本发明涉及半导体器件及其制造领域,特别涉及一种cmos器件及其制造方法。
背景技术:
随着集成电路的集成度不断提高,器件的尺寸不断减小,传统的平面的cmos(互补金属氧化物半导体)器件很难继续减小关键尺寸,立体器件,如finfet(鳍式场效应晶体管)器件。
在进入纳米节点之后,cmos器件的阈值电压的调节一直是器件制造中的重点和难点,目前,主要通过离子注入、栅宽(gatelength)、栅介质层厚度以及功函数层来调节器件的阈值电压,而随着器件尺寸的进一步减小,尤其是进入10nm节点以下时,需要对多个阈值电压进行调节,而且由于尺寸减小带来的空间限制及寄生效应的影响,对阈值的调节提出了更高的要求,这些传统的方法已经不能很好地实现多阈值的调控。
技术实现要素:
有鉴于此,本发明的目的在于提供一种cmos器件及其制造方法,实现阈值电压的调节。
为实现上述目的,本发明有如下技术方案:
一种cmos器件的制造方法,包括:
提供衬底,所述衬底上具有沟道区域以及沟道区域上的栅介质层;
在所述栅介质层上形成阻挡层;
在所述阻挡层上形成功函数层;
在所述功函数层上形成金属层;
其中,在形成所述阻挡层之后,和/或形成所述功函数层之后,和/或形成所述金属层之后,还包括:进行等离子掺杂,等离子掺杂的离子为四族元素的离子。
可选地,所述沟道区域为鳍或纳米线。
可选地,所述阻挡层包括:tin、tan、tinx、tanx或tinsi。
可选地,所述cmos器件为nmos,所述功函数层包括:al、tial、tialx、tialcx、ticx或tacx。
可选地,所述cmos器件为pmos,所述功函数层包括:tin、tan、tinx、tanx或tinsi。
可选地,所述金属层包括:co、ni、cu、al、pd、pt、ru、re、mo、ta、ti、hf、zr、w、ir、eu、nd、er或la,或这些金属的合金以及这些金属的氮化物。
可选地,所述等离子掺杂的离子为si4+、c+或ge+。
一种cmos器件,包括:
衬底,所述衬底上具有沟道区域以及沟道区域上的栅介质层;
所述栅介质层上的阻挡层;
所述阻挡层上的功函数层;
所述功函数层上的金属层;
其中,在所述阻挡层和/或功函数层和/或金属层中具有等离子掺杂的离子,等离子掺杂的离子为四族元素的离子。
可选地,所述沟道区域为鳍或纳米线。
可选地,所述等离子掺杂的离子为si4+、c+或ge+。
本发明实施例提供的cmos器件及其制造方法,在金属栅极工艺中,在形成阻挡层、功函数层或金属层中的任意一层或几层之后,通过等离子掺杂四族元素的离子,实现阈值电压的调节。该方法调节阈值的控制精度高,且工艺灵活度高、简单易行,更适用于小尺寸器件中的多阈值的调控。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了根据本发明实施例的cmos器件的制造方法的流程示意图;
图2示出了根据本发明实施例的coms器件的制造方法中鳍的沟道区域的结构示意图;
图3示出了根据本发明实施例的coms器件的制造方法中纳米线的沟道区域的结构示意图;
图4-图6示出了本发明实施例的cmos器件的制造方法的制造过程中的截面结构示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
其次,本发明结合示意图进行详细描述,在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
本发明实施例提供了一种cmos器件的制造方法,参考图1所示,所述制造方法包括:
步骤s101,提供衬底,所述衬底上具有沟道区域以及沟道区域上的栅介质层;
步骤s102,在所述栅介质层上形成阻挡层;
步骤s103,在所述阻挡层上形成功函数层;
