本揭露是有关于一种散热的装置与方法,特别关于一种半导体集成电路散热的装置与方法。
背景技术:
集成电路(ic)通常在以半导体为材料的晶片上包含大量的电子元件,例如电阻器、晶体管、电容器等。半导体ic行业在过去几十年中经历了快速增长。半导体材料和设计的技术进步,产生了越来越小且更复杂的电路。随着ic的尺寸减小,ic的电迁移(em)效应的影响增大。em是离子在导体/电阻中逐渐移动而引起的材料传输。当ic中的电阻工作,产生热量并增加ic的温度,这是所谓的焦耳加热。而由于电阻器的高焦耳加热,em会加剧,这会导致ic中电子元件的故障。
工作中电阻的热分布通常不均匀。根据电阻的物理结构,电阻两端的接触点可连接较冷的元件或金属,作为散热路径。虽然电阻两端观察到的温度较低,但电阻的中心区域形成热点。在这种情况下,电阻的中心区域具有最高温度,并且形成em方面的最薄弱点。特别是当电阻器具有更大的长度和/或更大的电流时,电阻器的中心温度会更高。尽管传统技术使用边缘接触点通过散热来缓解电阻器边缘的温度,但电阻器的中心仍然是热点和em临界区域。因此,ic中电阻散热的传统技术并不完全令人满意。
技术实现要素:
在其中一个实施例中,公开了一种半导体元件。该半导体器件包括:具有顶面、底面和两个端部的电子元件;设置在顶面上的多个接触点;以及布置在多个接触点上的多个金属节点。多个接触点包括分别设置在两个端部处的两个端部接触点以及设置在两个端头接触点之间的至少一个中间接触点。多个金属节点包括分别设置在两个端部接触点上的两个端部金属节点以及设置在至少一个中间接触点上的至少一个中间金属节点。
在另一个实施例中,公开了一种半导体器件。该半导体器件包括:具有顶面、底面和两个端部的电子元件;两个端部接触点分别设置在顶面和两个端部;两个端部金属节点分别设置在两个端部接触点上;设置在底面下方的电介质层;以及至少一个中间金属节点,中间金属节点设置在电介质层下方并且在两个端部之间。
在又一个实施例中,公开了一种半导体器件。该半导体器件包括:包含了串联连接的多个电子元件的电子元件层;包含了设置在电子元件层上的多个端部接触点的接触层;以及第一金属节点层,其包括了布置在接触层上的第一组多个金属节点。多个电子元件中的每一个都具有顶面、底面和两个端部。多个端部接触点包含了设置在多个电子元件中的每一个的顶面上的两个端部接触点。两个端部接触点分别布置在电子元件的两个端部处。多个金属节点中的每一个皆设置在多个端部接触点中的对应的一个上。在第一组多个金属节点中,布置在两个电子元件的两个相邻端部上方的任意两个金属节点热耦合以形成一对耦合的金属节点。
附图说明
当结合附图阅读时,根据以下详细描述可以更好地理解本揭露的各方面。注意各种特征不一定按比例绘制。且为了清楚讨论,各种特征的尺寸和形状可以任意增大或减小。在整个说明书和附图中,相似的附图标记表示相似的特征:
图1为绘示根据本揭露各种实施方式的示例性半导体元件的俯视图;
图2为绘示根据本揭露一实施方式的第一组示例性半导体元件的俯视图;
图3为绘示图2中的示例性半导体元件的温度分布;
图4为绘示图2中的示例性半导体元件的对应横截面图;
图5为绘示根据本揭露一实施方式的第二组示例性半导体器件的俯视图和温度分布;
图6为绘示图5中的示例性半导体器件之一的对应横截面图;
图7为绘示根据本揭露一实施方式之一的第三组示例性半导体元件的俯视图;
图8为绘示图7中的示例性半导体器件的温度分布;
图9为绘示图7中的示例性半导体器件之一的对应横截面图;
图10为绘示图2中的第一组示例性半导体器件的几何设计;
图11为绘示图5中的第二组示例性半导体器件的几何设计;
图12为绘示根据本揭露一实施方式的用于形成半导体元件的示例性方法的流程图;
图13为绘示根据本揭露一实施方式的用于形成半导体元件的另一示例性方法的流程图;
图14为绘示根据本揭露一实施方式的用于形成半导体元件的又一示例性方法的流程图。
具体实施方式
