半导体组件的制作方法

文档序号:12262303阅读:364来源:国知局
半导体组件的制作方法与工艺

本实用新型一般涉及电子设备,并且更特别地涉及其半导体结构及形成半导体装置的方法。



背景技术:

过去,半导体工业使用各种不同的器件结构和方法来形成半导体器件,诸如例如二极管、肖特基二极管、场效应晶体管(FET)、高电子迁移率晶体管(HEMT)等。诸如二极管、肖特基二极管和FET之类的器件典型地由硅衬底制成。由硅衬底制成的半导体器件的缺点包括低击穿电压、过多的反向漏电流、大正向电压降、不合适地低的切换特性、高功率密度和高制造成本。为了克服这些缺点,半导体器件制造者已经转向由化合物半导体衬底(诸如例如,III-N半导体衬底、III-V半导体衬底、II-VI半导体衬底等)制造半导体器件。虽然这些衬底已经改善了器件性能,但是它们是易碎的并且增加制造成本。因此,半导体工业已经开始使用作为硅和III-N材料的组合的化合物半导体衬底来解决成本、可制造性和易碎性的问题。在硅或其它半导体衬底上形成的III-N化合物半导体材料已经被描述在Zhi He的2011年6月9日公布的美国专利申请公开号2011/0133251A1中和Michael A.Briere的2013年3月21日公布的美国专利申请公开号2013/0069208A1中。

半导体器件制造者已经使用硅半导体材料和III-N半导体材料的组合来制造共源共栅的器件,诸如与硅器件共源共栅的常开的III-N耗尽型HEMT。使用这个材料组合帮助使用常开的III-N耗尽型器件实现常关状态。在配置作为开关的共源共栅的器件中,由于在高漏极偏压下工作的III-N器件的高漏电流,硅器件经常工作在雪崩模式中。在雪崩工作模式中,III-N器件的栅极在大应力之下,其中栅极到源极的电压的绝对值超过器件夹断电压。困难的应力状态(诸如使硅器件工作在雪崩模式中)使器件可靠性劣化,降低击穿电压,并且增大漏电流。共源共栅的半导体器件已经被描述在Rakesh K.Lal等人的2013年4月11日公布的美国专利申请公开号2013/0088280A1中。

因此,将有利的是具有共源共栅的半导体器件和用于制造共源共栅的半导体器件的方法。将具有更多的优点,即成本有效地实现该结构和方法。



技术实现要素:

根据本实用新型的一个方面,一种半导体组件至少具有第一端子并且包括:引线框,具有相对的第一侧面和第二侧面、以及第一引线,第一引线与引线框一体化地形成并且第一侧面的一部分用作管芯接收区;安装到管芯接收区的第一半导体芯片,第一半导体芯片具有第一表面和第二表面、第一栅极接合焊盘、第一源极接合焊盘和第一漏极接合焊盘,第一半导体芯片由III-N半导体材料构成,其中第一半导体芯片的第二表面耦接到管芯接收区;以及第二半导体芯片,安装到第一半导体芯片并且具有第一表面和第二表面、第二栅极接合焊盘、第二源极接合焊盘和第二漏极接合焊盘,第二半导体芯片由硅基材料构成,其中第二半导体芯片的第二表面耦接到第一源极接合焊盘。

在一个实施例中,所述半导体组件还包括:具有第一表面和第二表面的衬底,该第二表面耦接到管芯接收区;以及第二引线和第三引线,其中第二引线和第三引线与引线框电隔离。

在一个实施例中,第一漏极接合焊盘电耦接到引线框。

在一个实施例中,第一漏极接合焊盘使用夹子或者一个或更多个接合导线而电耦接到引线框。

在一个实施例中,第二源极接合焊盘电耦接到第二引线和第一栅极接合焊盘;以及其中第二栅极接合焊盘电耦接到第三引线;并且还包括将衬底耦接到第二引线的电互连件。

根据本实用新型的另一个方面,一种半导体组件至少具有第一端子和第二端子,并且包括:引线框,具有相对的第一侧面和第二侧面、器件接收区和第一引线,第一引线与引线框一体化地形成;绝缘的金属衬底,具有第一表面和第二表面,第二表面耦接到引线框;安装到绝缘的金属衬底的第一半导体芯片,第一半导体芯片具有第一表面和第二表面、第一栅极接合焊盘、第一源极接合焊盘和第一漏极接合焊盘,第一半导体芯片由III-N半导体材料构成,其中第一半导体芯片的第二表面耦接到绝缘的金属衬底;以及第二半导体芯片,安装到第一半导体芯片并且具有第一表面和第二表面、由第一表面形成的阳极以及由第二表面形成的阴极,其中阴极耦接到第一源极接合焊盘。

在一个实施例中,所述半导体组件还包括与引线框电隔离的第二引线,其中第一栅极接合焊盘电耦接到阳极并且阳极电耦接到第二引线;以及其中第一漏极接合焊盘通过第一夹子或第一组接合导线而电耦接到引线框,并且其中阳极通过第二夹子或第二组接合导线而电耦接到引线框。

根据本实用新型的又一个方面,一种半导体组件包括:支撑结构,具有顶表面、底表面以及在顶表面与底表面之间的模制化合物;电绝缘的支撑件,具有相对的第一表面和第二表面、以及侧面、从该侧面延伸的第一引线、第二引线以及第三引线、形成于支撑结构中的管芯接收区以及形成于电绝缘的支撑件中的互连结构;安装到管芯接收区的第一半导体芯片,第一半导体芯片具有第一表面和第二表面、第一栅极接合焊盘、第一源极接合焊盘和第一漏极接合焊盘,第一半导体芯片由III-N半导体材料构成,其中第一半导体芯片的第二表面耦接到管芯接收区;以及第二半导体芯片,安装到第一半导体芯片并且具有第一表面和第二表面、第二栅极接合焊盘、第二源极接合焊盘和第二漏极接合焊盘,第二半导体芯片由硅基材料构成,其中第二半导体芯片的第二表面耦接到第一源极接合焊盘。

在一个实施例中,第一漏极接合焊盘电耦接到支撑结构,第二源极接合焊盘电耦接到第一引线以及第二引线,并且第二栅极接合焊盘电耦接到第一源极引线。

在一个实施例中,管芯接收区电耦接到第三引线。

附图说明

从结合附图进行的以下详细描述的阅读中将更好理解本实用新型,在附图中类似的附图标记指示类似的元件,并且在附图中:

图1是共源共栅(cascode)配置中的半导体组件的电路示意,其中III-N器件的衬底是浮置的;

图2是共源共栅配置中的半导体组件的电路示意,其中III-N器件的衬底耦接到硅半导体器件的源极电极;

图3是根据本实用新型实施例的共源共栅配置中的半导体组件的透视图;

图4是沿着图3的截面线4-4截取的图3的半导体组件的截面图;

图5是根据本实用新型其它实施例的共源共栅配置中的半导体组件的透视图;

图6是根据本实用新型其它实施例的共源共栅配置中的半导体组件的透视图;

图7是沿着图6的截面线7-7截取的图7的半导体组件的截面图;

图8是根据本实用新型其它实施例的共源共栅配置中的半导体组件的透视图;

