本申请要求2014年2月7日提交的美国临时专利申请序列号61/937,050的优先权权益。该临时专利申请的内容通过引用的方式合并入本文。
技术领域
本发明涉及静电夹件。
背景技术:
在半导体工业中使用静电夹件以在晶片上执行各种工艺时稳固地固持硅晶片。相对于机械夹件,静电夹件具有显著的优势,其包括(a)增强的传热能力,(b)晶片上的机械磨损的减少,(c)晶片的可用于制造可销售产品的有效面积的增大,(d)产生的颗粒物的数量降低,(e)溅射中使用的离子束对夹件的减少的污染,以及(f)跨晶片的表面的夹紧力的均匀性。
半导体工业不是使用静电夹件的唯一工业。例如,液晶显示器制造商使用静电夹紧技术以用来在处理期间固持特殊玻璃。同样,太阳能电池制造商也使用静电夹件。
静电夹件通过创建电容来固持工件(例如,半导体晶片,玻璃或正在运作的其它对象)。为使工件能够被固持到静电夹件,工件的全部或部分是导电的。例如,工件的部分可以是非导电的,但可以在夹紧发生之前将导电镀层添加至工件的非导电部分。在简单的静电夹件中,工件变成电容的电极,并且夹件的导电部分提供电容的另一个电极。如果夹件仅具有单电极,那么工件必须与地电连接,典型地经由导体或电离气体。当夹件电极带电时,工件被夹件电极所吸引。夹紧力可使用库仑定律来计算得出。
静电夹件在夹件电极与工件之间提供薄的材料层。在本文中,由静电夹件提供的位于(多个)夹件电极与工件之间的材料称为“阻挡材料”。典型地,阻挡材料的厚度处于数十至数百微米的量级。取决于静电夹件技术,阻挡材料可以是纯电介质(在库仑夹件的情况下)或半绝缘材料(在约翰逊-拉别克(Johnsen-Rahbek)夹件的情况下)。
在更加复杂的静电夹件中,夹件具有一个以上的电极。在具有两个电极的夹件(也称为,双极夹件)的情况下,夹件电极的第一个电极上的电荷与电极的第二个电极上的电荷极性相反。该配置从一个夹件电极起、经过阻挡材料、到达工件、返回通过阻挡材料并且然后到达另一个夹件电极来构成电容。具有两个以上电极的静电夹件是双极夹件的变形,但以类似于双极夹件的方式运行。
出于各种原因,期望监测工件,尤其是在工件上执行工艺时。例如,期望知道多大的电压施加至工件。用于监测施加至工件的电压的现有技术设备需要导电触头来接触工件,并且这些触头可能在处理期间损坏工件。因此,如果施加至工件的电压能够在无需用导电触头在物理上接触工件的情况下得以确定,则将是有益的。
技术实现要素:
本发明可以实施为具有静电夹件和高阻抗伏特计(“HIV”)的夹紧系统。静电夹件可以包括台板和多个嵌入台板的电极(“嵌入电极”)。电极中的至少一些提供电容的一侧,并且工件提供电容的另一侧,以便当嵌入电极中的至少一些通电时,将工件固持到台板。电介质材料或半绝缘材料位于嵌入电极与工件之间。HIV电连接至嵌入电极中的至少一些,并且可以具有等于或超过1016欧姆的阻抗。
在本发明的部分实施例中,嵌入电极中的一些可以不电连接至HIV。在这些实施例中,这些电极(未连接至HIV的那些)的主要目的是夹紧。嵌入电极中的其他电极电连接至HIV,并且这些电极的主要目的是测量工件的电压。在本发明的一个实施例中,未电连接至HIV的电极比电连接至HIV的电极更大。
在符合本发明的一个方法中,相对于静电夹件的台板来夹紧工件。多个电极嵌入台板。提供高阻抗伏特计,使得其电连接至嵌入电极中的至少一些。工件位于台板附近(通常使得工件由台板支撑),并且嵌入电极中的至少一些通电,使得这些嵌入电极提供电容的一侧并且工件提供电容的另一侧,以便相对于台板固持工件。电极中的至少一些的电压使用HIV来进行监测。作为对于嵌入电极中的至少一些的监测电压的结果或者响应,可调节施加至工件的条件(诸如,电压)。
附图说明
为更加完整地理解本发明的本质和目的,应当参考附图和以下的说明。简要地,附图为:
图1是根据本发明的系统的示意图;
图2是根据本发明的另一个系统的示意图;
图3是根据本发明的台板的平面图;以及
图4是描绘了根据本发明的方法的流程图。
具体实施方式
图1是根据本发明的系统的示意性图示。在图1中示出了硅晶片形式的工件10,其相对于静电夹件16的台板13被夹紧。嵌入夹件电极19中的两个(ECE#1和ECE#N)被示为嵌入此特定的台板13。然而,本发明并不限于两个ECE 19,并且图1暗示可以存在至少五个ECE 19。连同工件10一起,ECE 19构成“电容”,并且在工件10与ECE 19之间产生的吸引力将工件10稳固地固持至台板13。
