一种碲化镉薄膜太阳能电池吸收层的沉积方法与流程

文档序号:11102480阅读:2008来源:国知局
一种碲化镉薄膜太阳能电池吸收层的沉积方法与制造工艺

本发明涉及一种碲化镉薄膜太阳能电池吸收层的沉积方法,属于碲化镉薄膜太阳能电池技术领域。



背景技术:

碲化镉(CdTe)薄膜太阳能电池是以多晶n型的硫化镉层和多晶p型碲化镉层做pn结,再加上相应的透明导电膜前电极和金属膜背电极所组成的薄膜太阳能电池器件。目前其组件效率已经达到18%左右,实验室效率达到22%以上,理论转化效率可以达到33%。碲化镉薄膜太阳能电池由于制造成本低,转化效率高,在光伏领域有着非常重要的角色。

目前CdTe薄膜太阳能电池的典型基本结构如图1所示为:玻璃衬底101/透明导电膜层(TCO)102/硫化镉层(CdS)103/碲化镉层(CdTe)104/背接触-背电极层105/封装材料106/背板玻璃107。其中碲化镉层为薄膜太阳能电池的吸收层,它是以二元化合物碲化镉(CdTe)作为原材料,通过近空间升华(CSS)或者气相输运沉积(VTD)的方法在已做好TCO/CdS薄膜的玻璃衬底上沉积。由于碲化镉(CdTe)本身材料带隙(1.45eV)的限制,碲化镉薄膜太阳能电池对太阳光的吸收波长只能到850nm左右,无法进一步吸收红外光,这限制了其对太阳辐照的利用率。



技术实现要素:

有鉴于此,本发明提供一种碲化镉薄膜太阳能电池吸收层的沉积方法,它能减小吸收层的带隙,使电池的吸收谱向长波方向移动,提高电池的短路电流;同时使吸收层带隙连续渐变,形成V形带隙,提高电池的填充因子和开路电压。

为解决以上技术问题,本发明的技术方案提供了一种碲化镉薄膜太阳能电池吸收层的沉积方法,它以三元组合物CdSexTe1-x作为原材料,利用近空间升华法在具有TCO/CdS薄膜的玻璃衬底上连续多次沉积CdSexTe1-x,其中CdSexTe1-x的x值为0≤x≤1。

进一步的,上述近空间升华法的蒸发源个数与CdSexTe1-x沉积次数匹配,多源蒸发沉积可以减短生成节拍时间,提高产能。

进一步的,上述TCO/CdS薄膜的玻璃衬底上每次沉积的CdSexTe1-x中x值均不相同。

进一步的,上述TCO/CdS薄膜的玻璃衬底上沉积的CdSexTe1-x中,除第一次沉积和最后一次沉积的CdSexTe1-x外,其余沉积的CdSexTe1-x中0<x<1。也就是说,第一层吸收层的材料可以为三元合金CdSeTe,也可为纯的CdTe或纯的CdSe材料;最后一层吸收层的材料可以为三元合金CdSeTe,也可为纯的CdTe或p型CdSe薄膜;而其余中间吸收层的材料必须为具有一定组分比的CdSeTe三元合金,且每层Se含量不同。

进一步的,所述CdSexTe1-x的沉积次数不少于三次。

进一步的,本发明提供的一种碲化镉薄膜太阳能电池吸收层的沉积方法,具体包括以下步骤:

(1)准备具有TCO/CdS薄膜的玻璃衬底和数个蒸发源,每个蒸发源内的材料为三元组合物CdSexTe1-x,且0≤x≤1;当然优选的是,每个蒸发源中三元组合物CdSexTe1-x的x值均不相同;

(2)采用近空间升华法在玻璃衬底上沉积CdSexTe1-x,第一个蒸发源在玻璃衬底上沉积好第一层CdSexTe1-x后传至第二个蒸发源沉积第二层CdSexTe1-x,如此往复,直至传至最后一个蒸发源沉积最后一层CdSexTe1-x;所述第一层和最后一层CdSexTe1-x中0≤x≤1,其余各层CdSexTe1-x中0<x<1。

