本公开的实施方式大体涉及一种用于处理半导体基板的设备。更具体地,本公开的实施方式涉及一种用于等离子体腔室中的静电卡盘。
背景技术:
:等离子体增强工艺、诸如等离子体增强化学气相沉积(PECVD)工艺、高密度等离子体化学气相沉积(HDPCVD)工艺、等离子体浸没离子注入工艺(P3I)和等离子体蚀刻工艺已在半导体处理中变得必不可少。等离子体在半导体装置的制造中提供许多优点。例如,由于降低的处理温度,使用等离子体使得广范围的应用成为可能,等离子体增强沉积对于高深宽比缝隙和高沉积速率具有出色的缝隙填充。在等离子体处理期间发生的一个问题是由于用于制造静电卡盘和基板的部件的材料的不同电性质和热性质而在基板的边缘附近造成的工艺不均匀性。另外,由于RF驻波效应,在基板上方的电磁场不均匀,从而导致形成具有等离子体鞘(sheath)(所述等离子体鞘在基板的边缘附近朝基板弯曲)的等离子体。与基板中心处相比,等离子体鞘的这种弯曲导致在基板的边缘附近轰击基板的离子轨迹的差异,由此导致对基板的非均匀的处理,并且因此影响总临界尺寸均匀性。因此,需要一种提供增强的基板边缘电磁场和均匀等离子体性能的改进的静电卡盘。技术实现要素:本公开的实施方式提供一种用于支撑基板的改进的静电卡盘。在一个实施方式中,所述静电卡盘包括:卡盘主体,所述卡盘主体耦合到支撑杆,所述卡盘主体具有基板支撑表面;多个突片,所述多个突片远离所述卡盘主体的所述基板支撑表面突出,其中所述突片绕所述卡盘主体的圆周设置;电极,所述电极嵌入在所述卡盘主体内,所述电极从所述卡盘主体的中心径向延伸到超出所述多个突片的区域;以及RF电源,所述RF电源通过第一电连接耦合到所述电极。在另一实施方式中,所述静电卡盘包括:主体,所述主体耦合到支撑杆,所述主体具有基板支撑表面;环形肩部,所述环形肩部远离所述基板支撑表面突出,所述环形肩部设置在所述主体的周边;内部电极,所述内部电极嵌入在所述主体内;内部电极,所述内部电极从所述主体的中心径向延伸到所述环形肩部附近的区域;外部电极,所述外部电极嵌入在所述主体内,所述外部电极径向地设置在所述内部电极的外部,所述外部电极在所述环形肩部下方径向地延伸,其中所述外部电极相对地设置在所述内部电极下方;导电连接件,所述导电连接件将所述内部电极与所述外部电极连接;以及RF电源,所述RF电源通过第一电连接耦合到所述内部电极。在又一实施方式中,所述静电卡盘包括:卡盘主体,所述卡盘主体耦合到支撑杆,所述卡盘主体具有基板支撑表面;环形肩部,所述环形肩部远离所述基板支撑表面突出,所述环形肩部设置在所述卡盘主体的周边;内部电极,所述内部电极嵌入在所述卡盘主体内,所述内部电极从所述卡盘主体的中心径向延伸到所述环形肩部附近的区域;外部电极,所述外部电极嵌入在所述卡盘主体内,所述外部电极径向地设置在所述内部电极的外部,所述外部电极在所述环形肩部下方径向地延伸;以及第一电源,所述第一电源通过第一可变电容器耦合到所述外部电极,所述第一电源经由第一电连接来向所述外部电极提供RF偏压。附图说明上文简要概述且在下文更详细地论述的本公开的实施方式可以参考附图中描绘的本公开的说明性的实施方式进行理解。然而,应当注意,附图仅仅示出本公开的典型实施方式,并且因此不应视为限制本公开的范围,因为本公开可允许其他等效实施方式。图1示出可用于实践本公开的各种实施方式的示例性PECVD系统的截面图。图2A是根据本公开的一个实施方式的静电卡盘的示意性截面图。图2B示出根据本公开的另一实施方式的静电卡盘的示意性截面图。图2C示出根据本公开的另一实施方式的静电卡盘的示意性截面图。图3A至图3C示出根据本公开的各个实施方式的静电卡盘的示意性截面图。图4A至图4B示出根据本公开的另一实施方式的静电卡盘的示意性截面图。图5A至图5B示出根据本公开的各个实施方式的静电卡盘的示意性截面图。