本揭露描述了用以实施本主题的不同特征的各种实施例。下面描述组件和布置的具体示例以简化本揭露。这些仅是例子,并不意在限制。例如,在下面的描述中在第二特征之上形成的第一特征,可以包含第一和第二特征直接接触的实施例,并且还可以包含在第一和第二特征之间有另一种特征,使得第一和第二特征不直接接触的实施例。另外,本揭露可以在每个示例中重复使用相同的附图数字和/或字母,这种重复是为了简单和清楚的做说明,并且不代表各种实施例和/或配置之间有关连性。
此外,为了便于描述,可以在这里使用诸如“在...之下”、“在...下方”、“在...之上”、“在...上方”等的空间相对术语来描述一个元件或特征与另一元件或特征之间的位置关系。除了附图中描绘的方向之外,空间相对术语旨在涵盖使用或操作中的装置的不同方位。该装置可以以其他方式定向(旋转90度或在其他方位)并且同样可以相应地空间相对术语来说明。
尽管边缘/端部接触点已用于降低电阻的温度,但电阻的中心区仍然是热点。用以减低电阻器中心区域温度的一种方法是将电阻器并联,分成两个电阻器。例如,宽度为1μm的电阻可以分成两个并联的电阻,每个电阻宽度为0.5μm。两个电阻的整体表面积增加,有利于热辐射。但是与两个电阻的其他区域相比,两个电阻的中心区域仍然是一个热点。
本揭露意图在通过在热点区域处减低电阻器的焦耳加热来改善ic中电阻器的em效应,以便降低ic工作期间电阻器周围的温度。本揭露提供了多种半导体器件(例如半导体ic)的实施例,其中包含电阻器,该电阻器具有设置在两个末端部分的两个末端金属节点,以及设置在两个末端部分之间的至少一个中间金属节点,以及多种制做成半导体元件的方法。电阻器具有顶面,底面和两个端部。可以把至少一个中间金属节点用作插入到电阻器中散热的散热器。
在一些实施例中,每个端部金属节点和至少一个中间金属节点设置在与顶面直接接触的接触点上。这些实施例中,至少一个中间金属节点可以将电阻器热耦合到设备中的接地平面或电源平面以散热。
在另一些实施例中,元件包括设置在电阻器底面下方的介电层,并且至少一个中间金属节点设置在介电层下方,使得至少一个中间金属节点与电阻器间接接触。这些实施例中,至少一个中间金属节点可以将电阻器热耦合到设备中的基板以散热。
在另一些实施例中,电阻器是包含串联连接的多个子电阻器的电阻层。在这些实施例中,每个子电阻器具有顶面,底面和两个端部。金属节点设置在每个子电阻器的每一个端部上,并且两个相邻子电阻器的两个相邻末端部分上的任意两个金属节点皆会热耦合以形成一对耦合金属节点,这一对耦合金属节点可以被视为用于电阻器的散热的中间金属节点对。中间金属节点对可以通过一对触点设置在顶面上,并且将该电阻器热耦合到该装置中的接地平面或电源平面以便散热,或者可以设置在电阻器下面的电介质层下方并且将电阻器热耦合到设备中的基板以散热。
随着半导体元件尺寸的不断减小和封装密度的不断增加,寄生电容对于提高元件的工作速度变得越来越重要。为了减少中间金属节点与基底之间重叠区域的寄生电容,本揭露提供了一种设计中间金属节点的形状和尺寸的方法,使得金属节点与电阻器并联或完全被电阻器区域覆盖。
应该理解的是,虽然本揭露中的描述集中于集成电路(ic)中的电阻器使用,但是本揭露适用于所有类型的因为电流而在电路中产生热的电子组件。所公开的半导体元件结构通过降低电阻器中心区域(em临界区域)的温度并抑制散热片插入带来的寄生电容的增加,对于大电流的电阻器,例如终端电阻,有很大好处。
图1示出了根据本揭露的各种实施例的示例性半导体元件的俯视图。图1为用于插入散热器的三个实施例,例如,通过接触点102或下部金属105经由间接接触点104在电阻器(例如高阻抗(highresistance;hir)电阻器)中形成上部金属103。在许多实施例中,使用一个高阻抗电阻器101来散热。高阻抗电阻器由高电阻材料形成,例如氮化钛(tin)或氮化钽(tan)。