步骤s104,在所述功函数层上形成金属层;
其中,在形成所述阻挡层之后,和/或形成所述功函数层之后,和/或形成所述金属层之后,还包括:步骤s110,进行等离子掺杂,等离子掺杂的离子为四族元素的离子。
在本发明实施例的制造方法中,在形成金属栅极的过程中,在形成阻挡层、功函数层或金属层中的任意一层或几层之后,通过等离子掺杂四族元素的离子,实现阈值电压的调节。该方法调节阈值的控制精度高,且工艺简单易行,更适用于小尺寸器件中的多阈值的调控。
该方法尤其适用于小尺寸cmos器件的功函数调节,例如10nm以下的cmos器件,cmos器件的结构可以为鳍式场效应晶体管或纳米线晶体管等,该方法可以应用于前栅工艺或后栅工艺中。
为了更好地理解本发明的技术方案和技术效果,以下将结合具体的实施例进行详细的说明。
参考图1所示,在步骤s101,提供衬底,所述衬底上具有沟道区域以及沟道区域上的栅介质层。
在本发明实施例中,所述衬底为半导体衬底,可以为si衬底、ge衬底、sige衬底、soi(绝缘体上硅,silicononinsulator)或goi(绝缘体上锗,germaniumoninsulator)等。在其他实施例中,所述半导体衬底还可以为包括其他元素半导体或化合物半导体的衬底,例如gaas、inp或sic等,还可以为叠层结构,例如si/sige等,还可以其他外延结构,例如sgoi(绝缘体上锗硅)等。
该衬底上已经具有沟道区域以及栅介质层,沟道区域为用于形成栅极结构的区域,在本发明实施例中,参考图2所示,沟道区域可以为鳍110,参考图3所示,沟道区域还可以为纳米线210,沟道区域还可以是其他任何的结构,可以采用合适的方法提供该沟道区域,本发明对沟道区域的结构和形成方法不作限定。
可以根据后续形成的栅极结构,来确定栅介质层的材料,在本发明实施例中,后续形成的栅极为金属栅极,栅介质层可以采用高k介质材料(例如,和氧化硅相比,具有高介电常数的材料),高k介质材料例如铪基氧化物,hfo2、hfsio、hfsion、hftao、hftio等,此处仅为示例,本发明不限于此。栅介质层与沟道区域之间还可以形成有界面层,界面层用于改善界面特性,界面层可以为氧化硅或氮氧化硅等。
在一些实施例中,可以是应用于前栅工艺中,参考图2所示,首先,通过刻蚀衬底100形成鳍110的沟道区域,而后,淀积形成栅介质层112,之后,继续进行金属栅极的形成;在另一些工艺中,可以是应用于后栅工艺中,首先,参考图2所示,刻蚀衬底100形成鳍110的沟道区域,而后,形成栅介质层、伪栅极和源漏区(图未示出),在去除伪栅极之后,继续进行金属栅极的形成。在另一些实施例中,还可以通过合适的方法形成纳米线的沟道区域,在一个具体的示例中,参考图3所示,可以通过刻蚀衬底200形成纳米线210,纳米线210的两端被支撑结构220支撑,其他区域被暴露出来,以用于形成全包围的栅极结构。以上形成沟道区域的方法仅为示例,本发明对此并不做限定。
在步骤s102,在所述栅介质层112上形成阻挡层114,参考图4所示。
所述阻挡层114用于防止金属向栅介质层以及沟道区域的扩散,所述阻挡层的材料可以选择以下中的一种或多种:tin、tan、tinx、tanx、tinsi等。
可以通过cvd(化学气相沉积)、ald(原子层沉积)或其他合适的淀积方法来形成该阻挡层。在一个具体的实施例中,可以采用ald的方法形成tin的阻挡层。
参考图4所示,在形成阻挡层114之后,可以进行等离子掺杂,等离子掺杂的离子为四族元素的离子,例如可以为si4+、c+或ge+等,等离子掺杂是指掺杂的离子为通过等离子处理之后获得的离子。这样,在等离子掺杂之后,阻挡层中掺杂有四族的离子,从而实现阈值电压的调节。