图9是根据本实用新型其它实施例的共源共栅配置中的半导体组件的透视图;

图10是根据本实用新型其它实施例的共源共栅配置中的半导体组件的透视图;

图11是根据本实用新型其它实施例的共源共栅配置中的半导体组件的透视图;

图12是根据本实用新型其它实施例的共源共栅配置中的半导体组件的透视图;

图13是根据本实用新型其它实施例的共源共栅配置中的半导体组件的透视图;

图14是根据本实用新型其它实施例的共源共栅配置中的半导体组件的透视图;

图15是共源共栅配置中的半导体组件的电路示意,其中III-N器件的衬底是浮置的;

图16是共源共栅配置中的半导体组件的电路示意,其中III-N器件的衬底耦接到硅半导体器件的阳极电极;

图17是根据本实用新型其它实施例的共源共栅配置中的半导体组件的透视图;

图18是沿着图17的截面线18-18截取的图17的半导体组件的截面图;

图19是根据本实用新型其它实施例的共源共栅配置中的半导体组件的透视图;

图20是根据本实用新型其它实施例的共源共栅配置中的半导体组件的透视图;

图21是根据本实用新型其它实施例的共源共栅配置中的半导体组件的透视图;

图22是根据本实用新型其它实施例的共源共栅配置中的半导体组件的透视图;

图23是根据本实用新型其它实施例的共源共栅配置中的半导体组件的透视图;

图24是根据本实用新型其它实施例的共源共栅配置中的半导体组件的透视图;

图25是沿着图24的截面线25-25截取的图24的半导体组件的截面图;

图26是根据本实用新型其它实施例的共源共栅配置中的半导体组件的透视图;

图27是根据本实用新型其它实施例的共源共栅配置中的半导体组件的透视图;

图28是沿着图27的截面线28-28截取的图27的半导体组件的截面图;

图29是根据本实用新型其它实施例的共源共栅配置中的半导体组件的透视图;

图30是根据本实用新型其它实施例的共源共栅配置中的半导体组件的透视图;

图31是根据本实用新型其它实施例的共源共栅配置中的半导体组件的透视图;

图32是沿着图31的截面线32-32截取的图31的半导体组件的截面图;

图33是根据本实用新型其它实施例的共源共栅配置中的半导体组件的透视图;以及

图34是根据本实用新型其它实施例的共源共栅配置中的半导体组件的透视图。

为例示的简单和清楚起见,图中的元件不一定按比例绘制,并且在不同的图中相同的附图标记表示相同的元件。另外,为描述的简单起见而省略了公知的步骤和元件的描述和细节。在此使用的载流电极指的是运载电流流过器件的器件元件,例如MOS晶体管的源极或漏极、或者双极型晶体管的发射极或集电极、或者二极管的阴极或阳极,而控制电极指的是控制电流流过器件的器件元件,例如MOS晶体管的栅极或者双极型晶体管的基极。虽然在这里器件被解释为特定的N沟道或P沟道器件,或者特定的N型或P型掺杂区,但是本领域技术人员将明白根据本实用新型实施例互补器件也是可能的。本领域技术人员将明白,如在此使用的措词“在……的期间”、“在……的同时”和“当...时”不是意指一有引发行为就会马上发生行为的准确术语,而是可以在由初始行为引发的反应与初始行为之间存在一些小的但是合理的延迟,诸如传播延迟。措词“近似”,“大约”或“基本上”的使用意指元件值具有预期非常接近于所述值或位置的参数。然而,本领域中众所周知的是,总是存在阻止值或位置确切地如规定的微小变化。在本领域中非常确实的是高达约百分之十(10%)(并且对于半导体掺杂浓度高达百分之二十(20%))的变化被认为是偏离如精确所述的理想目标的合理变化。

具体实施方式

本申请要求Chun-Li Liu等人于2015年7月24日提交的并且标题为“SEMICONDUCTOR COMPONENT AND METHOD OF MANUFACTURE”的美国临时专利申请No.62/196,631、以及于2016年7月12日提交的美国专利申请No.15/207,626的权益,这两个专利申请的公开内容全文以引用方式并入于此。

通常,本实用新型提供一种半导体组件,其包括具有相对的第一侧面和第二侧面的支撑件以及与该支撑件一体化地形成的第一引线。绝缘的金属衬底接合到支撑件,其中绝缘的金属衬底具有第一表面和第二表面。绝缘的金属衬底的第二表面耦接到支撑件。第一表面的一部分用作管芯接收区。由III-N半导体材料构成的半导体芯片安装到管芯接收区。基于III-N的半导体芯片具有栅极接合焊盘、漏极接合焊盘和源极接合焊盘。基于III-N的半导体芯片还包括耦接到管芯接收区的表面。硅基半导体芯片安装到III-N半导体芯片。硅基半导体芯片具有栅极接合焊盘、漏极接合焊盘、源极接合焊盘以及耦接到III-N半导体芯片的源极接合焊盘的表面。

根据其它实施例,安装到基于III-N的半导体芯片的芯片是二极管。

根据其它实施例,支撑件包括模制化合物(mold compound)。

图1是共源共栅配置中的半导体组件的电路示意6。半导体组件包括晶体管7和8,其中晶体管7具有栅极电极7G、源极电极7S和漏极电极7D,并且晶体管8具有栅极电极8G、源极电极8S、漏极电极8D和体端子8B。漏极电极7D电连接到源极电极8S并且源极电极7S电连接到栅极电极8G。漏极电极8D可以被耦接用于接收用于共源共栅半导体组件的工作电势的第一源,诸如例如,工作电势VDD,栅极电极7G用作用于共源共栅的半导体组件的输入端子,并且源极电极7S被耦接用于接收工作电势的第二源,诸如例如工作电势VSS。举例来说,工作电势VSS是地。应当注意,GaN晶体管8的衬底或体8B是浮置的,因此半导体组件可以被称为处于浮置配置或衬底浮置配置。

图2是共源共栅配置中的半导体组件的电路示意9。半导体组件包括晶体管7和8,其中晶体管7具有栅极电极7G、源极电极7S和漏极电极7D,并且晶体管8具有栅极电极8G、源极电极8S、漏极电极8D和体端子8B。漏极电极7D电连接到源极电极8S并且源极电极7S电连接到栅极电极8G。漏极电极8D可以被耦接用于接收用于共源共栅半导体组件的工作电势的第一源,诸如例如,工作电势VDD,栅极电极7G用作用于共源共栅的半导体组件的输入端子,并且源极电极7S被耦接用于接收工作电势的第二源,诸如例如工作电势VSS。晶体管8的衬底端子8B电连接到源极电极7S。因此,晶体管8的衬底耦接到与源极电极7相同的电势。源极电极7可以被耦接用于接收地电势或不同于地的电势。