在实施例1a110中,两个端节点(节点a118和节点b119)经由两个端部接触点112-1、112-2被布置在高阻抗电阻器111上以形成散热路径。如上所述,如果电阻器在两端仅具有这两个端节点,则热量将在该电阻器的中心处累积。因此,高阻抗电阻器111还具有插入两端之间的中间节点(节点1116)以用来降低高阻抗电阻器111的中心区域温度的散热器。节点1116包含上部散热金属113,其设置在与高阻抗电阻器111的顶面直接接触的接触点112上,使得高阻抗电阻器111的中心处的热量能够经由节点1116散发到半导体元件中的大散热器。例如,当实施例1a中的器件是半导体ic时,节点1116可将高阻抗电阻器111热耦合到可进一步将热量从ic内散发出去的网状电源平面/接地平面(meshpower/groundplane)。上部散热金属113的尺寸可以根据装置的电性能和热性能要求来优化。与不包括中间节点1(节点1116)的传统装置相比,本实施例中的装置具有类似的电性能,并且可能仅具有较小的寄生电容。为了减少由插入的散热器引起的寄生电容,可以设计散热器的金属形状以使上部散热金属113与高阻抗电阻器111并联运行和/或被高阻抗电阻器111的区域完全覆盖。关于金属节点,将在后面讨论。
在实施例2a120中,两个端节点(节点a128和节点b129)经由两个端部接触点122-1、122-2布置在高阻抗电阻器121上,以形成散热路径。为了减少在高阻抗电阻器121的中心处积聚的热量,高阻抗电阻器121还具有位于两端之间的中间节点(节点1126)以用作散热器。这里节点1126包括设置在高阻抗电阻器121的底面下方的间接接触通孔124下方的下部散热金属125,使得高阻抗电阻器121的中心处的热量可以经由节点1126散发到半导体装置的大散热器群(largeheatsinkpool)中。例如,当实施例2a中的元件是半导体ic时,节点1126可以将高阻抗电阻器121热耦合到基板上,诸如大容量互补金属氧化物半导体(cmos)或绝缘体上硅(soi)cmos,可以进一步的将热量从ic中散发出去。下部散热金属125的尺寸可以根据装置的电性能和热性能要求来优化。与不包含中间节点1126的常规装置相比,本实施例中的装置具有类似的电性能并且可能具有一些寄生电容。图1中的实施例2a120会使装置中有较大的寄生电容,因为下面的散热器节点1126不仅是热导体,而且还是因为与基底不可避免的有较大电耦合而导致更多寄生电容的“电导体(electricalconductor)”。稍后将讨论金属节点的几何设计细节。
在本揭露中,除非另有说明,否则电阻器中的电流具有从节点a到节点b的流动方向。
在实施例3a130中,高阻抗电阻器131包括串联连接的两个分离的电阻器单元(子电阻器)。例如,一个10欧姆电阻可以分成两个串联连接的5欧姆电阻。两个边缘阀门或端部节点(节点a138和节点b139)经由两个端部接触点132-1、132-2布置在高阻抗电阻器131上以形成散热途径。另外,在两端之间插入中间节点(节点1136和节点2137),以作为用于降低高阻抗电阻器131的中心区域的温度的散热器。在该实施例中,两个中间节点被布置在两个相邻子电阻器的两个相邻端部上并且形成热耦合节点对,也就是由覆盖两个中间节点的单一金属件构成。如图2所示,金属件可以是设置在接触点132上的上部散热金属133,与高阻抗电阻器131的顶面直接接触。或者设置在高阻抗电阻器131(未示出)的底面下方的间接接触点下方的下部金属。这样,高阻抗电阻器131的中心区域中的热量,也就是在实施例3a130中的两个子电阻器的连接区域中的热量可以经由耦合节点对(节点136与节点137)消散到半导体元件的大散热器中。例如,当实施例3a中的元件是半导体ic时,耦合节点对(节点136与节点137)可将高阻抗电阻器131热耦合至网状电源平面/接地平面或向下耦合至块状或soicmos,以进一步消散ic的热量。为了减少由插入的散热器引入的寄生电容,可以设计散热器金属对形状以使得上部散热金属133与高阻抗电阻器131并联运行和/或被高阻抗电阻器131的区域完全覆盖,就像在实施例1a中一样。在一个示例中,实施例3a中的中间节点并非全部布置在子电阻器的末端部分处,特别是当子电阻器具有不同的长度或尺寸时更适合如此布置。在另一个示例中,实施例3a中的每个中间节点皆被布置在子电阻器的末端部分处,并且两个相邻子电阻器末端处的任何两个中间节点形成热耦合节点对,如图3所示,可以利用现有的散热片结构为串联电阻建立新的散热片插入结构。
