本发明涉及一种气体绝缘断路器,更详细地,涉及一种提高绝缘性能的气体绝缘断路器。
背景技术:
一般而言,气体绝缘断路器是指一种在输变电系统或者电路中开关负载或发生接地、短路等事故时切断电流的设备。
这种切断故障电流的气体绝缘断路器装置使用气体进行灭弧(Arc extinguishing),通过气体对两个触头之间发生的电弧进行灭弧。
这种气体绝缘断路器根据电弧的灭弧方式分为压气式灭弧(Puffer type)、旋转式灭弧(Rotating type)、热膨胀式灭弧(Thermal expansion type)、混合式灭弧(Hybrid extinction type)等,一般的气体绝缘断路器使用SF6作为灭弧气体。
其中所述的压气式灭弧的灭弧方式为,当断路器切断故障电流时,利用外部驱动力压缩切断部内压缩室(压气室)的灭弧气体并吹向电极之间,从而进行电弧的灭弧。
另外,所述热膨胀式灭弧的灭弧方式为,将切断故障电流时发生的电弧的热积累在热膨胀室,随后将因为积累的热而上升的压力吹向电极之间。
另外,混合地结合所述压气式灭弧和热膨胀式灭弧的方式为混合式灭弧。
混合式灭弧气体绝缘断路器在切断故障电流时,利用电弧发生的热作为使热膨胀室压力上升的能量,并且当电流为零时,将热膨胀室的高压气体再次喷射至电极(灭弧部)之间,从而维持电极之间的绝缘,以切断电极。
这种混合式灭弧气体绝缘断路器在切断时,因电极之间发生的电弧而产生高温热气体。
此时,产生的热气体既流入热膨胀室,又流入可动侧弧触头的内侧,并且沿着与可动侧弧触头连接的操作杆的内部空间流动后再排出至形成于可动侧固定导体后端的空间。
但是,现有技术中的气体绝缘断路器在接通时,构成为使存储在形成于可动侧固定导体后端的空间中的绝缘气体能够流入至压气室。此时,存储在形成于可动侧固定导体后端的空间中的绝缘气体为第一次切断时发生的高温热气体,并且不能形成冷却,从而保持着高温状态而残留下来。
因此,高温绝缘气体储存在压气室,在第二次切断时高温绝缘气体喷射至电极之间,所以有因高温而导致气体绝缘断路器的绝缘性能降低的缺点。
技术实现要素:
本发明是为了解决上述现有技术问题中的至少一部分而提出的,一方面的目的是提供一种能够使用冷气体进行灭弧的气体绝缘断路器。
为了达到上述目的中的至少一部分,一方面,本发明提供一种气体绝缘断路器,包括固定触头、固定弧触头、可动触头和可动弧触头,并且使电极间产生的热气体向所述可动弧触头的内部流动并向所述可动触头的内侧排出。所述可动触头包括:具备内部空间的固定气缸部;可动活塞部,该可动活塞部插入在所述固定气缸部的内部空间并且可滑动;固定部,该固定部在所述固定气缸部的内部空间中,配备在所述固定气缸部的后方;压气室,该压气室由所述可动活塞部、所述固定气缸部和所述固定部包围而形成;以及气体流入部,该气体流入部构成使所述固定气缸部外部与所述压气室之间的气体流通的路径。
一实施例中,所述气体流入部可以由形成在所述固定气缸部和所述固定部的流路构成,从而一端连接至所述压气室部,另一端连接至所述固定气缸部的外部。
另外,所述固定部可以由以密封方式划分固定气缸部内部空间的板状形态或者块状形态构成,所述气体流入部可以由贯通所述固定部本体而形成的孔构成。
另外,一实施例中,所述气体绝缘断路器还可以包括流入阀门,配备于所述气体流入部,当气体流入所述压气室时,开放所述气体流入部。
另外,一实施例中,所述流入阀门可以为切断气体从所述压气室向所述气体流入部方向排出而构成。
另外,一实施例中,所述气体绝缘断路器还可以包括气体排出部,构成所述压气室所容纳的气体向外部排出的路径。
另外,一实施例中,所述气体排出部可以由形成在所述固定部的流路构成,从而一端连接至所述压气室部,另一端连接至所述压气室的外部。
另外,一实施例中,所述气体绝缘断路器还可以包括排出阀门,配备于所述气体排出部,当所述压气室的气体向外部流出时,开放所述气体排出部。
另外,一实施例中,所述排出阀门可以为切断气体通过所述气体排出部向所述压气室方向流入而构成。
另外,一实施例中,气体排出空间可以形成在所述固定气缸部的内部空间中的所述固定部的后方,所述气体排出部可以构成为一端连接至所述压气室部,另一端连接至所述气体排出空间。
发明的效果
根据具有这种结构的本发明的一实施例,可以使高温气体不流入压气室、并且使可动触头外部的冷气体流入,所以在切断时使用冷气体进行灭弧,从而能够得到增强绝缘性能的效果。
附图说明
图1为根据本发明一实施例的气体绝缘断路器的侧剖视图。
图2为包括于图1所示的气体绝缘断路器的固定部的侧剖视图。
图3为示出图1所示的气体绝缘断路器切断时绝缘气体的流动的侧剖视图。
图4为示出图1所示的气体绝缘断路器接通时绝缘气体的流动的侧剖视图。
具体实施方式