为了促进理解,已尽可能使用相同附图标记指定各图所共有的相同元件。附图并非按比例绘制并且可以出于清晰性的目的加以简化。应预见到,一个实施方式的元素和特征可有益地并入其他实施方式而无需进一步的叙述。具体实施方式示例性腔室硬件图1示出可用于实践本公开的各种实施方式的示例性PECVD系统100的截面图。应当注意,尽管在本申请中描述PECVD系统,但本公开的设备也可应用于使用静电卡盘或基板支撑件的任何合适的等离子体工艺。PECVD系统100大体包括支撑腔室盖104的腔室主体102。腔室盖104可通过铰链(未示出)附接到腔室主体102。腔室主体102包括侧壁112和底壁116,侧壁112和底壁116限定处理区域120。腔室盖104可以包括穿过它设置的一或多个气体分布系统108,用以将反应气体和清洁气体递送到处理区域120中。形成在侧壁112中并且耦合到泵送系统164的周向泵送通道125被配置成将气体从处理区域120排空并且控制处理区域120内的压力。两个通道122和124形成在底壁116中。静电卡盘的杆126穿过通道122。配置用于激活基板升降销161的棒130穿过通道124。由陶瓷等制成的腔室衬里127设置在处理区域120中以保护侧壁112免受腐蚀性的处理环境损害。腔室衬里127可由形成在侧壁112中的突出物129支撑。多个排气端口131可形成于腔室衬里127上。多个排气端口131被配置以将处理区域120连接到泵送通道125。气体分布系统108被配置成递送反应气体和清洁气体并且设置成穿过腔室盖104以将气体递送到处理区域120中。气体分布系统108包括气体入口通道140,其将气体递送到喷淋头组件142中。喷淋头组件142包括环形底板148,所述环形底板148具有设置在面板146中间的挡板144。冷却通道147形成在气体分布系统108的底板148中,以在操作期间冷却底板148。冷却入口145将冷却剂流体(诸如水等)递送到冷却通道147中。冷却剂流体通过冷却剂出口149离开冷却通道147。腔室盖104具有匹配通道以将气体从一或多个气体入口168、163、169通过远程等离子体源162递送到定位在腔室盖104的顶部上的气体入口歧管167。PECVD系统100可以包括一或多个液体递送源150以及配置成提供载气和/或前驱气体的一或多个气源172。静电卡盘128配置成支撑并固持待处理的基板。静电卡盘128可以包括至少一个电极123,电压被施加至所述至少一个电极123以将基板静电地固定在所述静电卡盘128上。电极123由经由低通滤波器177连接到电极123的直流(DC)电源176供电。静电卡盘128可为单极、双极、三级、DC、交叉、带状等。在一个实施方式中,静电卡盘128可移动地设置在由耦合到杆126的驱动系统103驱动的处理区域120中。静电卡盘128可以包括加热元件(例如电阻元件),以便将定位在所述静电卡盘128上的基板加热到期望的处理温度。或者,静电卡盘128可由外部加热元件(诸如灯组件)加热。驱动系统103可包括线性致动器、或电机和减速齿轮组件,以降低或升高处理区域120内的静电卡盘128。RF源165可通过阻抗匹配电路173耦合到喷淋头组件142和电极123。喷淋头组件142的面板146和可经由高通滤波器(诸如电容器178)接地的电极123形成电容性等离子体生成器。RF源165向喷淋头组件142提供RF能量以促进在喷淋头组件142的面板146与静电卡盘128之间的电容性等离子体的生成。电极123提供用于RF源165和来自DC源176的电偏置两者的接地路径以允许对基板的静电卡紧。RF源165可以包括高频无线电频率(HFRF)电源(例如13.56MHzRF发生器)和低频无线电频率(LFRF)电源(例如300kHzRF发生器)。LFRF电源提供低频生成元件和固定匹配元件两者。HFRF电源被设计成与固定匹配一起使用并调节递送到负载的功率,从而消除关于正向和反射的功率的顾虑。