图2为根据本揭露的一些实施例的第一组示例性半导体元件的俯视图。图2绘示了图1中的实施例1a的不同版本。例如,图2中的实施例1a110与图1中的实施例1a110相同,皆为其中一个中间节点(节点1)插入电阻两端之间用以散热。
在图2的实施例1b220中,除了通过两个接触点222设置在高阻抗电阻器221上的两个端部节点(节点a228和节点b229)之外,两个中间节点(节点1226和节点2227)被插入在高阻抗电阻器221的两个端部节点以用于散热。两个中间节点中皆包括设置在与高阻抗电阻器221的顶面直接接触的接触点222上的上部金属223,使得高阻抗电阻器221的中心处的热量可以经由两个中间节点导入半导体元件中的大散热器里。
在图2的实施例1c230中,除了两个端部节点(节点a238和节点b239)之外,三个中间节点(节点1235、节点2236和节点3237)被插入在高阻抗电阻器231的两个端部之间用于散热。三个中间节点皆包括设置在与高阻抗电阻器231的顶面直接接触的接触点232上的上部金属233,使得高阻抗电阻器231的中心的热量可以经由两个中间节点导入半导体元件中的大散热器里。
在一些实施例中,插入电阻器上的中间节点的数量可以大于三。并且,在一些实施例中,设置在电阻器上的中间节点的位置不必像图2所示的那样均匀地分布在电阻器上。例如,当一个电阻的一端比另一端宽时,或者当电阻的不同部分具有不同的材料时,散热器(中间金属节点)可以基于实验或测量,被分配以对应于电阻上的最热点。
根据本揭露的一些实施例,图3示出了图2中示例性半导体元件的温度分布。对于实施例1a110,实施例1b220,实施例1c230,图3分别示出沿着从电阻器的节点a到节点b的轴线的相应温度分布310、320、330。
如图3所示,实施例1a110的温度分布310在两个端节点处具有两个低点318、319,并且在中间节点1处具有一个低点316。由于中间节点1位于电阻器的中心,与没有中间节点的传统设备相比,在电阻器中心没有较大的热点,但是在节点之间有两个较小的热点311。另外,与没有中间节点的传统设备相比,本实施例中的电阻器的整体温度降低。
实施例1b220的温度分布320在两个末端节点处具有两个低点328、329,在中间节点1和2处具有两个低点326、327。与不具有中间节点的传统设备相比,在电阻器中心没有较大的热点,但是在节点之间有三个较小的热点321。另外,与没有中间节点的传统设备相比,本实施例中的电阻器的整体温度降低。
类似地,实施例1c230的温度分布330在两个末端节点处具有两个低点338、339,在中间节点1、2、3处具有三个低点335、336、337。与不具有中间节点的传统设备相比,在电阻器中心没有较大的热点,但是在节点之间有四个较小的热点331。另外,与没有中间节点的传统设备相比,本实施例中的电阻器的整体温度降低。
如图3所示,在电阻器的两端之间插入更多的中间节点可以为电阻器带来较低的总体温度和较均匀的温度分布。另一方面,更多的中间节点有可能造成着更高的设备成本。因此,可以基于温度降低和成本增加之间的折衷以及其他问题(如电阻器和节点形状、性能要求等)来确定中间节点的最佳数量。
根据本揭露的一些实施例,图4示出了图2中示的一些示例性半导体元件的对应横截面图。
图4示出了用于实施例1a的横截面视图110'。在横截面图110'中,高阻抗电阻器111具有顶面410、底面420和两个端部430-1、430-2。在高阻抗电阻器111的顶面410上设置有三个接触点112,包括设置在电阻器的两个端部430-1、430-2处的两个端部接触点以及设置在高阻抗电阻器111的中心处的一个中间接触点。根据不同的实施例,中间接触点可以设置在两个端部之间的任何位置。在两个端部接触点112-1、112-2上设置两个端部节点(节点a118和节点b119),并且在中间接触点112-3上设置一个中间节点1116。本例中的节点1116包括多个金属层(散热金属n113-1、散热金属n+1113-2、散热金属n+2113-3、...)和至少一个垂直通孔(散热器通孔n114-1、散热器通孔n+1114-2、...),用以热耦合多个金属层中的相邻金属层。电阻器111的中心处的热量可以通过节点1116导入半导体元件中的大散热器(例如网状电源平面/接地平面)。