上述蒸发源为近空间升华法所使用的蒸发坩埚。

为了拓展碲化镉(CdTe)太阳能电池的红外吸收,需要降低其吸收层的带隙。掺杂Se元素部分代替CdTe的中的Te元素,可以有效改变CdTe的带隙。已知的结果表明,随着CdSexTe1-x中Se元素的含量从0开始增加,材料的带隙从纯CdTe 1.45eV的带隙开始降低,当Se元素增加到一定量(x≈0.3)后,CdSexTe1-x的带隙达到最小值(约为1.36eV)。随着Se的含量继续增加,CdSexTe1-x的带隙开始增大,当x=1时,即为纯CdSe,此时材料带隙为CdSe的带隙1.7ev。

从以上可以看出,调整CdSexTe1-x中Se元素的含量,可以控制整个吸收层的带隙。调整CdSexTe1-x中Se元素的含量为一适当值,就可以得到低于CdTe带隙的吸收层,提高CdTe太阳电池在红外波长的光吸收,进而提高CdTe太阳电池的短路电流。

但是由于吸收层CdTe(带隙1.45eV)与窗口层CdS(带隙2.4eV)的带隙差,如果减小吸收层的带隙,会造成更大的带隙失配,在界面形成势垒,降低太阳电池的开路电压和填充因子。因此在CdTe/CdS的界面处,吸收层应该有较高的带隙。同时由于Se元素的掺杂,会在吸收层产生更多缺陷,增大光生载流子的复合,迁移率降低。为了提高作为p型半导体的吸收层少子(电子)的迁移率,需要吸收层导带带隙从CdTe/CdS界面向背接触层逐渐升高。

为了使CdTe太阳能电池的吸收层达到理想的能带结构及分布,需要CdSexTe1-x吸收层Se含量有规律的分布,因此本发明以三元组合物CdSexTe1-x作为吸收层原材料,采用多个不同的蒸发源,蒸发沉积不同Se含量的CdSexTe1-x(0≤x≤1)。本发明通过改变吸收层的组分降低了部分吸收层的带隙,使碲化镉薄膜太阳能电池的吸收谱向长波方向拓展,提高了电池的短路电流;由于在CdSeTe的沉积以及后续的高温处理过程中各层之间Se元素和Te元素的互相扩散,使整个吸收层中形成Se元素的梯度分布,进而使吸收层形成带隙梯度分布,提高了载流子的收集效率,从而提供了电池的开路电压和填充因子;采用多个蒸发源的近空间升华方法沉积吸收层,多源蒸发沉积可以减短生产节拍时间,提高产能。

附图说明

图1为现有碲化镉薄膜太阳能电池的典型结构示意图;

图2为本发明沉积方法的示意图;

图3为采用本发明方法制备的碲化镉薄膜太阳能电池IV曲线与传统电池IV曲线对比图;

图4为采用本发明方法制备的碲化镉薄膜太阳能电池的外量子效率曲线与传统电池的外量子效率曲线对比图。

图例说明:

101、玻璃衬底;102、透明导电膜层;103、硫化镉层;104、碲化镉层;105、背接触-背电极层;106、封装材料;107背板玻璃;

201、传输方向;202、基板;203、蒸发坩埚。

具体实施方式

为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施例对本发明作进一步的详细说明。

参见图2,本发明公开了一种碲化镉薄膜太阳能电池吸收层的沉积方法,它包括以下步骤:

(1)准备基板202和蒸发坩埚203,基板202为具有TCO/CdS薄膜的玻璃衬底,蒸发坩埚203为数个,每个蒸发坩埚内的材料为三元组合物CdSexTe1-x,且0≤x≤1;优选每个蒸发坩埚内的三元组合物CdSexTe1-x的x值均不相同;

(2)将基板202传输到第一个蒸发坩埚上方,采用近空间升华法在基板202上沉积一定厚度的CdSexTe1-x(0≤x≤1),此处沉积的CdSexTe1-x材料可以为纯CdTe,也可以为纯CdSe材料;