图3是根据本实用新型实施例的半导体组件10的透视图并且图4是沿着图3的截面线4-4截取的半导体组件10的截面图。图3和图4被一起描述。图3和图4中示出的是包括器件接收区14和引线框引线16、18和20的引线框12,其中器件接收区14和引线框引线16彼此一体化地形成,即,器件接收区14和引线框引线16源自于一个导电材料,其中该导电材料的一部分用作器件接收区14并且该导电材料的另一部分用作引线框引线16。器件接收区14具有相对的表面15和17。根据一个实施例,该导电材料是铜并且导电材料的包括器件接收区14的该部分形成于一个平面中,并且导电材料的包括引线框引线16的该部分形成在不同于包括器件接收区14的平面的另一平面中。因此,器件接收区14和引线框引线16不共面。引线框引线16包括将引线框引线16连接到器件接收区14的连接器部分16A。引线框引线18和20与引线框引线16共面。应当注意,引线框12被示出和描述为单元件;然而,它可以是从引线框带(strip)单片化(singulate)而成的部分而且引线框12符合直插式封装轮廓(outline),诸如TO-220轮廓、TO-247轮廓、TO-264轮廓、TO-257轮廓等。

使用导电材料25将绝缘的金属衬底24接合到器件接收区14的一部分。导电材料25可以是焊料、导电环氧树脂等。虽然材料25已经被描述为导电材料,但是这不是本实用新型的限制。例如,材料25可以是电绝缘材料或导热材料。举例来说,绝缘的金属衬底24是直接接合的铜衬底,其包括具有主表面28A和28B的绝缘材料28,其中导电层34形成在主表面28A上并且导电层36形成在主表面28B上。导电层34具有用作绝缘的金属衬底24的表面的表面34A,并且导电层36具有用作绝缘的金属衬底24的相对表面的表面36A。根据一个实施例,绝缘的金属衬底24是直接接合的铜衬底,其中绝缘材料28是铝氮化物并且导电层34和36是铜。用于绝缘材料28的其它合适的材料包括铝土、氧化铍、陶瓷等并且用于导电层34和36的其它合适的材料包括铝、其它金属等。应当注意,将绝缘的金属衬底24接合到管芯接收区14的材料不限于是焊料。

虽然绝缘的金属衬底被描述为通过导电材料25接合到器件接收区14,但是这不是本实用新型的限制。可替代地,电绝缘材料的层可以被形成在引线框12的器件接收区14上。然后,导电材料的层可以被形成在绝缘材料的层上。举例来说,导电材料的层是铜。用于在诸如引线框之类的导电衬底上形成绝缘材料以及用于在绝缘材料上形成导电材料的技术对于本领域技术人员是已知的。

使用管芯附接材料42将半导体芯片40接合到绝缘的金属衬底24的表面36A。根据一个实施例,半导体芯片40是具有相对的主表面44和46的化合物半导体芯片,其中半导体芯片40包括场效应半导体器件,该场效应半导体器件具有在表面46上形成的漏极接触件50、在表面46的一部分上形成的源极接触件52和在表面46的其它部分上形成的栅极接触件54和55。根据其中诸如例如场效应晶体管之类的分立的半导体器件由半导体芯片40形成的实施例,半导体芯片40可以被称为半导体器件。应当注意,半导体器件40不限于是垂直场效应晶体管或场效应晶体管。例如,半导体器件40可以是绝缘栅双极型晶体管、双极型晶体管、结型场效应晶体管、二极管等。还应该注意,半导体芯片40的半导体材料可以包括III-N半导体材料(诸如例如氮化镓),或它可以包括III-V半导体材料、II-VI半导体材料等。

使用接合剂59将半导体芯片60接合到或安装在半导体芯片40上,该接合剂可以是导热且导电的材料。更特别地,使用接合剂59将半导体芯片60接合到源极接触件52。根据一个实施例,半导体芯片60是具有相对的主表面64和66的硅芯片,其中半导体芯片60包括具有在表面64上形成的漏极接触件70、在表面66的一部分上形成的源极接触件72和在表面66的另一部分上形成的栅极接触件74的垂直场效应半导体器件。根据其中诸如例如场效应晶体管之类的分立的半导体器件由半导体芯片60形成的实施例,半导体芯片60可以被称为半导体器件。漏极接触件70通过接合剂59接合到半导体器件40的源极接触件52。应当注意,半导体器件60不限于是垂直场效应晶体管或场效应晶体管。例如,半导体器件60可以是绝缘栅双极型晶体管、双极型晶体管、结型场效应晶体管、二极管等。

半导体器件40的漏极接触件50通过接合导线82电连接到管芯接收区14。半导体器件60的源极接触件72通过接合导线84电连接到引线框引线18并且通过接合导线86电连接到半导体器件40的栅极接触件54和55。半导体器件60的栅极接触件74通过接合导线88电连接到引线框引线20。栅极接触件54通过未示出的金属化系统电连接到栅极接触件55。接合导线可以被称为焊线(wirebond)。

如本领域技术人员已知的,绝缘的金属衬底24、半导体芯片40和60以及接合导线82、84、86和88以及引线框12的部分典型地被密封在诸如例如模制化合物之类的保护材料(未示出)中。应当注意,器件接收区14的表面17可以不被模制化合物覆盖或保护。

半导体组件10包括III-N共源共栅开关,其中III-N半导体材料的衬底电浮置并且接合焊盘不被形成在半导体器件40的有源区或有源区域上方。半导体组件10可以由图1的电路示意6示意性地表示。因此,半导体组件10的III-N半导体器件40的衬底材料浮置,例如,III-N晶体管8的端子8B断开或浮置。应当明白,半导体组件10可以被配置用于封装在符合直插式封装轮廓的封装体(诸如,例如,TO-220封装体、TO-247封装体、TO-264封装体、TO-257封装体等)中。

图5是根据本实用新型另一实施例的半导体组件10A的透视图。图5中示出的是如参考图3和4所描述的其上安装有半导体芯片40和60的引线框12。图5的半导体组件10A与图3和图4的半导体组件10的不同之处在于,接合导线86直接电耦接到引线框引线18而不是半导体芯片60的源极接触件72。因此,栅极接触件55通过接合导线86直接连接到源极引线18,而不是通过源极接触件72连接到源极引线18。应当注意,栅极接触件54和55中的一个或两者可以通过接合导线而不是通过源极接触件72直接连接到源极引线18。

如本领域技术人员已知的,绝缘的金属衬底24、半导体芯片40和60以及接合导线82、84、86和88以及引线框12的部分典型地被密封在诸如例如模制化合物之类的保护材料(未示出)中。应当注意,器件接收区14的表面17可以不被模制化合物覆盖或保护。

像半导体组件10一样,半导体组件10A包括III-N共源共栅开关,其中III-N半导体材料的衬底电浮置并且接合焊盘不被形成在半导体器件40的有源区或有源区域上方。半导体组件10A可以由图1的电路示意7示意性地表示。因此,半导体组件10的III-N半导体器件40的衬底材料浮置,例如,III-N晶体管8的端子8B断开或浮置。应当明白,半导体组件10可以被配置用于封装在符合直插式封装轮廓的封装体(诸如,例如,TO-220封装体、TO-247封装体、TO-264封装体、TO-257封装体等)中。