图4还示出了用于实施例1b的横截面视图220'。在横截面视图220'中,高阻抗电阻器221上设置有四个接触点222,包括设置在电阻器的两个端部的两个端部接触点以及设置在两个端部之间的两个中间接触点。有两个端节点(节点a228和节点b229)设置在两个端部接触点222上,两个中间节点226、227设置在两个中间接触点222上。在这个例子中,两个中间节点226、227皆包括多个金属层和至少一个垂直通孔,通孔将多个金属层中的相邻金属层热耦合。例如,本示例中的中间节点226包括散热金属n223-1、散热金属n+1223-2、散热金属n+2223-3等,以及散热器通孔n224-1、散热器通孔n+1224-2等用以热耦合相邻的散热器金属。高阻抗电阻器221的中心处的热量可以经由两个中间节点226、227被导入半导体元件中的大散热器(例如,网状电源平面/接地平面)。
根据一些实施例,电阻器的顶部接触点可以由钨形成。以及,根据一些实施例,每个金属层或每个散热器金属可以由铝合金形成。
根据一些实施例,可以基于元件的尺寸、元件的成本、金属层的材料、以及元件的其他部分的材料等来优化中间节点中的金属层的数量。当电阻上存在多个中间节点时,不同中间节点中金属层的数量和/或材料可以不同。
图5示出了根据本揭露的一些实施例的第二组示例性半导体元件的俯视图和温度分布。图5并且示出了图1中的实施例2a的不同版本。例如,图5中的实施例2a120与图1中的实施例2a120相同,皆为其中一个中间节点(节点1)插入电阻器的两端之间和电阻器下方进行散热。
在图5的实施例2b中,除了经由将两个端部接触点522布置在高阻抗电阻器521上的两个端部节点(节点a528和节点b529)之外,亦将两个中间节点(节点1526和节点2527)插入在高阻抗电阻器521的两个端部之间,并在高阻抗电阻器521下方散热。两个中间节点皆包括布置在高阻抗电阻器521的底面下方的间接接触点524下方的下部金属525,使得高阻抗电阻器521的中心处的热量可以经由两个中间节点导入大散热器(例如块状或soicmos)。
在一些实施例中,插入电阻器下方的中间节点的数量可以大于两个。并且,在一些实施例中,布置在电阻器下方的中间节点的位置不必如图5所示的那样均匀地分布在电阻器上。
对于实施例2a120和2b520,图5分别示出沿着从电阻器的节点a到节点b的轴的相应温度分布540和550。如图5所示,实施例2a120的温度分布540在两个端节点处具有两个最低点548、549,并且在中间节点1处具有一个低点546。由于中间节点1位于电阻器的中心,与不具有中间节点的传统设备相比,在电阻器中心没有较大的热点,但是在节点之间存在两个较小的热点541。另外,与没有中间节点的传统装置相比,本实施例中的电阻器的整体温度降低。
根据观察,在这个实施例中,节点1处的温度高于节点a和b处的温度。还可以观察到,与图3中的温度分布310相比,图5中节点1546处的温度比图3中节点1316处的高。这些观察结果可以表明,当散热片的其他参数具有可比性时,直接接触散热片比间接接触散热片效果更好。
类似地,实施例2b520的温度分布550在两个末端节点处具有两个低点558、559,在中间节点1和2处具有两个低点556、557。与没有中间节点的传统设备不同,在此处的电阻器中心没有大的热点,但是在节点之间有三个较小的热点551。另外,与没有中间节点的传统设备相比,本实施例中的电阻器的整体温度降低。
