一种基于深度神经网络的车辆速度预测方法与流程

文档序号:16474305发布日期:2019-01-02 23:26阅读:363来源:国知局
一种基于深度神经网络的车辆速度预测方法与流程

本发明属于交通领域,尤其是涉及智能网联交通系统下的一种基于深度神经网络的车辆速度预测方法。



背景技术:

中国作为世界上人口最多的国家,改革开放以来,随着我国经济的快速发展,人民生活水平的日益提高,私家车开始进入各家各户,很好的方便了家人的出行。但车辆的普及和大众化也使得城市交通环境日益恶化,出现了车流不均衡、交通拥挤、车尾碰撞、侧方碰撞等交通现象。伴随着基础设施薄弱和交通网络拥堵,道路交通事故的数量日益增加,高交通事故发生率正在向全社会拉响警报,因此道路交通安全受到极大的关注。近年来,虽然我国对道路基础设施以及交通网络进行了很大的改善,使得交通事故数量和伤亡人数有所减少,但事故总数和发生率仍然很高。

与传统的道路交通系统相比,智能网联交通系统更加趋向于由“人”、“路”、“车”以及公路交通设施等进行信息交互的动态系统。根据各国大量的统计研究后发现,驾驶人的失误是导致交通事故的主要因素。因此,在当前道路基础设施已经不能再完善的情况下,获取道路其他车道车辆的状态信息并加工处理广播给当前车辆的工作刻不容缓,这使得驾驶员能更好的采取相应的补救措施,减小驾驶员因失误导致的交通事故。



技术实现要素:

为了克服现有道路交通系统的安全性较低、交通事故发生概率较高的不足,本发明提供了一种在智能网联交通系统下基于深度神经网络的车辆速度预测方法。

本发明解决其技术问题所采用的技术方案是:

一种基于深度神经网络的车辆速度预测方法,所述预测方法包括如下步骤:

1)在智能网联交通系统中,通过dsrc技术自动识别行驶的车辆并获取相关数据,实现车载系统与路边单元的信息交互,其中,信息交互的步骤如下:

步骤1.1:当行驶车辆进入定向天线所覆盖的范围内时,车载系统会与路边单元通过dsrc技术实现双向通信,使得双方能同时发送自身存储单元上的信息,其中,车载系统发送的信息包括车辆的当前速度、当前位置和时间戳,路边单元发送的信息包括其他车道上车辆的预测速度、位于哪个方向上、几车道和加速度;

步骤1.2:路边单元将获取到的车辆信息发送到边缘云服务器进行一系列的运算操作;

2)边缘云服务器根据路边单元与车载系统之间的方位差,进行方位角计算并做相应的量化处理,针对位置信息对车辆行驶方向进行量化,其中,量化过程为:

步骤2.1:将位置信息转换成以视角存在的数字信息,其中,车辆的实际承载角相对于路边单元的定义为:

在此,各参数定义如下:

在t-1时刻路边单元与车载系统之间的方位角;

θt-1:将t-1时刻的车辆位置转化为方位角的反三角函数;

σt-1:在t-1时刻由信号反射引起的轴承误差噪声;

(xt-1,yt-1):在t-1时刻车辆的当前位置;

步骤2.2:以十字路口中心作为坐标原点,对方向角进行量化处理,确定车辆所在的方向,其中,量化公式如下:

在此,各参数定义如下:

bt-1:t-1时刻车辆在十字路口的量化方向;

q(·):量化函数;

i:十字路口的方向标识;

步骤2.3:为了实现方向信息的具体化,对该方向的车道进行量化,将实际轴承角度重命名为将其记录为:

在此,各参数定义如下:

在t-1时刻路边单元与车载系统之间的方位角;

θ′t-1:t-1时刻,将车辆与路边单元的相对位置转化为方位角的反三角函数;

(xi,yi):方向i上路边单元的固定位置;

步骤2.4:针对上述量化公式,对车辆所在的方向进行第二次量化,确定车辆所在的车道;

在此,各参数定义如下:

qt:在t时刻车道的量化方向;

ji:位于方向i上的第j个车道;

n:车道总数;

3)假设仅使用最近的p+1个车辆速度进行加速度估计,第p个加速度计算方式为:

在此,各参数定义如下:

δτ:采样时间间隔;

δv:后一时刻与前一时刻的速度之差;

vt-p:在t-p时刻小车的速度;

τt-p:在t-p时刻小车的时间戳;

at-(p+1):第p个加速度值;

此后,根据p个加速度值,利用自回归滑动平均法进行车辆加速度预测,其中,预测公式如下:

在此,各参数定义如下:

at-1:在t-1时刻小车的加速度;

p:自回归阶数,即加速度总数;

q:移动平均阶数,即滑动总数;