(3)沿传输方向201将沉积好第一层CdSexTe1-x的基板传输到第二个蒸发坩埚上方,采用近空间升华法继续沉积第二层CdSexTe1-x(0≤x≤1),此处沉积的CdSexTe1-x材料为有一定组分比的CdSeTe三元合金;

(4)如上重复沿传输方向201依次传输基板沉积CdSeTe三元合金,直至传输到最后一个蒸发坩埚上方沉积最后一层CdSexTe1-x(0≤x≤1),此处沉积的CdSexTe1-x薄膜可以为纯CdTe,也可以为p型的CdSe薄膜。

下面通过具体实施例对本发明进行进一步说明。

对比实施例1:

本实施例用于说明传统碲化镉薄膜太阳能电池的制备方法。

(1)取市售的FTO导电玻璃作为玻璃衬底,其表面附着有透明导电膜,透明导电膜层的材料为氟掺杂的氧化锡,透明导电膜层上沉积氧化锡高阻层,高阻层上沉积硫化镉层。

(2)硫化镉层沉积吸收层,吸收层材料为纯的CdTe;

(3)吸收层上喷涂一定浓度的CdCl2溶液,然后在大气条件下高温退火处理;

(4)依次溅射Cu、Mo、Al、Cr金属材料作为背电极;

(5)在大气气氛下进行高温退火处理;

(6)根据应用需求,在制备的过程中对样品进行激光刻蚀实现电池串联,最后经过封装工艺得到碲化镉薄膜电池A。

对比实施例2:

本实施例用于说明采用CdSexTe1-x作吸收层材料的碲化镉薄膜太阳能电池的制备方法。

(1)取市售的FTO导电玻璃作为玻璃衬底,其表面附着有透明导电膜,透明导电膜层的材料为氟掺杂的氧化锡,透明导电膜层上沉积氧化锡高阻层,高阻层上沉积硫化镉层。

(2)采用近空间升华法在硫化镉层沉积吸收层,吸收层材料为三元合金CdSe0.3Te0.7

(3)吸收层上喷涂一定浓度的CdCl2溶液,然后在大气条件下高温退火处理;

(4)依次溅射Cu、Mo、Al、Cr金属材料作为背电极;

(5)在大气气氛下进行高温退火处理;

(6)根据应用需求,在制备的过程中对样品进行激光刻蚀实现电池串联,最后经过封装工艺得到碲化镉薄膜电池B。

具体实施例3:

本实施例用于说明采用本发明公开的吸收层沉积方法来制备碲化镉薄膜太阳能电池。

(1)取市售的FTO导电玻璃作为玻璃衬底,其表面附着有透明导电膜,透明导电膜层的材料为氟掺杂的氧化锡,透明导电膜层上沉积氧化锡高阻层,高阻层上沉积硫化镉层。

(2)硫化镉层沉积吸收层,具体为:在第一个蒸发源,用近空间升华法硫化镉层上沉积一定厚度的纯CdSe材料;然后传输到第二个蒸发源,近空间升华法沉积一定厚度的三元合金CdSe0.3Te0.7;最后传输到第三个蒸发源,近空间升华法沉积一定厚度的CdTe薄膜完成吸收层的沉积;

(3)吸收层上喷涂一定浓度的CdCl2溶液,然后在大气条件下高温退火处理;

(4)依次溅射Cu、Mo、Al、Cr金属材料作为背电极;

(5)在大气气氛下进行高温退火处理;

(6)根据应用需求,在制备的过程中对样品进行激光刻蚀实现电池串联,最后经过封装工艺得到碲化镉薄膜电池C。

将上述三个实施例得到的碲化镉薄膜太阳能电池A、B、C进行性能测试,具体见下表所示:

其IV曲线和外量子效率曲线见图3、图4所示。

从上述表格和曲线对比图中可以看出,本发明方法通过控制不同蒸发源CdSexTe1-x中Se元素的含量及工艺温度获得获得较小的太阳电池吸收层的带隙,使电池吸收谱向红外方向拓展,提高了电池的短路电流;同时使吸收层带隙连续渐变,形成V形带隙,提高了电池的填充因子和开路电压。

以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1