本发明中所使用的术语仅仅是为了说明特定的实施例而使用,并不是用于限定本发明。另外,如果本发明的单数表达在文脉上没有明显不同地意指,则包括复数表达。
以下,参照附图说明本发明的优选实施例。
参照图1至图4对根据本发明一实施例的气体绝缘断路器进行说明。
如图1至图4所示,根据本发明一实施例的气体绝缘断路器100可以包括固定触头110、固定弧触头120、可动弧触头130、操作杆140、可动触头200和喷嘴150。
所述固定触头110为整体形成为圆柱形的导体,能够插入后述可动触头200的前端部。这种固定触头110可以接通后述可动触头200的内侧,并且与可动触头200一起构成电力系统的通电路径。
所述固定弧触头120为配备在固定触头110内侧空间的导体,可以构成断路器接通及切断操作时在触头处产生的电弧的移动路径。
一实施例中,固定弧触头120可以由在固定触头110的内侧空间中央部的、沿固定触头110的长度方向并排布置的杆状导体构成。
这种固定弧触头120可以在断路器接通时插入连接于后述可动弧触头130的前端部。
所述可动弧触头130配备于后述可动触头200的内侧,接通操作时连接于固定弧触头120,切断操作时从固定弧触头120分离,从而构成断路器接通及切断操作时在触头处产生的电弧的移动路径。
一实施例中,可动弧触头130可以结合于后述可动触头200的可动活塞部220的前端或与可动活塞部220一体形成,从而与可动活塞部220一同运动。
一实施例中,可动弧触头130可以由圆柱形导体、或者连接成郁金香形态的多个连接端构成,从而使固定弧触头120插入结合于其内侧。
另外,断路器切断时,因可动弧触头130与固定弧触头120之间发生的电弧而产生的热气体的一部分向可动弧触头130的内侧流动。
所述操作杆140可以连接于后述可动活塞部220的后端,并且可以使可动活塞部220前进及后退。
这种操作杆140可以连接于外部的操作装置(未图示),从而将操作装置的动力传递给后述可动活塞部220。
另外,操作杆140由绝缘材料构成,从而使可动活塞部220和外部操作装置之间绝缘。
一实施例中,操作杆140可以由在可动触头200内部中央的、沿轴方向布置的杆状部件构成,并且前端可连接于可动弧触头130。
此时,如图1所示,操作杆140可以由内部形成有气体排出流路142的管型轴构成。
另外,一实施例中,在操作杆140处可以配备有沿着形成于后述固定气缸部210的气体排出空间212的方向开口的气体排气口144。
断路器切断时,电极之间产生的热气体通过可动弧触头130的内侧流入至操作杆140的气体排出流路142,之后通过气体排气口144排出至后述固定气缸部210的气体排出空间212。
所述可动触头200可以配备固定气缸部210、可动活塞部220、固定部240、压气室250、气体流入部260和气体排出部270。
此处,所述固定气缸部210可以由一侧开放并且具备内部空间的导体构成。
一实施例中,如图1所示,固定气缸部210与固定触头110相向的一侧可以由开放的圆柱形导体构成。
在断路器的切断及接通操作时,这种固定气缸部210的位置固定,并且可以支持在内部空间滑动的后述可动活塞部220的移动。
一实施例中,如图1所示,在固定气缸部210的内部空间中,气体排出空间212可以形成于后述固定部240的后方。
断路器切断时,在可动弧触头130的前端部产生的热气体通过操作杆140的气体排出流路142流入,并且积累在气体排出空间212中。
另外,所述可动活塞部220可以构成为插入在固定气缸部210的内部空间并且可滑动。
一实施例中,所述可动活塞部220的内部可以配备热膨胀室230。
另外,可动活塞部220可以配备向前端突出的所述可动弧触头130,并且可以在前端配备后述的喷嘴150。
这种可动活塞部220可以连接于所述操作杆140,从而随着操作杆140沿固定气缸部210的长度方向往返移动。
一实施例中,在可动活塞部220的后端可以配备有连接在后述的压气室250和热膨胀室230之间的连接流路232,从而使储存于后述压气室250的气体流入热膨胀室230。
另外,所述固定部240是一种能够以密封方式划分固定气缸部210内部空间而配备的板状或块状部件。
一实施例中,如图2所示,虽然固定部240可以由结合于固定气缸部210内部空间的块状形态部件构成,但是并不限于此,也可以与固定气缸部210一体形成。
另外,如图1所示,所述压气室250为由可动活塞部220、固定气缸部210和固定部240包围而形成的空间。
这种压气室250的体积随着可动活塞部220的移动而改变。
并且,所述气体流入部260可以构成固定气缸部210的外部和压气室250之间空气流通的路径。
一实施例中,如图1及图2所示,气体流入部260可以由贯通固定部240本体而形成的孔构成.