β:不为零的待定系数;

不为零的待定系数;

ξt-1:在t-1时刻独立的误差项;

4)将传感器收集到的上一时刻的位置信息(xt-1,yt-1)以及速度信息vt-1,再结合上述步骤计算出的加速度信息at-1;将(xt-1,yt-1,vt-1,at-1)作为原始特征数据,而速度vt则作为该条原始特征数据的标签;速度是需要被神经网络所预测的东西,而(xt-1,yt-1,vt-1,at-1)是神经网络需要观测的值;神经网络通过输入(xt-1,yt-1,vt-1,at-1),预测出t时刻的速度再通过标准值vt来优化神经网络,使它能预测得更准;进一步地,将[(xt-1,yt-1,vt-1,at-1),(vt)]作为一条带标签的数据存储在数据集中,然后再将整个数据集按设定的比例划分为训练集,验证集和测试集三个部分;训练集用于训练神经网络,验证集用于实时验证神经网络的预测能力,而测试集则用来评价神经网络最终的预测能力;

5)数据集准备好后,需要定义神经网络的结构,神经网络由多个神经元和连接两个神经元的神经链路组成,单个神经元所进行的数学运算,如下所示:

在此,各参数定义如下:

yj:第j个神经元的输出;

f:激活函数;

wij:连接神经元i和神经元j的权重;

xi:前一层神经元i的输出;

bj:第j个神经元的偏置。

6)在定义好神经网络的结构后,通过准备好的数据集便可进行训练,神经网络的训练步骤如下:

步骤6.1:初始化神经网络的起始权重和偏置,初始化迭代次数k=0;

步骤6.2:从训练集中随机抽取一批数据,将原始特征数据和标签分别提取出来,原始特征数据直接输入神经网络;

步骤6.3:原始特征数据输入后,神经网络得到预测输出,再讲神经网络的输出与标签做比较,产生误差;

步骤6.4:通过梯度下降算法,对误差求偏导,并反向传播回各个权重和偏置,改变其数值从而不断减小误差;

步骤6.5:k=k+1,如果k小于最大迭代次数g,则返回步骤6.1继续执行,否则训练过程结束;

步骤6.6:神经网络训练完成后,用测试集检验神经网络的最终预测效果;

7)最后,边缘云服务器将处理好的信息(车辆的预测位置、位于哪个方向上、几车道和加速度)通过光缆传送给路边单元,以便于下一次与车载系统的信息交互。

进一步,所述步骤1.2中,考虑到边缘云服务器的存储容量有限,所以将服务器中的数据每隔一周进行清零。

本发明的技术构思为:首先,在智能网联交通系统中,通过dsrc技术自动识别行驶的车辆并获取相关数据,实现车载系统与路边单元的信息交互。接着,针对采集的相关信息,利用量化公式对路边单元与车载系统的方位角进行量化;利用自回归滑动平均法对加速度进行预测;利用深度神经网络进行速度预测。最后,将处理好的信息通过光缆传送给其他3个路边单元,以便于下一次与车载系统的信息交互。

本发明的有益效果主要表现在:1、通过对路边单元与车载系统的方位角的量化,可以清楚的了解当前车辆位于哪个方向的几车道。2、结合自回归滑动平均法和深度神经网络算法实现速度的预测,并将结果传送给驾驶员,以便驾驶员可以根据车辆的相关信息以及自身经验来做出合适的判断和行为,有效降低了交通事故的发生率。

附图说明

图1是移动互联交通系统信息交互的示意图。

具体实施方式

下面结合附图对本发明作进一步详细描述。

参照图1,一种基于量化自适应卡尔曼滤波的车辆速度预测方法,本发明基于一种在dsrc技术通讯下的信息交互模型(如图1所示)。在智能网联交通系统中,首先通过量化公式对路边单元与车载系统的方位角进行量化,其次通过自回归滑动平均法对加速度进行预测,最后利用深度神经网络进行速度预测,所述预测方法包括以下步骤:

1)在智能网联交通系统中,通过dsrc技术自动识别行驶的车辆并获取相关数据,实现车载系统与路边单元的信息交互,其中,信息交互的步骤如下:

步骤1.1:当行驶车辆进入定向天线所覆盖的范围内时,车载系统会与路边单元通过dsrc技术实现双向通信,使得双方能同时发送自身存储单元上的信息,其中,车载系统发送的信息包括车辆的当前速度、当前位置和时间戳,路边单元发送的信息包括其他车道上车辆的预测速度、位于哪个方向上、几车道和加速度;

步骤1.2:路边单元将获取到的车辆信息发送到边缘云服务器进行一系列的运算操作,考虑到边缘云服务器的存储容量有限,所以将服务器中的数据每隔一周进行清零;