在步骤s103,在所述阻挡层114上形成功函数层116,参考图5所示。
所述功函数层116为用于器件进行功函数调节的膜层,对于nmos器件,功函数层的材料可以从以下一种或多种选择:al、tial、tialx、tialcx、ticx、tacx等。对于pmos器件,功函数层的材料可以从以下一种或多种选择:tin、tan、tinx、tanx、tinsi等。
可以通过cvd(化学气相沉积)、ald(原子层沉积)或其他合适的淀积方法来形成该功函数层。在一个具体的实施例中,对于nmos器件,可以采用ald的方法形成tialc的功函数层,对于pmos器件,可以采用cvd或ald的方法形成tin的功函数层。
同样地,在形成功函数层116之后,根据需要,也可以进一步进行等离子掺杂,等离子掺杂的离子为四族元素的离子,例如可以为si4+、c+或ge+等,等离子掺杂是指掺杂的离子为通过等离子处理之后获得的离子。这样,在等离子掺杂之后,功函数层中掺杂有四族的离子,通过工艺控制,在功函数层形成之后进行等离子掺杂,掺杂离子也可以进入到阻挡层中,从而,通过掺杂实现阈值电压的调节。
在步骤s104,在所述功函数层116上形成金属层118,参考图6所示。
所述金属层118为金属栅极的顶层金属,优选电阻率低的金属,在后栅工艺中,优选电阻率低且填充率高的金属,金属层的材料可以从以下一种或多种选择:co、ni、cu、al、pd、pt、ru、re、mo、ta、ti、hf、zr、w、ir、eu、nd、er或la等,或这些金属的合金以及这些金属的氮化物。
可以通过溅射、ald或cvd或其他合适的方法来形成填充层,在一个具体的实施例中,可以采用ald的方法形成w的金属层。
同样地,在形成金属层118之后,根据需要,也可以进一步进行等离子掺杂,等离子掺杂的离子为四族元素的离子,例如可以为si4+、c+或ge+等,等离子掺杂是指掺杂的离子为通过等离子处理之后获得的离子。这样,在等离子掺杂之后,金属层中掺杂有四族的离子,通过工艺控制,在金属层形成之后进行等离子掺杂,掺杂离子也可以进入到功函数层,以及进一步进入到阻挡层中,从而,通过掺杂实现阈值电压的调节。
对于本发明的实施例,根据具体的需要,可以在阻挡层114、功函数层116或金属层118中的某一层或某几层中,通过掺杂来实现阈值电压的调节,这样,可以在形成阻挡层之后,和/或形成功函数层之后,和/或形成金属层之后,进行等离子掺杂,实现阈值电压的调节。
在10nm以下的器件中,对于nmos和pmos器件,典型地会有四种核心器件,也就是有四种阈值电压需要调节,这四种阈值电压分别为hvt、rvt、lvt、slvt,若要实现分别的调控会增加额外的工艺步骤且难以实现,而在形成阻挡层,和/或功函数层,和/或金属层之后,进行等离子体掺杂,通过掺杂来实现功函数的调节,工艺灵活度高,控制精度高且简单易行。
此外,本发明还提供了上述实施例形成的cmos器件,参考图6所示,包括:
衬底100,所述衬底100上具有沟道区域110以及沟道区域110上的栅介质层112;
所述栅介质层112上的阻挡层114;
所述阻挡层114上的功函数层116;
所述功函数层116上的金属层118;
其中,在所述阻挡层114和/或功函数层116和/或金属层118中具有等离子掺杂的离子,等离子掺杂的离子为四族元素的离子。
进一步地,所述等离子掺杂的离子为si4+、c+或ge+。
进一步地,所述沟道区域110为鳍或纳米线。
以上所述仅是本发明的优选实施方式,虽然本发明已以较佳实施例披露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何的简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。