基于指数矩像素分类的彩色图像分割方法

文档序号:9811402阅读:432来源:国知局
基于指数矩像素分类的彩色图像分割方法
【技术领域】
[0001] 本发明属于多媒体信息处理的图像分割技术领域,尤其是一种利用指数矩分解求 矩值作为像素的特征,描述图像能力强并且能很好刻画像素特征的基于指数矩像素分类的 彩色图像分割方法。
【背景技术】
[0002] 图像分割是图像处理和计算机视觉中的一个基础而关键的热点研究问题。在许多 图像处理任务中,往往只有图像中的某些部分才是研究人员感兴趣的,为了达到对这些视 觉目标的识别和分析,需要通过图像分割算法将它们从图像中分离出来,并在分割出来的 目标上进一步实现图像的其它处理。因此,图像分割方法是将图像分成若干个互不相交且 具有独特性的区域并将人们感兴趣的目标提取出来。但是由于图像的复杂性,目前还没有 一种标准的分割方法适合所有不同种类的图像。为了确保图像分割的准确性和高效性,大 量的算法及相应的改进算法被提出。彩色图像分割问题也可以看成图像像素级特征的分类 问题,但目前提出的大部分特征刻画图像的像素能力不强,本文提出基于指数矩像素分类 的彩色图像分割方法能够很好的刻画像素特征。彩色图像分割问题也可以看成图像像素级 特征的分类问题,但目前提出的大部分特征刻画图像的像素能力不强。

【发明内容】

[0003] 本发明是为了解决现有技术所存在的上述技术问题,提供一种利用指数矩分解求 矩值作为像素的特征,描述图像能力强并且能很好刻画像素特征的基于指数矩像素分类的 彩色图像分割方法。
[0004] 本发明的技术解决方案是:一种基于指数矩像素分类的彩色图像分割算法, 其特征在于包括: 步骤1:将彩色图像的RGB三个分量分别进行指数矩分解,选取求出的矩值作为图像的 像素级特征; 步骤2:利用Otsu阈值法选取训练样本,创建训练集; 步骤3:使用训练集进行TSVM模型训练,以训练后的TSVM模型预测剩余像素的类标签, 合并训练集和测试集的类标签向量,得到最后的分割结果。
[0005] 所述步骤1如下: 步骤11:对于一幅彩色图像先分解成RGB三个通道; 步骤12:对RGB中的每个通道构造每个像素点·分的局部窗口 ,选取 以点饫/?为中心的3 X 3局部窗口 :??办 步骤13:计算每个局部窗口的指数矩; 步骤14:通过指数矩对彩色图像求出的矩值,选取四个矩 值点作为像素特征,窗口大小选取为3 X 3,阶数为3。
[0006] 所述步骤13如下: 步骤131:假定/tr;为极坐标下的图像,定义指数矩如下
其中凑.|为径向基函数,k的取值范围是所有整数;
步骤132:1是定义在单位圆内极坐标下的积分运算,而数字图像函数#(??是定 义在直角坐标下的,所以计算图像,錢4||的指数矩首先要把直角坐标系下的函数/1_转 换为极坐标系下的图像函数#先将单位圆内的极坐标转化为直角坐标:
其中r的变化范围为δ玄r玉1,铁的变化范围是1爸Sir,x和y的变化范围是 <__1; 步骤133:再将坐标(X4)转化为像素坐标1?:
其中,W为取整运算,取为不小于X的整数,根据上述公式4k/:i的图像函数值#C4·: 就是a点的图像函数值我r3_:
步骤134:离散的积分函数:表达式为:
用离散的积分函数:名&虞|将步骤131的公式化为求和形式:
[0007] :??痛)的傅里叶变换就是的指数矩,利用二维快速傅里叶变换的 方法计算得到的结果就是图像的指数矩。
[0008] 所述步骤2如下: 步骤21:定义一个以(?.^为中心,大小为$><&(此处为3X3)的窗口 ,在位置 (Xj),像素的平均灰度级为:
其中:[k/2]表示对k/2取整;若;的灰度级为的灰度级也为L,记像素 灰度值为i且邻域平均灰度值为j的像素点个数为%,则相应的概率密度为:
步骤22:设区域0和区域1的概率分别为和·冷,可以表示为:
步骤23:0tsu阈值法的目标和背景(即区域0和区域1)可以分别写成如下形式:
步骤24:定义目标和背景的类间离散测度矩阵:
步骤25:采用矩阵%:的迹11???作为目标和背景的类间距离测度函数:
显然测度函数大小只与錢_3,爲_,_,幾_;◎这3个量有关,二维Otsu算法的分割 阈值||_端)取在矩阵的迹为最大时。即测度函数取最大时,可求得最佳阈值:
[0009] 所述步骤3如下: 步骤31:利用最佳阈值分割结果选取%个目标像素和,个背景像素作为训练样本,所 有的训练样本一起构成完整的训练集,剩下的像素作为测试集; 步骤32:TSVM模型训练,使用上步创建的训练集训练TSVM模型(分类器); 步骤33:使用训练后的TSVM模型预测测试集的类标签,合并训练集和测试集的类标签 向量,作为最后的图像分割结果。
[0010] 本发明像素级特征提取的过程中,在RGB通道上使用指数矩计算彩色图像像素的 矩值来刻划像素的特征,计算二维〇tsu快速阈值法做初分割,并用其进行训练样本的选取, 结合TSVM支持向量机理论,对样本进行训练,得出训练模型,从而对像素进行分类,最终得 到分割结果。利用指数矩提取特征,能够更好的描述图像,而且核函数简单,数值计算稳定, 噪声敏感性低,能够很好的刻划图像像素的特征;而TSVM的分类器使用非平行平面,通过为 两类数据分别构造单独的超平面,并尽可能使每个超平面距离本类样本近,距它类样本远, 进而获得更好的分类模型,且速度明显比传统分类器更快。
【具体实施方式】
[0011] 基于指数矩像素分类的彩色图像分割算法,其特征在于包括: 步骤1:将彩色图像的RGB三个分量分别进行指数矩分解,选取求出的矩值作为图像的 像素级特征,具体如下: 步骤11:对于一幅彩色图像先分解成RGB三个通道; 步骤12:对RGB中的每个通道构造每个像素点gj的局部窗口 :???,选取 以点_:/》为中心的3X3局部窗口 ; 步骤13:计算每个局部窗口的指数矩: 步骤131:假定/为极坐标下的图像,定义指数矩如下
其中|为径向基函数,k的取值范围是所有整数;
步骤132: 是定义在
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1