图6是根据本实用新型实施例的半导体组件10B的透视图并且图7是沿着图6的截面线7-7截取的半导体组件10B的截面图。应当注意,图6和图7被一起描述。图6和图7中示出的是包括器件接收区14和引线框引线16、18和20的引线框12,其中器件接收区14和引线框引线16彼此一体化地形成,即,器件接收区14和引线框引线16源自于一个导电材料,其中该导电材料的一部分用作器件接收区14并且该导电材料的另一部分用作引线框引线16。器件接收区14具有相对的表面15和17。根据一个实施例,该导电材料是铜并且导电材料的包括器件接收区14的该部分形成于一个平面中,并且导电材料的包括引线框引线16的该部分形成在不同于包括器件接收区14的平面的另一平面中。因此,器件接收区14和引线框引线16不共面。引线框引线16包括将引线框引线16连接到器件接收区14的连接器部分16A。引线框引线18和20与引线框引线16共面。应当注意,引线框12被示出和描述为单元件;然而,它可以是从引线框带单片化而成的部分而且引线框12符合直插式封装轮廓,诸如TO-220轮廓、TO-247轮廓、TO-264轮廓、TO-257轮廓等。

使用导电的管芯附接材料42将半导体芯片40接合到管芯接收区14的一部分。根据一个实施例,半导体芯片40是具有相对的主表面44和46的化合物半导体芯片,其中半导体芯片40包括具有在表面46上形成的漏极接触件50、在表面46的一部分上形成的源极接触件52和在表面46的其它部分上形成的栅极接触件54和55的场效应半导体器件。根据其中诸如例如场效应晶体管之类的分立的半导体器件由半导体芯片40形成的实施例,半导体芯片40可以被称为半导体器件。应当注意,半导体器件40不限于是垂直场效应晶体管或场效应晶体管。例如,半导体器件40可以是绝缘栅双极型晶体管、双极型晶体管、结型场效应晶体管、二极管等。还应该注意,半导体芯片40的半导体材料可以包括III-N半导体材料(诸如例如氮化镓),或它可以包括III-V半导体材料、II-VI半导体材料等。

使用接合剂59将半导体芯片60接合到或安装在半导体芯片40上,该接合剂可以是导热且导电的材料。更特别地,使用接合剂59将半导体芯片60接合到源极接触件52。根据一个实施例,半导体芯片60是具有相对的主表面64和66的硅芯片,其中半导体芯片60包括具有在表面64上形成的漏极接触件70、在表面66的一部分上形成的源极接触件72和在表面66的另一部分上形成的栅极接触件74的垂直场效应半导体器件。根据其中诸如例如场效应晶体管之类的分立的半导体器件由半导体芯片60形成的实施例,半导体芯片60可以被称为半导体器件。漏极接触件70通过接合剂59接合到半导体器件40的源极接触件52。应当注意,半导体器件60不限于是垂直场效应晶体管或场效应晶体管。例如,半导体器件60可以是绝缘栅双极型晶体管、双极型晶体管、结型场效应晶体管、二极管等。

半导体器件40的漏极接触件50通过接合导线126电连接到引线框引线18。半导体器件60的源极接触件72通过接合导线122电连接到管芯接收区14。半导体器件40的栅极接触件54和55也通过接合导线124连接到器件接收区14。半导体器件60的栅极接触件74通过接合导线88电连接到引线框引线20。栅极接触件54通过未示出的金属化系统电连接到栅极接触件55。接合导线可以被称为焊线。

如本领域技术人员已知的,半导体芯片40和60以及接合导线122、124、126和88以及引线框12的部分典型地被密封在诸如例如模制化合物之类的保护材料(未示出)中。应当注意,器件接收区14的表面17可以不被模制化合物覆盖或保护。

半导体组件10B包括III-N共源共栅开关,其中III-N半导体材料的衬底电连接到硅半导体芯片60的源极接触件72,即到源极,并且电连接到III-N半导体芯片40的栅极接合焊盘(54和55)。III-N半导体芯片40的接合焊盘不形成在半导体芯片40的有源区或有源区域上方。半导体组件10B可以由图2的电路示意9示意性地表示。因此,半导体组件10B的III-N半导体器件40的衬底材料连接到半导体组件10B的硅晶体管60的源极。应当注意,引线框12被示出和描述为单元件;然而,它可以是从引线框带单片化而成的部分而且引线框12符合直插式封装轮廓,诸如,例如,TO-220轮廓、TO-247轮廓、TO-264轮廓、TO-257轮廓等。

图8是根据本实用新型另一实施例的半导体组件100的透视图。除了接合导线82已经被导电的夹子(clip)102代替并且接合导线84已经被导电的夹子104代替之外,半导体组件100类似于半导体组件10。应当注意,已经参考图3和图4描述了将半导体芯片40安装到绝缘的金属衬底24以及将绝缘的金属衬底24安装到器件接收区14。因此,半导体组件100包括III-N共源共栅开关,其中III-N半导体材料的衬底电浮置并且接合焊盘不被形成在半导体器件40的有源区或有源区域上方。

虽然绝缘的金属衬底被描述为通过导电材料25接合到器件接收区14,但是这不是本实用新型的限制。可替代地,电绝缘材料的层可以被形成在引线框12的器件接收区14上。然后,导电材料的层可以被形成在绝缘材料的层上。举例来说,导电材料的层是铜。用于在诸如引线框之类的导电衬底上形成绝缘材料以及用于在绝缘材料上形成导电材料的技术对于本领域技术人员是已知的。

半导体组件100可以由图1的电路示意6示意性地表示。因此,半导体组件100的III-N半导体器件40的衬底材料浮置,例如,III-N晶体管8的端子8B断开或浮置。应当明白,半导体组件100可以被配置用于封装在符合直插式封装轮廓的封装体(诸如,例如,TO-220封装体、TO-247封装体、TO-264封装体、TO-257封装体等)中。

图9是根据本实用新型另一实施例的半导体组件120的透视图。除了半导体芯片40被旋转180度并且随后接合到或安装在绝缘的金属衬底24上之外,半导体组件120类似于半导体组件10。另外,引线接合配置不同于半导体组件10。像半导体组件10一样,硅半导体器件60的栅极电极74通过接合导线88电连接到引线框引线20;然而,硅半导体器件60的源极电极72通过接合导线122电连接到器件接收区14,硅半导体器件40的栅极电极54和55通过接合导线124电连接到器件接收区14,并且漏极电极50通过接合导线126电连接到引线框引线18。因此,半导体组件120包括III-N共源共栅开关,其中III-N半导体材料的衬底电浮置并且接合焊盘不被形成在半导体器件40的有源区或有源区域上方。

虽然绝缘的金属衬底被描述为通过导电材料25接合到器件接收区14,但是这不是本实用新型的限制。可替代地,电绝缘材料的层可以被形成在引线框12的器件接收区14上。然后,导电材料的层可以被形成在绝缘材料的层上。举例来说,导电材料的层是铜。用于在诸如引线框之类的导电衬底上形成绝缘材料以及用于在绝缘材料上形成导电材料的技术对于本领域技术人员是已知的。

半导体组件120可以由图1的电路示意6示意性地表示。因此,半导体组件120的III-N半导体器件40的衬底材料浮置,例如,III-N晶体管8的端子8B断开或浮置。应当明白,半导体组件120可以被配置用于封装在符合直插式封装轮廓的封装体(诸如,例如,TO-220封装体、TO-247封装体、TO-264封装体、TO-257封装体等)中。

仍然参考图9,在可替代的实施例中,在半导体芯片40直接接合到器件接收区14的情况下,绝缘的金属衬底24可以不存在。其余电路连接不变。在这个可替代实施例中,电路配置类似于图2中示出的电路示意7。