在某些实施方式中,可在等离子体工艺期间监测固定在静电卡盘128上的基板的性质。在某些实施方式中,可在等离子体工艺期间监测固定在静电卡盘128上的基板的平坦度。在一个实施方式中,可通过测量其上固定有基板的静电卡盘128的特性来监测固定在静电卡盘128上的基板的平坦度。静电卡盘128的特性可通过与面板146连接的传感器174来测量。传感器174可为连接在面板146与阻抗匹配电路173之间的VI探针。在一些实施方式中,传感器174可配置成测量面板146与电极123之间的电容,因为面板146与电极123之间的电容受到定位在面板146与电极123之间的基板121的平坦度影响。静电卡盘(诸如静电卡盘128)在设置在其上的基板变得较不平坦时可具有增加的电容电抗。当基板并不平坦(例如因等离子体的热量而变形)时,在基板与静电卡盘128之间存在不均匀的空气缝隙分布。因此,静电卡盘中的基板的平坦度的变化导致等离子体反应器的电容变化,这可通过静电卡盘的假想阻抗的变化来度量。在这种情况下,传感器174可配置成通过测量由面板146和电极123形成的电容器的电压和电流来测量静电卡盘128的阻抗,由此监测固定在静电卡盘128上的基板的平坦度。如图1所示,传感器174可连接到系统控制器175。系统控制器175可配置成计算和调整正在PECVD系统100中处理的基板121的平坦度。在一个实施方式中,系统控制器175可通过监测静电卡盘128的特性(诸如假想阻抗)来计算基板121的平坦度或夹持状态。当假想阻抗的测量指示基板121的平坦度减小时,系统控制器175可通过调节DC源176来增加夹持功率。在一个实施方式中,基板121的减小的平坦度可由静电卡盘128的负增长的假想阻抗来指示。示例性静电卡盘图2A是根据本公开的一个实施方式的静电卡盘208的示意性截面图。静电卡盘208可以用于替换图1的静电卡盘128。静电卡盘208包括耦合到支撑杆226的卡盘主体228。卡盘主体228具有顶表面202,所述顶表面202被配置成在处理期间提供支撑并夹紧基板121。静电卡盘208的卡盘主体228具有绕顶表面202的周边设置的环形肩部236。环形肩部236设置在静电卡盘208的周边。环形肩部236远离顶表面202突出,并且被配置成将基板121的运动横向约束在预定位置中。环形肩部236的高度可相对低于或大于基板121的厚度。卡盘主体228包括耦合到导电构件286的单个电极223。电极223可以是基本上平行于基板121的导电网孔。可以按任何配置或图案布置电极223,使得电极跨顶表面202均匀地分布。例如,可以按格状、像素状或点状配置布置电极223。导电构件286可为棒、管、线等,并由导电材料诸如钼(Mo)、钨(W)或具有基本上与构成主体228的其他材料类似的膨胀系数的其他材料)制成。电极223可由导电材料(例如金属,诸如铜、镍、铬、铝和它们的合金)制成。在如图所示一个实施方式中,静电卡盘208使用单片电极223在电极223与基板121之间维持基本上均匀的电压。具体来说,电极223从静电卡盘208的中心延伸到超出基板121的边缘的区域。电极223可以径向地延伸并超出基板121的边缘任何适合于提供更均匀的电磁场的距离。在一个实例中,电极223从静电卡盘208的中心径向地延伸到环形肩部236。在另一实例中,电极223从静电卡盘208的中心径向地延伸到环形肩部236下方的区域。通过使电极223延伸超出基板121的边缘,可在基板121上方产生更均匀的电磁场237,这继而使等离子体延伸超出基板的边缘。因此,减少或消除等离子体鞘在基板边缘附近朝向基板的弯曲(如在
背景技术:
中所论述)。电极223可耦合到一或多个电源。例如,电极223可耦合到卡盘电源278(诸如DC或AC电源)(经由电连接281),以有助于将基板121固定在静电卡盘208上。在一些实施方式中,电极223可通过匹配网络277耦合到RF电源276。RF功率可向基板121提供处理功率(例如偏置功率),以有助于朝向基板121引导等离子体物质。RF电源276可以在高达约60MHz、或在一些实施方式中约400kHz、或在一些实施方式中约2MHz、或在一些实施方式中约13.56MHz的频率下提供高达约12000W的功率。电极223也可用作RF接地,其中RF功率通过电连接282耦合接地。卡盘主体228包括电介质材料或由电介质材料构成,电介质材料能够在约-20℃到约850℃的温度范围(诸如约350℃到约700℃、例如约650℃)内,将足够的夹持力提供到基板。电介质材料可以具有相对低的RF电场吸收,这允许从电极223发出的RF电场电容性地耦合通过电介质。合适的材料可以包括但不限于氮化铝(AlN)、氧化铝(Al2O3)、二氧化硅(SiO2)、碳化硅、碳化硼、氮化硼、氧化钇等。在一些实施方式中,卡盘主体228可以包括一或多个嵌入式加热器288以向卡盘主体228提供热量。来自加热器288的热量随后转移到基板121以增强制造工艺,诸如沉积工艺。加热器288可或可不平行于电极223来定位。尽管加热器288示为位于电极223下方的位置处,但是电极也可沿着与加热器288相同的平面或在加热器288上方设置。加热器288可为单个连续金属线或呈离散的金属线的形式。加热器288可以是适用于向静电卡盘提供感应加热或电阻加热的任何加热装置。加热器288通过支撑杆226耦合到电源283以向加热器288供电。电源283可以包括直流(DC)电源、交流(AC)电源或两者的组合。在一个实施方式中,电源283是交流(AC)电源以向加热器288提供AC信号。加热器288可由电阻金属、电阻金属合金或两者的组合构成。用于加热元件的适合的材料可以包括具有高热电阻的那些材料,诸如钨(W)、钼(Mo)、钛(Ti)等等。也可利用热性质(例如热膨胀系数)基本上类似于构成卡盘主体228的材料的热性质的材料制造加热器288,以便减小因不匹配的热膨胀而引起的应力。图2B示出根据本公开的另一实施方式的静电卡盘240的示意性截面图。静电卡盘240基本上与静电卡盘208相同,不同之处在于双电极设计被适配。为了清楚起见,将仅论述电极的布置。在这个实施方式中,静电卡盘240包括两个分离电极,即,内部电极242和环绕内部电极242的外部电极244。内部电极242与外部电极244可以是同心的。在一个实施方式中,内部电极242与外部电极244不共面,并且可以经由电连接246彼此电连接。在如图所示一个方面中,外部电极244相对于内部电极242相对布置在上方。内部电极242可设置成使得在内部电极242与顶表面202之间的距离与在外部电极244与环形肩部236的顶表面之间的距离相同或不同(更大或更小)。内部电极242可由与外部电极244相同、或在一些实施方式中不同的材料制造。用于内部电极242和外部电极244的适合的材料可以是上文关于电极223论述的那些材料。内部电极242和外部电极244可由电源276、278以上文关于图2A论述的方式供电。或者,内部电极242和外部电极244可由相应的电源供电,所述电源可以是RF电源、DC电源或两者的组合。内部电极242可以从静电卡盘240的中心径向延伸到超出基板121的边缘的区域。在一个实施方式中,内部电极242延伸超出基板121的边缘到达环形肩部236,由此在基板121上方提供均匀的电磁场。外部电极244可以径向延伸到环形肩部236下方的区域,由此在环形肩部236上方提供均匀的电磁场。内部电极242与外部电极244的组合在基板121和环形肩部236上方提供均匀的电磁场239,从而使得等离子体延伸超出基板的边缘。因此,减少或消除等离子体鞘在基板边缘附近朝向基板的弯曲(如在
背景技术:
中所论述)。图2C示出根据本公开的另一实施方式的静电卡盘250的示意性截面图。静电卡盘250基本上与静电卡盘240相同,不同之处在于外部电极相对于内部电极布置在下方。在这个实施方式中,静电卡盘250包括两个分离的电极,即,内部电极252和环绕内部电极252的外部电极254。内部电极252与外部电极254可以是同心的。在一个实施方式中,内部电极252与外部电极254不共面并且可以经由导电连接件256彼此电连接。外部电极254可设置成使得它相对高于内部电极252,或相对低于内部电极252,如图所示(即,在外部电极254与卡盘主体228的顶表面202之间的距离大于在内部电极252与卡盘主体228的顶表面202之间的距离)。将外部电极254设置在低于内部电极252的高度的高度可能导致在基板的边缘附近的电磁场的弯曲并且因此补偿RF驻波效应。因此,提供在基板121和环形肩部236上方的均匀的电磁场241。类似地,内部电极252可由与外部电极254相同、或在一些实施方式中不同的材料制造。用于内部和外部电极252、254的适合的材料可以是上文关于电极223论述的材料。内部电极252和外部电极254可由电源276、278以上文关于图2A论述的方式供电。或者,内部电极242和外部电极244可由相应的电源供电,所述电源可为RF电源、DC电源或它们的组合。在一些实施方式中,卡盘主体228可以包括一或多个嵌入式加热器288以向卡盘主体228提供热量。加热器288可如图所示定位在内部电极252下方的位置处,或加热器288可以沿着与内部电极252相同的平面或在内部电极252上方设置。加热器288可以是单个连续金属线或呈离散的金属线的形式。加热器288可以是适用于向静电卡盘提供感应加热或电阻加热的任何加热装置。图3A到图3C示出根据本公开的实施方式的静电卡盘的示意性截面图。在图3A到图3C中示出的实施方式基本上与在图2A到图2C中示出的实施方式相同,不同之处在于环形肩部236被多个突片或突起替换,所述突片或突起充当在工艺期间将基板121的运动约束在预定位置中的机构。在图3A的实施方式中,多个突片310(仅示出了两个突片)可以绕静电卡盘308的圆周等距离地隔开。在一个实例中,使用三个突片。在另一实例中,使用四个突片。构想到,也构想更多或更少的突片。突片310远离顶表面202突出并且可以具有约2mm到约5mm的高度。尽管示出并论述了突片,但是具有合适形状(诸如矩形、菱形、方形、半球形、六角形或三角形)的任何突起或不同形状的突起的混合也可用于约束基板121的运动。类似于图2A的实施方式,电极223从静电卡盘308的中心延伸到超出基板121的边缘的区域。电极223可以径向地延伸超出基板121的边缘任何适合于提供更均匀的电磁场的距离。在一个实例中,电极223从静电卡盘308的中心径向地延伸到超出突片310的区域。通过使电极223延伸超出基板121的边缘,可在基板121上方产生更均匀的电磁场,这继而使等离子体延伸超出基板边缘。突片310和电极223的布置允许与静电卡盘308的上表面接触的非常平坦且均匀的等离子体边界312。因此,实现对基板的均匀处理。图3B类似于图3A,不同之处在于诸如图2B中所示的双电极设计被适配。类似于图2B的实施方式,静电卡盘318包括两个分离的电极,即,内部电极242和环绕内部电极242的外部电极244。内部电极242与外部电极244可以是同心的。在一个实施方式中,内部电极242与外部电极244不共面并且可以经由电连接件246彼此电连接。在内部电极242与顶表面202之间的距离可以大于在外部电极244与顶表面202之间的距离,如图所示,或小于在外部电极244与顶表面202之间的距离。这些距离可变化以调节基板上方的电磁场。非共面的电极设计也用作调节在基板的边缘附近的电磁场的额外方式。