2)边缘云服务器根据路边单元与车载系统之间的方位差,进行方位角计算并做相应的量化处理,针对位置信息对车辆行驶方向进行量化,其中,量化过程为:

步骤2.1:将位置信息转换成以视角存在的数字信息。其中,车辆的实际承载角相对于路边单元的定义为:

在此,各参数定义如下:

在t-1时刻路边单元与车载系统之间的方位角;

θt-1:将t-1时刻的车辆位置转化为方位角的反三角函数;

σt-1:在t-1时刻由信号反射引起的轴承误差噪声;

(xt-1,yt-1):在t-1时刻车辆的当前位置;

步骤2.2:以十字路口中心作为坐标原点,对方向角进行量化处理,确定车辆所在的方向,其中,量化公式如下:

在此,各参数定义如下:

bt-1:t-1时刻车辆在十字路口的量化方向;

q(·):量化函数;

i:十字路口的方向标识;

步骤2.3:为了实现方向信息的具体化,对该方向的车道进行量化,将实际轴承角度重命名为将其记录为:

在此,各参数定义如下:

在t-1时刻路边单元与车载系统之间的方位角;

θ′t-1:t-1时刻,将车辆与路边单元的相对位置转化为方位角的反三角函数;

(xi,yi):方向i上路边单元的固定位置;

步骤2.4:针对上述量化公式,对车辆所在的方向进行第二次量化,确定车辆所在的车道;

在此,各参数定义如下:

qt:在t时刻车道的量化方向;

ji:位于方向i上的第j个车道;

n:车道总数;

3)假设仅使用最近的p+1个车辆速度进行加速度估计,第p个加速度计算方式为:

在此,各参数定义如下:

δτ:采样时间间隔;

δv:后一时刻与前一时刻的速度之差;

vt-p:在t-p时刻小车的速度;

τt-p:在t-p时刻小车的时间戳;

at-(p+1):第p个加速度值;

此后,根据p个加速度值,利用自回归滑动平均法进行车辆加速度预测,其中,预测公式如下:

在此,各参数定义如下:

at-1:在t-1时刻小车的加速度;

p:自回归阶数,即加速度总数;

q:移动平均阶数,即滑动总数;

β:不为零的待定系数;

不为零的待定系数;

ξt-1:在t-1时刻独立的误差项;

4)将传感器收集到的上一时刻的位置信息(xt-1,yt-1)以及速度信息vt-1,再结合上述步骤计算出的加速度信息at-1;将(xt-1,yt-1,vt-1,at-1)作为原始特征数据,而速度vt则作为该条原始特征数据的标签;速度是需要被神经网络所预测的东西,而(xt-1,yt-1,vt-1,at-1)是神经网络需要观测的值;神经网络通过输入(xt-1,yt-1,vt-1,at-1),预测出t时刻的速度再通过标准值vt来优化神经网络,使它能预测得更准;进一步地,将[(xt-1,yt-1,vt-1,at-1),(vt)]作为一条带标签的数据存储在数据集中,然后再将整个数据集按6:2:2的比例划分为训练集,验证集和测试集三个部分;训练集用于训练神经网络,验证集用于实时验证神经网络的预测能力,而测试集则用来评价神经网络最终的预测能力;

5)数据集准备好后,需要定义神经网络的结构,神经网络由多个神经元和连接两个神经元的神经链路组成,单个神经元所进行的数学运算,如下所示:

在此,各参数定义如下:

yj:第j个神经元的输出;

f:激活函数;

wij:连接神经元i和神经元j的权重;

xi:前一层神经元i的输出;

bj:第j个神经元的偏置;

6)在定义好神经网络的结构后,通过准备好的数据集便可进行训练,神经网络的训练步骤如下:

步骤6.1:初始化神经网络的起始权重和偏置,初始化迭代次数k=0;

步骤6.2:从训练集中随机抽取一批数据,将原始特征数据和标签分别提取出来,原始特征数据直接输入神经网络;

步骤6.3:原始特征数据输入后,神经网络得到预测输出,再讲神经网络的输出与标签做比较,产生误差;

步骤6.4:通过梯度下降算法,对误差求偏导,并反向传播回各个权重和偏置,改变其数值从而不断减小误差;

步骤6.5:k=k+1,如果k小于最大迭代次数g,则返回步骤6.1继续执行,否则训练过程结束;

步骤6.6:神经网络训练完成后,用测试集检验神经网络的最终预测效果;

7)最后,边缘云服务器将处理好的信息(车辆的预测位置、位于哪个方向上、几车道和加速度)通过光缆传送给路边单元,以便于下一次与车载系统的信息交互。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1