图10是根据本实用新型另一实施例的半导体组件130的透视图。除了接合导线122已经被导电的夹子132代替并且接合导线126已经被导电的夹子134代替之外,半导体组件130类似于半导体组件120。应当注意,已经参考图3和图4描述了将半导体芯片40安装到绝缘的金属衬底24以及将半导体芯片60安装到半导体芯片40。因此,半导体组件130包括III-N共源共栅开关,其中III-N半导体材料的衬底电浮置并且接合焊盘不被形成在半导体器件40的有源区或有源区域上方。

半导体组件130可以由图1的电路示意6示意性地表示。因此,半导体组件130的III-N半导体器件40的衬底材料浮置,例如,III-N晶体管8的端子8B断开或浮置。应当明白,半导体组件130可以被配置用于封装在符合直插式封装轮廓的封装体(诸如,例如,TO-220封装体、TO-247封装体、TO-264封装体、TO-257封装体等)中。

图11是根据本实用新型另一实施例的半导体组件140的透视图。除了半导体组件140包括将绝缘的金属衬底24的表面36A连接到引线框引线18的接合导线142之外,半导体组件140类似于半导体组件10。接合导线142通过导电材料42将半导体器件60的源极电极72(从而其源极)电连接到半导体器件40的半导体材料的体区。因此,半导体组件140包括III-N共源共栅开关,其中III-N半导体材料的衬底连接到半导体器件60的源极电极72并且接合焊盘不被形成在半导体器件40的有源区或有源区域上方。

半导体组件140可以由图2的电路示意9示意性地表示。因此,半导体组件140的III-N半导体器件40的衬底材料(例如,III-N晶体管8的端子8B)电连接到半导体芯片60的源极接合焊盘72,例如,硅晶体管7的源极7S。根据一个实施例,源极7S可以连接到地电势。应当明白,半导体组件140可以被配置用于封装在符合直插式封装轮廓的封装体(诸如,例如,TO-220封装体、TO-247封装体、TO-264封装体、TO-257封装体等)中。

图12是根据本实用新型另一实施例的半导体组件150的透视图。除了半导体器件40的漏极接触件50已经被III-N半导体器件40的有源区的一部分上方的漏极接触件50A代替,源极接触件52已经被III-N半导体器件40的有源区的另一部分上方的源极接触件52A代替,并且栅极接触件54和55已经被III-N半导体器件40的有源区的另一部分上方的栅极接触件54A代替之外,半导体组件150类似于半导体组件10。参考字符A已经被附加到附图标记40、50、52和54以便将有源区上方有接合焊盘的器件(即,III-N半导体器件40A)与有源区上方没有接合焊盘的III-N半导体器件(例如,III-N半导体器件40)区分开。因此,半导体组件150包括III-N共源共栅开关,其中III-N半导体材料的衬底浮置并且接合焊盘被形成在半导体器件40A的有源区或有源区域上方。

半导体组件150可以由图1的电路示意6示意性地表示。因此,半导体组件150的III-N半导体器件40A的衬底材料浮置,例如,III-N晶体管8的端子8B断开或浮置。应当明白,半导体组件150可以被配置用于封装在符合直插式封装轮廓的封装体(诸如,例如,TO-220封装体、TO-247封装体、TO-264封装体、TO-257封装体等)中。

图13是根据本实用新型另一实施例的半导体组件160的透视图。除了接合导线82已经被导电的夹子162代替并且接合导线84已经被导电的夹子164代替之外,半导体组件160类似于半导体组件150。应当注意,已经参考图3和图4描述了将半导体芯片40安装到绝缘的金属衬底24以及将半导体芯片60安装到半导体芯片40。因此,半导体组件160包括III-N共源共栅开关,其中III-N半导体材料的衬底电浮置并且接合焊盘不被形成在半导体器件40的有源区上方。

半导体组件160可以由图1的电路示意6示意性地表示。因此,半导体组件160的III-N半导体器件40A的衬底材料浮置,例如,III-N晶体管8的端子8B断开或浮置。应当明白,半导体组件160可以被配置用于封装在符合直插式封装轮廓的封装体(诸如,例如,TO-220封装体、TO-247封装体、TO-264封装体、TO-257封装体等)中。

图14是根据本实用新型另一实施例的半导体组件170的透视图。除了半导体组件170包括将绝缘的金属衬底24的表面36A连接到引线框引线18的接合导线172之外,半导体组件170类似于半导体组件150。接合导线172将半导体器件60的源极电极72(从而其源极)电连接到III-N半导体器件40的半导体材料的体区。因此,半导体组件170包括III-N共源共栅开关,其中III-N半导体材料的衬底连接到半导体器件40的源极电极并且接合焊盘被形成在半导体器件40的有源区上方。根据实施例,半导体器件60的源极电极72可以连接到期望的电势。举例来说,半导体芯片60的源极电极72连接到地。

半导体组件170可以由图2的电路示意9示意性地表示。因此,半导体组件170的III-N半导体器件40A的衬底材料(例如,III-N晶体管8的端子8B)电连接到硅晶体管7的源极7S。根据一个实施例,源极7S可以连接到地电势。应当明白,半导体组件160可以被配置用于封装在符合直插式封装轮廓的封装体(诸如,例如,TO-220封装体、TO-247封装体、TO-264封装体、TO-257封装体等)中。

图15是共源共栅配置中的半导体组件的电路示意176。半导体组件包括二极管177和晶体管8,其中二极管177具有阳极177A和阴极177C,并且晶体管8具有栅极电极8G、源极电极8S、漏极电极8D以及体区端子8B。源极电极8S电连接到阴极177C并且阳极177A电连接到栅极电极8G。漏极电极8D可以被耦接用于接收用于共源共栅半导体组件的工作电势的第一源,诸如例如,工作电势VDD,以及阳极177A被耦接用于接收工作电势的第二源,诸如例如工作电势VSS。举例来说,工作电势VSS是地。应当注意,III-N晶体管8的衬底或体区8B是浮置的,因此半导体组件可以被称为处于浮置配置或衬底浮置配置。

图16是共源共栅配置中的半导体组件的电路示意178。半导体组件包括二极管177和晶体管8,其中二极管177具有阳极177A和阴极177C,并且晶体管8具有栅极电极8G、源极电极8S、漏极电极8D以及体区端子8B。源极电极8S电连接到阴极177C并且阳极177A电连接到栅极电极8G。漏极电极8D可以被耦接用于接收用于共源共栅半导体组件的工作电势的第一源,诸如,例如工作电势VDD,以及阳极177A被耦接用于接收用于共源共栅的半导体组件的工作电势的第二源,诸如例如工作电势VSS。举例来说,工作电势VSS是地。III-N晶体管8的体区端子8B连接到二极管177的阳极177A。因此,III-N晶体管8的衬底耦接到与阳极177A相同的电势。阳极177A可以被耦接用于接收地电势。

