本发明涉及一种稀土永磁材料制备技术,具体说,涉及一种钕铁硼薄片的制备方法。
背景技术:
钕铁硼永磁材料是我国稀土行业最为关注的稀土应用产业,随着科学技术的发展和技术的进步对高性能钕铁硼永磁材料的需求日益广泛。众所周知,为了提高钕铁硼的矫顽力和高温使用性,通常采用的方法是加入少量重稀土元素(如Dy、Tb等)或优化工艺细化磁体晶粒。
目前使用的降低重稀土使用量的方法主要包括双合金工艺和晶间扩散重稀土元素工艺。双合金工艺是分别熔炼主合金和包含重稀土元素的辅合金,破碎制粉,将主合金磁粉和辅合金粉按配比混合,取向压制,烧结,该工艺中重稀土元素使用量仍较高。晶间扩散重稀土元素工艺是通过涂抹、喷洒、浸渍和镀膜等方式在钕铁硼表面形成重稀土元素覆盖层,经高温晶间扩散将重稀土元素扩散至磁体内部以达到提高磁体矫顽力,少量使用重稀土的目的。但是该工艺仅限于制作较薄的磁件(厚度一般不超过5mm),在制备大块磁体时矫顽力提升不明显。中国发明专利公开号为CN103366940公开了一种采用物理气相沉积包覆制备钕铁硼粉料的方法,该方法虽然可以较少使用重稀土元素且适合制造大块磁体,但钕铁硼粉料粒度小重量轻,在包覆时容易发生氧化、控制和收集复杂等缺点。
目前通常采用的细化磁体晶粒的方法主要是在成分中加入微量的W、Mo、V、Ti、Ta、Zr、Nb、Co、Cr、Ga等元素抑制磁体晶粒的长大,但此类元素在磁体中会发生偏析等不均匀分布,对晶粒长大的抑制效果有限,加入量过高则会对磁体性能产生严重的影响。
技术实现要素:
本发明所解决的技术问题是提供一种钕铁硼薄片的制备方法,磁体矫顽力显著提高,大幅降低重稀土元素使用量,降低磁体制造成本。
技术方案如下:
一种钕铁硼薄片的制备方法,包括:
按设计成分配料、熔炼、速凝铸片;
采用物理气相沉积方法,将重稀土元素粒子或者高熔质元素粒子沉积在钕铁硼薄片上。
进一步:在惰性气氛中物理气相沉积,温度为300~500℃,沉积速率为0.01~50μm/min。
进一步:惰性气氛为氩气或氦气或真空,物理气相沉积采用磁控溅射沉积、离子镀沉积或蒸发源沉积。
进一步:高熔质元素粒子采用Dy、Tb、W、Mo、V、Ti、Ta、Zr、Nb、Co、Cr或者Ga元素的粒子;重稀土元素粒子采用Dy或者Tb元素的粒子。
进一步:将钕铁硼合金薄片和重稀土靶材分别置于物理气相沉积装置内;抽真空至真空度高于2.0×10-2Pa,充入氩气至0.2~1.0Pa;对钕铁硼薄片加热,开启物理气相沉积装置,采用物理气相沉积将重稀土粒子沉积在钕铁硼薄片上;停止物理气相沉积,待温度降至室温后取出钕铁硼薄片。
进一步:对钕铁硼薄片加热的加热温度为300~500℃,重稀土粒子沉积速率为0.01~50μm/min。
进一步:重稀土靶材为元素Dy或者Tb中至少一种元素的纯金属、合金或氧化物。
进一步:将钕铁硼合金薄片和高熔质靶材分别置于物理气相沉积装置内;抽真空至真空度高于2.0×10-2Pa,充入氩气至0.2~1.0Pa;对钕铁硼薄片加热,开启物理气相沉积装置,采用物理气相沉积将高熔质粒子沉积在钕铁硼薄片上;停止物理气相沉积,待温度降至室温后取出钕铁硼薄片。
进一步:对钕铁硼薄片加热的加热温度为300~500℃,高熔质粒子沉积速率为0.01~50μm/min。
进一步:高熔质靶材为元素W、Mo、V、Ti、Ta、Zr、Nb、Co、Cr或者Ga中至少一种元素的纯金属、合金或氧化物。
与现有技术相比,本发明技术效果包括:将本发明所述方法制备的钕铁硼薄片进行破碎制粉,进而烧结制备钕铁硼磁体,可使磁体矫顽力显著提高,大幅降低重稀土元素使用量,降低磁体制造成本,同时降低磁粉由于再加工而造成的氧化现象,工艺简单易实现。
具体实施方式
下面参考示例实施方式对本发明技术方案作详细说明。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本发明更全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。
钕铁硼薄片的制备方法,具体包括以下步骤:
步骤1:按设计成分配料、熔炼、速凝铸片;
步骤2:采用物理气相沉积方法,将靶材粒子沉积在钕铁硼薄片上。