内部电极242可由与外部电极244相同、或在一些实施方式中不同的材料制造。用于内部电极242和外部电极244的适合的材料可以是上文关于电极223论述的材料。内部电极242和外部电极244可由电源276、278以上文关于图2A论述的方式供电。或者,内部电极242和外部电极244可由相应电源的供电,所述电源可为RF电源、DC电源或它们的组合。内部电极242可以从静电卡盘318的中心径向地延伸到超出基板121的边缘的区域。在一个实施方式中,内部电极242延伸超出基板121的边缘到达突片310,从而在基板121上方提供均匀的电磁场。外部电极244可以从基板121的边缘径向地延伸到静电卡盘318的周边的边缘,从而在突片310上方提供均匀的电磁场。突片310与内部和外部电极242、244的组合使等离子体延伸超出基板的边缘,从而提供与静电卡盘318的上表面接触的非常平坦且均匀的等离子体边界。因此,实现对基板的均匀处理。图3C类似于图3A,不同之处在于外部电极相对地布置在内部电极下方。类似于图2C的实施方式,静电卡盘328包括两个分离的电极,即,内部电极252和环绕内部电极252的外部电极254。内部电极252与外部电极254可以是同心的。在一个实施方式中,内部电极252与外部电极254不共面并且可以经由导电连接件256彼此电连接。非共面的电极设计用作调节在基板的边缘附近的电磁场的额外方式。外部电极254可设置成使它相对低于内部电极252,如图所示,或相对高于内部电极252。将外部电极254设置在低于内部电极252的高度的高度可以导致与静电卡盘318的上表面接触的非常平坦且均匀的等离子体边界330。因此,实现对基板的均匀处理。内部电极252可由与外部电极254相同、或在一些实施方式中不同的材料制造。用于内部电极252和外部电极254的适合的材料可以是上文关于电极223论述的材料。内部电极252和外部电极254可由电源276、278以上文关于图2A论述的方式供电。或者,内部电极252和外部电极254可由相应的电源供电,所述电源可为RF电源、DC电源或其组合。在一些实施方式中,替代使用突片310,静电卡盘308、318、328可使用突环来支撑基板121。或者,基板121可以放置在具有任何合适形状的隆起或突起上,诸如矩形、菱形、方形、半球形、六角形、三角形突起或不同形状的突起的混合。图4A示出根据本公开的另一实施方式的静电卡盘420的示意性截面图。图4A中示出的实施方式基本上与图3A相同,不同之处在于边缘环径向地设置在突片301的外部。在这个实施方式中,边缘环412设置在静电卡盘420的顶表面202的顶上。突片301由边缘环412环绕。图4B示出根据本公开的另一实施方式的静电卡盘460的一部分的放大截面图。静电卡盘460可与图3A至图3C相同,不同之处在于添加梯形或楔形边缘环。在如图所示实施方式中,突片462可具有梯形以防止基板121滑出基板支撑表面461。边缘环464也可具有梯形,以便控制局部等离子体密度。已观察到,边缘环464的将它的气体界定到基板边缘的高度“H”和内径“R”可以用于调整局部等离子体,尤其在基板边缘区域中。高度“H”可以在约0.03英寸与约0.10英寸之间变化,例如是约0.05英寸,这取决于工艺应用。在一些配置中,边缘环464的斜坡466可相对于基板支撑表面461具有约10°到90°的角“α”。下表1示出边缘环464的角度“α”和内径“R”的一些实例。表1实施方式1234567α(度)90901090109010R(英寸)6.0506.1006.1006.3006.3006.5006.500在一些实施方式中,在边缘环464的内径“R”与突片462的外径之间的距离“D1”为约0.060英寸到约0.500英寸。在突片462的外径与突片462的内径之间的距离“D2”为约0.07英寸到约0.09英寸。