图17是根据本实用新型另一实施例的半导体组件180的透视图。图18是沿着图17的截面线18-18截取的半导体组件180的截面图。半导体组件180类似于半导体组件10,其中半导体芯片40通过管芯附接材料42安装到绝缘的金属衬底24,绝缘的金属衬底24接合到引线框184的器件接收区182,该管芯附接材料已经参考图3和图4被描述。引线框184包括器件接收区182、以及引线框引线186和188,其中器件接收区182和引线框引线186彼此一体化地形成,即,器件接收区182和引线框引线186源自于一个导电材料,其中该导电材料的一部分用作器件接收区182并且该导电材料的另一部分用作引线框引线186。器件接收区182具有相对的表面190和192。根据一个实施例,该导电材料是铜。引线框引线186包括将引线框引线186连接到器件接收区182的连接器部分186A。引线框引线188与引线框引线186电隔离。应当注意,引线框184被示出和描述为单元件;然而,它可以是从引线框带单片化而成的部分。引线框184符合直插式封装轮廓,诸如TO-220轮廓、TO-247轮廓、TO-264轮廓、TO-257轮廓等。

虽然绝缘的金属衬底被描述为通过导电材料25接合到器件接收区182,但是这不是本实用新型的限制。可替代地,电绝缘材料的层可以被形成在引线框184的器件接收区182上。然后,导电材料的层可以被形成在绝缘材料的层上。举例来说,导电材料的层是铜。用于在诸如引线框之类的导电衬底上形成绝缘材料以及用于在绝缘材料上形成导电材料的技术对于本领域技术人员是已知的。

具有相对表面196和197的半导体芯片194被接合到III-N半导体器件40的源极电极52。根据其中诸如例如二极管之类的分立的半导体器件由半导体芯片194形成的实施例,半导体芯片194可以被称为半导体器件。举例来说,半导体器件194是具有形成在表面196上的阴极电极198和形成在表面197上的阳极电极199的二极管。使用接合剂59(诸如焊料、导电环氧树脂、导电的管芯附接材料等)将半导体芯片194接合到III-N半导体器件40的源极接触件52。二极管194的阳极199通过接合导线86电连接到III-N半导体器件40的栅极电极54和55并且通过接合导线84电连接到引线框引线188。III-N半导体器件40的漏极电极50通过接合导线94电连接到引线框184的器件接收区182。因此,半导体组件180包括III-N共源共栅整流器,其中III-N半导体材料的衬底浮置并且接合焊盘不被形成在III-N半导体器件40的有源区上方。

半导体组件180可以由图15的电路示意176示意性地表示。因此,半导体组件180的III-N半导体器件40的衬底材料浮置,例如,III-N晶体管8的端子8B断开或浮置。应当明白,半导体组件180可以被配置用于封装在符合直插式封装轮廓的封装体(诸如,例如,TO-220封装体、TO-247封装体、TO-264封装体、TO-257封装体等)中。

图19是根据本实用新型另一实施例的半导体组件200的透视图。除了接合导线94已经被导电的夹子202代替并且接合导线84已经被导电的夹子204代替之外,半导体组件200类似于半导体组件180。半导体组件200包括III-N共源共栅开关,其中III-N半导体材料的衬底电浮置并且接合焊盘不被形成在半导体器件40的有源区或有源区域上方。

半导体组件200可以由图15的电路示意176示意性地表示。因此,半导体组件200的III-N半导体器件40的衬底材料浮置,例如,III-N晶体管8的端子8B断开或浮置。应当明白,半导体组件180可以被配置用于封装在符合直插式封装轮廓的封装体(诸如,例如,TO-220封装体、TO-247封装体、TO-264封装体、TO-257封装体等)中。

图20是根据本实用新型另一实施例的半导体组件210的透视图。除了半导体组件210包括将绝缘的金属衬底24的表面36A连接到引线框引线188的接合导线212之外,半导体组件210类似于半导体组件180。接合导线84和212将阳极199电连接到III-N半导体器件40的半导体材料的体区。因此,半导体组件210包括III-N共源共栅开关,其中III-N半导体器件40的III-N半导体材料的衬底短路到二极管194的阳极,并且接合焊盘不被形成在半导体器件40的有源区上方。

半导体组件210可以由图16的电路示意178示意性地表示。因此,半导体组件180的III-N半导体器件40的衬底材料电连接到二极管194的阳极199,例如,III-N晶体管8的端子8B连接到二极管177的阳极177A。应当明白,半导体组件180可以被配置用于封装在符合直插式封装轮廓的封装体(诸如,例如,TO-220封装体、TO-247封装体、TO-264封装体、TO-257封装体等)中。

图21是根据本实用新型另一实施例的半导体组件220的透视图。除了半导体器件的漏极接触件在III-N半导体器件的有源区的一部分上方,源极接触件在III-N半导体器件的有源区的另一部分上方,并且漏极接触件在III-N半导体器件的有源区的又一个部分上方之外,半导体组件220类似于半导体组件180。因此,参考字符B已经被附加到附图标记40、50、52和54以便将图1-20的半导体器件的配置与图21的配置区分开。更特别地,半导体器件40B的漏极接触件50B在III-N半导体器件40B的有源区的一部分上方,源极接触件52B在III-N半导体器件40B的有源区的另一部分上方,并且栅极接触件54和55已经被在III-N半导体器件40B的有源区的另一部分上方的栅极接触件54B代替。因此,半导体组件220包括III-N共源共栅开关,其中III-N半导体材料的衬底浮置并且接合焊盘被形成在半导体器件40B的有源区上方。

半导体组件220可以由图15的电路示意176示意性地表示。因此,半导体组件220的III-N半导体器件40B的衬底材料浮置,例如,III-N晶体管8的端子8B断开或浮置。应当明白,半导体组件220可以被配置用于封装在符合直插式封装轮廓的封装体(诸如,例如,TO-220封装体、TO-247封装体、TO-264封装体、TO-257封装体等)中。

图22是根据本实用新型另一实施例的半导体组件240的透视图。除了接合导线94已经被导电的夹子202代替并且接合导线84已经被导电的夹子204代替之外,半导体组件240类似于半导体组件220。应当注意,已经参考图3和图4描述了将半导体芯片安装到绝缘的金属衬底24以及将半导体芯片安装到另一半导体芯片。半导体组件240包括III-N共源共栅开关,其中III-N半导体材料的衬底电浮置并且接合焊盘被形成在半导体器件40B的有源区上方。

半导体组件240可以由图15的电路示意176示意性地表示。因此,半导体组件240的III-N半导体器件40B的衬底材料浮置,例如,III-N晶体管8的端子8B断开或浮置。应当明白,半导体组件240可以被配置用于封装在符合直插式封装轮廓的封装体(诸如,例如,TO-220封装体、TO-247封装体、TO-264封装体、TO-257封装体等)中。

图23是根据本实用新型另一实施例的半导体组件250的透视图。除了半导体组件250包括将绝缘的金属衬底24的表面38A连接到引线框引线188的接合导线252之外,半导体组件250类似于半导体组件220。绝缘的金属衬底24的表面38A通过接合导线252、接合导线84和引线框引线188电连接到阳极199,即,阳极199通过接合导线252以及接合导线84以及引线框引线188电连接到III-N半导体器件40B的半导体材料。应当注意,阳极199可以被称为阳极接触件199。因此,半导体组件250包括III-N共源共栅开关,其中III-N半导体材料的衬底连接到二极管194的阳极199,并且接合焊盘被形成在半导体器件40B的有源区上方。