物理气相沉积采用磁控溅射沉积、离子镀沉积或蒸发源沉积。物理气相沉积时,在惰性气氛中,温度300~500℃,沉积速率0.01~50μm/min。惰性气氛为氩气或氦气或真空。
方案1:
步骤11:按设计成分配料、熔炼、速凝铸片;
步骤12:将钕铁硼合金薄片和重稀土靶材分别置于物理气相沉积装置内;
重稀土靶材为Dy、Tb或Dy-Tb的至少一种纯金属、合金或氧化物。
步骤13:抽真空至真空度高于2.0×10-2Pa,充入氩气至0.2~1.0Pa;
步骤14:对钕铁硼薄片加热,加热温度300~500℃;
步骤15:开启物理气相沉积装置,采用物理气相沉积将重稀土粒子沉积在钕铁硼薄片上;
物理气相沉积包括磁控溅射沉积、离子镀沉积和蒸发源沉积。重稀土粒子沉积速率为0.01~50μm/min。
步骤16:停止物理气相沉积,待温度降至室温后取出钕铁硼薄片。
方案2:
步骤21:按设计成分配料、熔炼、速凝铸片;
步骤22:将钕铁硼合金薄片和高熔质靶材分别置于物理气相沉积装置内;
高熔质靶材为W、Mo、V、Ti、Ta、Zr、Nb、Co、Cr、Ga等元素的至少一种纯金属、合金或氧化物。
步骤23:抽真空至真空度高于2.0×10-2Pa,充入氩气至0.2~1.0Pa;
步骤24:对钕铁硼薄片加热,加热温度300~500℃;
步骤25:开启物理气相沉积装置,采用物理气相沉积将高熔质粒子沉积在钕铁硼薄片上;
物理气相沉积包括磁控溅射沉积、离子镀沉积和蒸发源沉积。高熔质粒子沉积速率为0.01~50μm/min。
步骤26:停止物理气相沉积,待温度降至室温后取出钕铁硼薄片。
可同时使用方案1和方案2对钕铁硼薄片进行物理气相沉积。
实施例1:
该实施例具体包括如下步骤:
(1)配料、熔炼、速凝铸片制备钕铁硼薄片;
(2)将所得钕铁硼薄片进行物理气相沉积:
选择Dy金属靶材,抽真空至2.0×10-2Pa,充入氩气至0.2Pa,采用磁控溅射,调整溅射功率,使Dy粒子沉积速率为0.01μm/min。
(3)将所得的钕铁硼薄片盘磨破碎、球磨制粉、取向成型、烧结、热处理,获得最终磁体。
采用磁性能测量仪测试本实施例制备的磁体磁能积和矫顽力,与传统方法制备的磁体进行对比,结果如表1所示。
表1
实施例2:
该实施例具体包括如下步骤:
(1)配料、熔炼、速凝铸片制备钕铁硼薄片;
(2)将所得钕铁硼薄片进行物理气相沉积:
选择Tb金属靶材,抽真空至5.0×10-3Pa,充入氦气至0.5Pa,将钕铁硼薄片加热到300℃,采用离子镀,调整氩气发射源电流,使Tb粒子沉积速率为50μm/min。
(3)将所得的钕铁硼薄片氢破碎、气流磨、取向成型、烧结、热处理,获得最终磁体。
采用磁性能测量仪测试本实施例制备的磁体磁能积和矫顽力,与传统方法制备的磁体进行对比,结果如表2所示。
表2
实施例3:
该实施例具体包括如下步骤:
(1)配料、熔炼、速凝铸片制备钕铁硼薄片;
(2)将所得钕铁硼薄片进行物理气相沉积:
选择CoZr金属靶材,抽真空至9.0×10-4Pa,将钕铁硼薄片加热到500℃
采用蒸发沉积,调整蒸发舟加热源功率,使CoZr原子气化蒸发,沉积速率为3μm/min。
(3)将所得的钕铁硼薄片氢破碎、气流磨、取向成型、烧结、热处理,获得最终磁体。
采用磁性能测量仪测试本实施例制备的磁体磁能积和矫顽力,与传统方法制备的磁体进行对比,结果如表3所示。
表3
实施例4:
该实施例具体包括如下步骤:
(1)配料、熔炼、速凝铸片制备钕铁硼薄片;
(2)将所得钕铁硼薄片进行物理气相沉积:
选择Dy2O3靶材,Mo靶材,抽真空至3.0×10-2Pa,充入氩气至0.3Pa
将钕铁硼薄片加热到420℃,采用磁控溅射,同时对两种靶材进行溅射,调整溅射功率,使粒子沉积速率为0.2μm/min。
(3)将步所得的钕铁硼薄片氢破碎、气流磨、取向成型、烧结、热处理,获得最终磁体。
采用磁性能测量仪测试本实施例制备的磁体磁能积和矫顽力,与传统方法制备的磁体进行对比,结果如表4所示。
表4
本发明所用的术语是说明和示例性、而非限制性的术语。由于本发明能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。