在突片462的内径与基板121的边缘之间的距离“D3”可为约0.040英寸到约0.050英寸。在一些实施方式中,边缘环412、464可由具有与静电卡盘420、460的材料相同的介电常数的材料制成。在一些实施方式中,边缘环412、464可由具有与静电卡盘420、460的材料不同的介电常数的材料制成。在这种情况下,边缘环412、464可以由具有类似于基板121的介电常数的介电常数的材料制成,从而允许在基板上方产生更均匀的电磁场(并且因此产生更均匀的等离子体421)。边缘环412、464可以具有类似于突片301和基板121的热导率的热导率,从而在基板121的边缘附近提供更均匀的温度梯度,由此进一步地降低工艺非均匀性。在图4A或4B中示出的任一配置中,边缘环412、464的材料可用于模块化局部EM场以便补偿等离子体非均匀性。边缘环412、464的材料可以具有与基板121不同的介电常数。用于边缘环412、464的适合的材料可以包括但不限于:石英、氮化铝(AlN)、氧化铝(Al2O3)、氮化硅(SiN)、含有钇的材料、氧化钇(Y2O3)、钇铝石榴石(YAG)、氧化钛(TiO)、氮化钛(TiN)、碳化硅(SiC)、ASMY(氧化铝硅镁钇)、由Y4Al2O9(YAM)的化合物和Y2-xZrxO3的固体溶液(Y2O3-ZrO2固体溶液)构成的高性能材料(HPM)、氧化镁(MgO)、氧化锆(ZrO2)、碳化钛(TiC)、碳化硼(BxCy)、氮化硼(BN),以及可满足本文中论述的相同要求的其他类似或不同的性质。在一些实施方式中,电极223可为两个分离的电极,即,内部电极和环绕内部电极的外部电极,它们以如图2C的实施方式中所示的方式布置。内部电极与外部电极可以是同心的。内部电极与外部电极可不共面并且可经由电连接件彼此电连接以调节在基板边缘附近的电磁场。外部电极可设置成使得它相对位于内部电极的下方或上方。图5A和图5B示出根据本公开的实施方式的静电卡盘的示意性截面图。图5A和5B中示出的实施方式基本上与图2A到2C中示出的实施方式相同,不同之处在于具有单独可调节能力的双电极被适配。在图5A中示出的实施方式中,静电卡盘540包括两个分离的电极,即,内部电极542和环绕内部电极542的外部电极544。内部电极542和外部电极544可以是同心的。在一个实施方式中,内部电极542与外部电极544共面。在一个实施方式中,内部电极542与外部电极544不共面。例如,内部电极542可以相对设置在外部电极544下方,反之亦然。或者,内部电极542可设置成使得在内部电极542与顶表面202之间的距离与在外部电极544与环形肩部236的顶表面之间的距离相同或不同(更大或更小)。内部电极542可由与外部电极544相同、或在一些实施方式中不同的材料制造。用于内部电极542和外部电极544的适合的材料可以是上文关于电极223所论述的材料。例如,内部电极542可由铜、镍或它们的合金制成,而外部电极544可由铝和它的合金制成。内部电极542可以从静电卡盘540的中心径向地延伸到靠近基板121边缘的区域。或者,内部电极542可以从静电卡盘540的中心径向地延伸到超出基板121边缘的区域。外部电极544可以从靠近基板121的边缘的区域向外延伸到环形肩部236,并且可径向地延伸到在环形肩部236下方的区域。因此,内部电极542和外部电极544形成两个分离的电极区,这两个分离的电极区是同心的并且彼此绝缘。可使用更大或更小数目的电极,这取决于应用。如果需要,内部电极542与外部电极544可以不是同心的,只要它们相对于彼此定位成在基板上方创建电磁场的期望的空间分布。内部电极542可被供应DC夹持电压,以将基板121静电地固持在静电卡盘540上。内部电极542也可配置用于运载RF偏压与DC夹持电压两者,这两者都可由电源576通过电连接578施加。