具体地,气体流入部260可以构成为一端连接至压气室250,另一端连接至固定气缸部210的外部。
这种气体流入部260可以构成使固定气缸部210的外部和压气室250之间空气可流通的流路。
一实施例中,如图2所示,气体流入部260可以由从固定部240的前端向后方延伸,并且后端部向固定气缸部210外侧弯折的孔构成,但是并不限于此,也可以由从固定部240的前端向固定气缸部210的外侧倾斜地形成的孔构成。
此处,在固定气缸部210可以形成有连通所述固定部240的气体流入部260的出口的孔。因此,从气体流入部260排出的气体通过形成在固定气缸部210上的孔排出到外部。
但是,固定气缸部210的结构并不限于此,固定气缸部210还可以由包裹固定部240外侧的圆柱形构成,也可构成为后端布置在气体流入部260的出口侧前面,从而使气体流入部260露出在外部。
另外,一实施例中,可以在固定部240配备流入阀门262。
流入阀门262可以配备在气体流入部260的一端,并且当气体从固定气缸部210的外侧流入压气室250时,可以开放气体流入部260。
一实施例中,流入阀门262可以由在压气室250的气体向外部流出的方向上关闭气体流入部260,并且在外部气体流入压气室250的方向上开放气体流入部260的止回阀构成。
另外,气体排出部270可以构成压气室250所容纳的气体向外部排出的路径。
一实施例中,如图2所示,气体排出部270可以由沿长度方向贯通固定部240本体而形成的孔构成。
具体地,气体排出部270可以构成为一端连接于压气室250,并且另一端连接于气体排出空间212。
这种气体排出部270可以构成使压气室250和气体排出空间212之间的气体可流通的流路。
另外,一实施例中,排出阀门272可以配备于气体排出部270。
所述排出阀门272可以配备在气体排出部270的另一端,并且压气室250的气体在向气体排出空间212的方向上开放气体排出部270,并在外部气体流入压气室250的方向上关闭气体排出部270的止回阀构成。
所述喷嘴150可以配备在可动活塞部220的前端部,并且构成为可以使热膨胀室230所容纳的气体向可动弧触头130和固定弧触头120之间(发生电弧的部分)喷射。
以下,参照图3及图4说明根据本发明一实施例的气体绝缘断路器100的切断及接通操作。
如图3所示,第一次切断时,可动活塞部220随着操作杆140从固定触头110后退。
此时,固定弧触头120和可动弧触头130之间产生的热气体流经操作杆140的气体排出流路142之后,通过气体排气口144排出至气体排出空间212。
另外,压气室250的体积随着可动活塞部220的后退而减小,从而使压气室250所储存的气体通过固定部240的气体排出部270排出至气体排出空间212。
另外,如图4所示,接通时,可动活塞部220随着操作杆140向固定触头110方向前进。
此时,压气室250的体积增加,流入阀门262开放,存在于固定气缸部210外部的冷气体通过气体流入部260流入压气室250。
之后,第二次切断时,压气室250所储存的冷气体被喷射至电极之间,从而可以用于进行灭弧。
这种根据本发明一实施例的气体绝缘断路器100构成为使高温热气体不流入压气室250,并使可动触头200外部的冷气体流入,所以在第二次切断时能够使用冷气体进行灭弧,从而具有提高绝缘性能的优点。
虽然本发明只图示说明了相关特定实施例,但是需要说明的是,对于是本领域的普通技术人员,可以在不脱离权利要求书所记载的本发明的技术思想和领域的范围内进行多种形态的修改和变更。