半导体组件250可以由图16的电路示意178示意性地表示。因此,半导体组件180的III-N半导体器件40的衬底材料电连接到二极管194的阳极,例如,III-N晶体管8的端子8B连接到二极管177的阳极177A。应当明白,半导体组件250可以被配置用于封装在符合直插式封装轮廓的封装体(诸如,例如,TO-220封装体、TO-247封装体、TO-264封装体、TO-257封装体等)中。

图24是根据本实用新型实施例的半导体组件195的透视图并且图25是沿着图24的截面线25-25截取的半导体组件195的截面图。应当注意,图24和图25被一起描述。图24和图25中示出的是包括器件接收区182和引线框引线186、188的引线框184,其中器件接收区182和引线框引线186彼此一体化地形成,即,器件接收区182和引线框引线186源自于一个导电材料,其中该导电材料的一部分用作器件接收区182并且该导电材料的另一部分用作引线框引线186。器件接收区182具有相对的表面190和192。根据一个实施例,该导电材料是铜并且导电材料的包括器件接收区182的该部分形成于一个平面中,并且导电材料的包括引线框引线186的该部分形成在不同于包括器件接收区182的平面的另一平面中。因此,器件接收区182和引线框引线186不共面。引线框引线186包括将引线框引线186连接到器件接收区182的连接器部分186A。引线框引线186和188共面。应当注意,引线框184被示出和描述为单元件;然而,它可以是从引线框带单片化而成的部分而且引线框184符合直插式封装轮廓,诸如TO-220轮廓、TO-247轮廓、TO-264轮廓、TO-257轮廓等。

使用电绝缘的管芯附接材料42A将半导体芯片40接合到管芯接收区182的一部分。根据一个实施例,半导体芯片40是具有相对的主表面44和46的化合物半导体芯片,其中半导体芯片40包括具有在表面46上形成的漏极接触件50、在表面46的一部分上形成的源极接触件52和在表面46的其它部分上形成的栅极接触件54和55的场效应半导体器件。根据其中诸如例如场效应晶体管之类的分立的半导体器件由半导体芯片40形成的实施例,半导体芯片40可以被称为半导体器件。应当注意,半导体器件40不限于是垂直场效应晶体管或场效应晶体管。例如,半导体器件40可以是绝缘栅双极型晶体管、双极型晶体管、结型场效应晶体管、二极管等。还应该注意,半导体芯片40的半导体材料可以包括III-N半导体材料(诸如例如氮化镓),或它可以包括III-V半导体材料、II-VI半导体材料等。

具有相对的表面196和197的半导体芯片194被接合到III-N半导体器件40的源极电极52。根据其中诸如例如二极管之类的分立的半导体器件由半导体芯片194形成的实施例,半导体芯片194可以被称为半导体器件。举例来说,半导体器件194是具有形成在表面196上的阴极电极198和形成在表面197上的阳极电极199的二极管。使用接合剂59(诸如焊料、导电环氧树脂、导电的管芯附接材料等)将半导体芯片194接合到III-N半导体器件40的源极接触件52。二极管194的阳极199通过接合导线86电连接到III-N半导体器件40的栅极电极54和55并且通过接合导线84电连接到引线框引线188。III-N半导体器件40的漏极电极50通过接合导线94电连接到引线框184的器件接收区182。因此,半导体组件195包括III-N共源共栅整流器,其中III-N半导体材料的衬底浮置并且接合焊盘不被形成在III-N半导体器件40的有源区上方。

半导体组件195可以由图15的电路示意176示意性地表示。因此,半导体组件195的III-N半导体器件40的衬底材料浮置,例如,III-N晶体管8的端子8B断开或浮置。应当明白,半导体组件195可以被配置用于封装在符合直插式封装轮廓的封装体(诸如,例如,TO-220封装体、TO-247封装体、TO-264封装体、TO-257封装体等)中。

图26是根据本实用新型实施例的半导体组件195B的透视图。半导体组件195B类似于图24和图25的半导体组件195,增加了接合导线193,该接合导线193将III-N半导体芯片40的衬底电耦接到半导体芯片194(即,二极管194)的阳极199以及到III-N半导体芯片40的栅极。

半导体组件195B可以由图16的电路示意178示意性地表示。因此,半导体组件195B的III-N半导体器件40的衬底材料浮置,例如,III-N晶体管8的端子8B断开或浮置。应当明白,半导体组件195B可以被配置用于封装在符合直插式封装轮廓的封装体(诸如,例如,TO-220封装体、TO-247封装体、TO-264封装体、TO-257封装体等)中。

图27是根据本实用新型另一实施例的半导体组件260的透视图并且图28是沿着图27的截面线28-28截取的半导体组件260的截面图。应当注意,图27和图28被一起描述。图27和图28中示出的是模制的器件支撑结构262,其具有顶表面264和底表面266、以及在顶表面264和底表面266的部分之间的模制化合物267。模制的支撑结构262包括器件接收区270、在顶表面264处的接合焊盘272以及在底表面266处的接触件274。接合焊盘272可以被称为互连结构。引线框引线276、278和280从模制的器件支撑结构262的侧面或边缘突出。模制的器件支撑结构262可以通过将导电带放置在具有模空腔的模子中并且将模制化合物注入模空腔中来形成。导电带可以包括用作器件接收区的焊盘或板282、包括通过导体286与接触件274一体化地形成的接合焊盘272的互连结构284、以及多个引线框引线,诸如例如,引线框引线276、278和280。在将模制化合物注入空腔中之后,导电带可以被单片化成多个模制的支撑结构262。用于导电带的合适的材料包括铜、铝等。如提到的,模制的支撑结构262被示出和描述为单元件;然而,它可以是从模制化合物中密封的引线框带单片化而成的部分。

使用管芯附接材料25将绝缘的金属衬底24接合到器件接收区282的表面282A。已经参考图3和图4描述了绝缘的金属衬底24和管芯附接材料25。使用管芯附接材料42将半导体芯片40接合到绝缘的金属衬底24的表面36A,其中管芯附接材料42是导电且导热的管芯附接材料。用于管芯附接材料42的合适的材料可以与管芯附接材料25的材料相同。根据一个实施例,半导体芯片40是具有相对的主表面44和46的化合物半导体芯片,其中半导体芯片40包括具有在表面46的一部分上形成的漏极接触件50、在表面46的另一部分上形成的源极接触件52和在表面46的其它部分上形成的栅极接触件54和55的场效应半导体器件。根据其中诸如例如场效应晶体管之类的分立的半导体器件由半导体芯片40形成的实施例,半导体芯片40可以被称为半导体器件。应当注意,半导体器件40不限于是场效应晶体管。例如,半导体器件40可以是绝缘栅双极型晶体管、双极型晶体管、结型场效应晶体管、二极管等。

虽然绝缘的金属衬底被描述为接合到器件接收区282A,但是这不是本实用新型的限制。可替代地,电绝缘材料的层可以被形成在引线框282的器件接收区282A上。然后,导电材料的层可以被形成在绝缘材料的层上。举例来说,导电材料的层是铜。用于在诸如引线框之类的导电衬底上形成绝缘材料以及用于在绝缘材料上形成导电材料的技术对于本领域技术人员是已知的。