高阻抗伏特计22(“HIV”)经由导体25电连接至ECE 19,以便监测ECE 19的电压。HIV 22的高阻抗防止HIV 22在ECE 19的夹紧能力上产生有意义的影响,并且因此ECE 19能够持续充当“电容”的一侧,其使得工件10相对于台板13被夹紧。值得相信的是,具有1016欧姆或更高的阻抗的HIV 22将是非常合适的,但其它阻抗也可能是合适的。用于该目的的HIV 22是纽约的Lockport有限公司,Trek生产的800型超高阻抗伏特计。
在图1示出的实例中,示出了HIV 22的五个信道。信道中的每个均可以用于监测不同的ECE 19,并且由此监测不同的电压。应该注意的是,本发明并不限于具有五个信道的HIV 22。HIV可以具有单个信道或者多个信道。图1中示出的五个信道中的两个各自被示出用于测量ECE 19当中不同的一个的电压。在图1示出的配置中,信道#1(“CH#1”)监测第一个ECE 19的电压,并且信道#2(“CH#2”)监测第二个ECE 19的电压。
通过监测ECE 19的电压,施加至工件10的电压得以监测。该监测过程能够在非常恶劣的环境中实现,(例如)施加至工件10的电压来源于等离子体喷头,离子注入,或其它电压源。此外,无需引入对工件的导电接触,由此消除了接触工件10所产生的损坏工件10的风险。此外,经由ECE 19监测工件10的电压,有可能感测到工件已经适合夹紧的时候。最后,这种监测系统可对现有的静电夹件进行改进,或容易地作为特征添加至新的静电夹件。
图2是符合本发明的不同系统的示意性图示。在图2中,提供了相对大的嵌入夹件电极19,用于将工件10夹紧至台板13,并且较小的传感器电极31(“ESE”)嵌入台板13。尽管ESE 31贡献夹紧力,但其主要角色是提供用于测量电压的位置。如此,图2中示出的系统具有未被监测电压的嵌入电极(ECE 19),并且与被监测电压的嵌入电极(ESE 31)相比,这些电极相对较大。
用于确定工件的电压的目的而监测的嵌入电极在下文中称为“监测嵌入电极”,或简称“MEE”。从而,图1的ECE 19是MEE。图2的ESE 31是MEE,但图2的ECE 19不是MEE。
图3是图2中示出的符合本发明的实施例的台板的平面图。在图3中,以虚线示出MEE 34,用来反映MEE 34嵌入台板13的事实。
MEE,其导电性地连接至HIV 22,可以从台板13的最接近工件10的外表面37嵌入大约100微米。在该配置中,MEE能够用于检测工件10位于用于夹紧的位置的时刻(即,工件10由台板13支撑,但未由台板13夹紧)。没有电压施加至工件10,当工件10处于(相对于台板13)用于夹紧的位置时,MEE上的电压呈零。如此,MEE可以用于检测工件10已经被夹紧的时刻。一旦施加夹紧电压,MEE良好地定位成测量施加至工件10的从0伏至+/-3000伏的电压。在一些实施例中,MEE测量到的电压可能超过+/-3000伏。工件10的真实电压与由MEE测量到的电压之间的差值可以小于100毫伏。
当MEE非常接近最靠近工件10的台板表面37时,实际电压与测量到的电压之间的差值将可能小于当MEE远离台板表面37时。值得相信的是,可以使用大于100微米的电极至台板表面距离。例如,值得相信的是,1毫米的传感器至台板表面距离将提供准确的电压测量,但在该距离上可能需要一些补偿测量。例如,可能使用电压偏置和/或需要辨识时间延迟。在那些实例中,测量到的电压可以被增加偏置以便提供接近实际电压的电压测量,和/或测量到的电压可以暂时提前,以便更加接近地指示相对于特定时间的实际电压。
在不周期性地校准HIV 22的情况下,HIV 22的输出可能漂移。如此,由HIV 22对MEE的电压进行感测可能时而暂时中断,以便为HIV 22提供已知的电压(例如,0伏),用以校准HIV 22。一旦校准,HIV22将再次测量MEE的电压。
从以上描述,现在可以认识到,带有其嵌入点击的台板13以及HIV22可用于监测工件10的电压并且这种监测可用于改变工件10的条件,使得工件10的电压维持在期望范围内。图4示出了一个这种方法。在图4示出的方法中,100提供静电夹件。该夹件具有台板13和多个嵌入台板13的电极。103可提供HIV 22,使得HIV 22经由电导体25电连接至嵌入电极中的至少一些。106定位工件10,使得电介质或半绝缘材料40位于工件10与台板13之间,并且使得工件10由台板13支撑。109然后使嵌入电极中的至少一些通电,使得嵌入电极提供电容的一侧,并且工件10提供电容的另一侧,以及工件10由此相对于台板13得以固持。112使用HIV 22来监测嵌入电极中的至少一些的电压,并且115响应于监测电极中的至少一些的电压来调整工件10上的条件。
尽管本发明已经采用一个或多个具体实施例进行了描述,应当理解,在不脱离本发明精神和范围的情况下可以做出本发明的其它实施例。因此,本发明应视为仅由附加的权利要求和其合理的解释来进行限定。