电源576可以包括用于向内部电极542提供等离子体生成RF电压的AC电压源,并且可选地包括用于向内部电极542提供夹持电压的DC电压源。AC电压源提供RF生成电压,所述电压在典型从约50到约3000瓦特的功率电平下,具有例如400KHz到60MHz的一或多个频率。约200到约2000伏特的DC电压可施加至内部电极542,以提供将基板121固持到静电卡盘540的静电电荷。电源576也可包括系统控制器,所述系统控制器用于通过将DC电流和RF电流或两者引导到内部电极542来控制内部电极542的操作以便夹持和松开基板121并且维持或激励基板121上方的等离子体。在电源576提供RF偏压的一些实施方式中,可变电容器577可选地设置在内部电极542与电源576之间。可变电容器577可由控制器579单独地控制或调谐,所述控制器579用来单独地调节可变电容器577以实现在腔室内生成的等离子体的期望的空间分布。对等离子体的空间分布的控制是通过控制由可变电容器577耦合到内部电极542的RF偏压来实现。例如,可变电容器577可由控制器579调谐,以便减小施加到内部电极542的RF偏压,这继而将会减小电磁场,并且因此减小基板121的中心附近的等离子体密度。外部电极544经由电连接582来耦合到RF电源580。RF电源580由匹配网络584调整并通过可变电容器586电容性地耦合到外部电极544。匹配网络584用来使从处理腔室返回的RF反射最小化,否则,所述RF反射将降低所生成的等离子体的效率。这种功率反射一般是由RF电源580的阻抗与由静电卡盘540和腔室(例如,图1的腔室主体102)内生成的等离子体的组合形成的负载的不匹配引起的。可变电容器586可由控制器588单独地控制或调谐,所述控制器588用来单独地调节可变电容器586,以便实现在腔室内生成的等离子体的期望的空间分布。对等离子体的空间分布的控制是通过控制由可变电容器586耦合到外部电极542的RF偏压来实现。例如,如果已知等离子体密度倾向于在基板121边缘附近降低,那么可变电容器586就由控制器588调节,以便稍微增加施加到外部电极544的RF偏压。因此,提供在基板121和环形肩部236上方的均匀的电磁场541。尽管图5A示出内部电极542和外部电极544连接到相应的可变电容器,但是在一些实施方式中,在内部电极542和外部电极544中仅有一个连接到可变电容器。图5B示出根据本公开的另一实施方式的静电卡盘560的示意性截面图。图5B的实施方式类似于图5A,不同之处在于内部电极542和外部电极544由同一电源供电。在这个实施方式中,内部电极542和外部电极544被耦合到公共电源550,所述公共电源可以包括两个或更多个电源,诸如DC电源和RF电源。在一个实施方式中,外部电极544经由可变电容器552耦合到电源550,同时内部电极542经由电容器554耦合到电源550。可变电容器552可由控制器556单独地控制或调谐,所述控制器556用于单独地调节可变电容器552以实现在基板121边缘附近的等离子体的期望的空间分布。通过调节电容器554的位置,可调节电容器552、554的各个末端的比率。图5B的实施方式允许在基板121和环形肩部236上方创建均匀的电磁场561。本公开的实施方式提供一种改进的静电卡盘,这种静电卡盘使用能够在等离子体处理工艺期间在设置在静电卡盘顶上的基板上方产生增强的基板边缘电磁场和均匀的局部等离子体性能的伸长的单电极或双电极(共面或不共面)。具有双电极的静电卡盘允许单独可调节能力以在基板上方提供均匀的电磁场,减少或消除在基板上方形成的等离子体的等离子体鞘的弯曲,这继而使在基板的边缘附近与在基板中心处轰击基板的离子轨迹的差异最小化。因此,实现对基板的均匀处理。尽管上述内容针对本公开的实施方式,但也可在不脱离本公开的基本范围的情况下设计本公开的其他和进一步的实施方式。当前第1页1 2 3