智能检测方法的主要流程包括以下步骤:
(a)读入一个视频文件;
(b)进行背景建模;
(C)提取前景目标; (d)使用帧差和颜色饱和度信息进行初步判断处理;
(e)利用前景颜色直方图统计结果进一步判断处理。
[0017]步骤(a)允许用户通过文件选择窗口从本地硬盘选择一个视频文件,此视频文件可以是avi/f I v/mp4/rmvb/ rm编码格式。
[0018]步骤(b)采用高斯混合背景建模方法进行背景建模,其基本原理是:混合高斯背景建模是基于像素样本统计信息的背景表示方法,利用像素在较长时间内大量样本值的概率密度等统计信息(如模式数量、每个模式的均值和标准差)表示背景,然后使用统计差分(如3σ原则)进行目标像素判断,可以对复杂动态背景进行建模。
[0019]步骤(b)包括以下步骤:
(b-Ι)取视频开头的15帧图像进行等权重图像混合;
(b-2)将混合得到的图像进行高斯平滑;
(b-3)将图像转化为灰度图像;
(b-4)对灰度图像进行卷积操作计算一阶X-和方
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1