使用接合剂59将半导体芯片60接合到或安装在半导体芯片40上,该接合剂可以是导热且导电的材料。更特别地,将半导体芯片60接合到源极接触件52。根据一个实施例,半导体芯片60是具有相对的主表面64和66的硅芯片,其中半导体芯片60包括具有在表面64上形成的漏极接触件70、在表面66的一部分上形成的源极接触件72和在表面66的另一部分上形成的栅极接触件74的垂直场效应半导体器件。漏极接触件70通过管芯附接材料59接合到半导体器件40的源极接触件52。应当注意,半导体器件60不限于是垂直场效应晶体管或场效应晶体管。例如,半导体器件60可以是绝缘栅双极型晶体管、双极型晶体管、结型场效应晶体管、二极管等。根据其中诸如例如场效应晶体管之类的分立的半导体器件由半导体芯片60形成的实施例,半导体芯片60可以被称为半导体器件。

半导体器件40的漏极接合焊盘50通过接合导线289电连接到接合焊盘272。半导体器件60的源极接合焊盘72通过接合导线290电连接到引线框引线280并且通过接合导线291电连接到引线框引线278。半导体器件60的栅极接合焊盘74通过接合导线292电连接到引线框引线276。栅极接合焊盘54通过接合导线293电连接到源极接合焊盘72并且栅极接合焊盘55通过接合导线294电连接到源极接合焊盘72。栅极接合焊盘54通过未示出的金属化系统电连接到栅极接合焊盘55。接合导线可以被称为焊线。

如本领域技术人员已知的,绝缘的金属衬底24、半导体芯片40和60、以及接合导线289、290、291、292、293和294、以及引线框262的部分被密封在诸如例如模制化合物之类的保护材料中。应当注意,接触件274的一部分可以不被模制化合物覆盖或保护。

因此,半导体组件260包括III-N共源共栅开关,其中III-N半导体器件的半导体材料电浮置并且接合焊盘不被形成在半导体器件40的有源区上方。半导体组件260可以由图1的电路示意6示意性地表示。因此,半导体组件260的III-N半导体器件40的衬底材料浮置,例如,III-N晶体管8的端子8B断开或浮置。应当明白,半导体组件260可以被配置用于封装在符合直插式封装轮廓的封装体(诸如,例如,TO-220封装体、TO-247封装体、TO-264封装体、TO-257封装体等)中。

图28是根据本实用新型另一实施例的半导体组件300的透视图。除了接合导线290已经被导电的夹子302代替并且接合导线289已经被导电的夹子304代替之外,半导体组件300类似于半导体组件260。因此,半导体组件300包括III-N共源共栅开关,其中III-N半导体材料的衬底电浮置并且接合焊盘被形成在半导体器件40的有源区上方。

图30是根据本实用新型另一实施例的半导体组件310的透视图。除了半导体组件310包括将焊盘282的表面282A连接到引线框引线280的接合导线312之外,半导体组件310类似于半导体组件300。接合导线312将半导体器件60的源极接触件72电连接到可以被设为地的焊盘282。因此,半导体组件310包括III-N共源共栅开关,其中III-N半导体材料的衬底连接到接地的硅半导体器件60的源极并且接合焊盘不被形成在半导体器件40的有源区上方。

半导体组件310可以由图2的电路示意9示意性地表示。因此,半导体组件310的III-N半导体器件40的衬底材料电连接到硅半导体器件60的源极,例如,III-N晶体管8的端子8B电连接到硅晶体管7的源极7S。根据一个实施例,源极7S可以连接到电势,诸如例如,地电势。应当明白,半导体组件160可以被配置用于封装在符合直插式封装轮廓的封装体(诸如,例如,TO-220封装体、TO-247封装体、TO-264封装体、TO-257封装体等)中。

图31是根据本实用新型另一实施例的半导体组件320的透视图。图32是沿着图31的截面线32-32截取的半导体组件320的截面图。除了半导体器件40的漏极接触件50已经被在III-N半导体器件40B的有源区的一部分上方的漏极接触件50B代替并且源极接触件52已经被在III-N半导体器件40的有源区的另一部分上方的源极接触件52B代替之外,半导体组件320类似于半导体组件260。参考字符B已经被附加到附图标记40、50和52以便将半导体组件260和320的半导体器件的配置区分开。更特别地,半导体器件40B的漏极接触件50B在III-N半导体器件40B的有源区的一部分上方,源极接触件52B在III-N半导体器件40B的有源区的另一部分上方。因此,半导体组件320包括III-N共源共栅开关,其中III-N半导体材料的衬底浮置并且接合焊盘被形成在半导体器件40B的有源区上方。

半导体组件320可以由图1的电路示意6示意性地表示。因此,半导体组件320的III-N半导体器件40的衬底材料浮置,例如,III-N晶体管8的端子8B断开或浮置。应当明白,半导体组件320可以被配置用于封装在符合直插式封装轮廓的封装体(诸如,例如,TO-220封装体、TO-247封装体、TO-264封装体、TO-257封装体等)中。

图33是根据本实用新型另一实施例的半导体组件340的透视图。除了接合导线289已经被导电的夹子342代替并且接合导线290已经被导电的夹子344代替之外,半导体组件340类似于半导体组件320。因此,半导体组件340包括III-N共源共栅开关,其中III-N半导体材料的衬底电浮置并且接合焊盘被形成在半导体器件40B的有源区上方。

半导体组件340可以由图15的电路示意176示意性地表示。因此,半导体组件340的III-N半导体器件40的衬底材料浮置,例如,III-N晶体管8的端子8B断开或浮置。应当明白,半导体组件320可以被配置用于封装在符合直插式封装轮廓的封装体(诸如,例如,TO-220封装体、TO-247封装体、TO-264封装体、TO-257封装体等)中。

图34是根据本实用新型另一实施例的半导体组件350的透视图。除了半导体组件350包括将焊盘282的表面282A连接到引线框引线280的接合导线352之外,半导体组件350类似于半导体组件340。接合导线352将焊盘282电连接到引线框引线280,并且因此电连接到半导体器件60的源极接触件72。因此,半导体组件350包括III-N共源共栅开关,其中III-N半导体材料的衬底接地并且接合焊盘被形成在半导体器件40B的有源区上方。

因此,半导体组件350包括III-N共源共栅开关,其中III-N半导体材料的衬底是硅晶体管60的源极72并且接合焊盘被形成在半导体器件40B的有源区上方。

半导体组件350可以由图2的电路示意9示意性地表示。因此,半导体组件350的III-N半导体器件40B的衬底材料电连接到硅半导体器件60的源极,例如,III-N晶体管8的端子8B电连接到硅晶体管7的源极7S。根据一个实施例,源极7S可以连接到地电势。应当明白,半导体组件160可以被配置用于封装在符合直插式封装轮廓的封装体(诸如,例如,TO-220封装体、TO-247封装体、TO-264封装体、TO-257封装体等)中。

虽然在这里已经公开了某些优选实施例和方法,但是从上述公开内容中本领域技术人员将明白在不脱离本实用新型精神和范围的情况下可以进行这种实施例和方法的变化和修改。本实用新型应当意图仅被限制到所附权利要求以及可适用法律的规章和原则所要求的程度。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1