如图5所示,在电阻器的两端之间插入更多的中间节点可以为电阻器带来较低的总体温度和较均匀的温度分布。但另一方面,更多的中间节点可能造成更高的设备成本。因此,可以基于温度降低和成本增加之间的折衷以及其他问题(如电阻器和节点形状、性能要求等)来确定最佳数量的中间节点。
图6示出了图5中的示例性半导体元件之一的对应横截面图。根据本揭露的一些实施例。图6示出了用于实施例2a的横截面视图120'。如横截面视图120'所示,高阻抗电阻器121具有顶面610,底面620和两个端部630-1、630-2。在高阻抗电阻器121的两个端部630-1、630-2处的顶面610上设置有两个端部接触点122-1、122-2,和布置在两个端部接触点122-1、122-2上的两个端部节点(节点a128和节点b129)。另外,如图6所示,hir电阻121被电介质层123覆盖。中间节点1126设置在电介质层123下方并位于电阻器121的两个端部之间。本例中的节点1126包括多个金属层(散热金属n-1125-1、散热金属n-2125-2、散热金属n-3125-3等)以及至少一个通孔(散热器通孔n-1124-1、散热器通孔n-2124-2,...),通孔用以热耦合多个金属层中的相邻金属层。高阻抗电阻器121中心的热量可以通过节点1126导入半导体元件中的大散热器(块状基板,或soicmos)。根据一些实施例,金属层或散热器金属可以由铝合金形成。
根据一些实施例,可以基于元件的尺寸、元件的成本、金属层的材料、以及元件的其他部分的材料等来优化中间节点中的金属层的数量。当在电阻器下方设置多个中间节点时,不同中间节点中金属层的数量和/或材料可以不同。并且,在一些实施例中,一个电阻器可以具有设置在电阻器顶部的中间金属节点和设置在电阻器底部的中间金属节点。
图7示出了根据本揭露的一些实施例的第三组示例性半导体元件的俯视图。图7示出了图1中的实施例3a的不同版本。例如,图7中的实施例3a130与图1中的实施例3a130相同,其中电阻包括两个串联的子电阻,中间节点位于每个子电阻的每个端部,两个相邻子电阻的任意两个中间节点形成热耦合节点对,用于电阻的散热。
在一些实施例中,电阻器中的子电阻器的数量可以大于三。并且,在一些实施例中,子电阻器的形状和/或尺寸彼此不同。在一些实施例中,一个子电阻器可以比另一个子电阻器更宽或者具有与另一个子电阻器不同的材料。在这种情况下,散热器(中间金属节点)可以基于实验或测量被分配以对应于子电阻上的最热点。
图8示出了图7中的示例性半导体元件的温度分布。根据本揭露的一些实施例。对于实施例3a130和3b720,图8分别示出沿着从电阻器的节点a到节点b的轴线的对应温度分布810和820。
如图8所示,实施例3a130的温度分布810在两个末端节点处具有两个低点818、819,在中间节点对(节点1与2)处具有一个低平面区域816。由于中间节点对位于电阻器的中心,与没有中间节点对的传统设备相比,此电阻器中心没有较大的热点,但是在节点之间存在两个较小的热点811。另外,与不具有中间节点对的传统设备相比,本实施例中的电阻器的整体温度降低。
类似地,实施例3b720的温度分布820在两个末端节点处具有两个低点828、829,并且在中间节点对(节点1与2和节点3与4)处具有两个低平面区域824、826。与不具有中间节点对的传统设备相比,此电阻器中心没有较大的热点,但是在节点之间存在三个较小的热点821。另外,与不具有中间节点对的传统设备相比,本实施例中的电阻器的整体温度降低。
如图8所示,在电阻器的两端之间插入更多的中间节点对可以为包含了串联连接的多个子电阻器的电阻器带来更低的总体温度和更均匀的温度分布。但另一方面,更多的中间节点对可能造成更高的设备成本。因此,可以基于温度降低和成本增加之间的折衷以及其他考量(如子电阻器和节点的形状、性能要求等)来决定电阻器中的子电阻器和中间节点对的最佳数量。
根据本揭露的一些实施例,图9示出了图7中的示例性半导体元件之一的对应横截面图。图9示出了实施例3a的横截面视图130'。在横截面图130'中,每个电阻器131具有顶面910、底面920和两个端部930-1、930-2。在电阻器131上设置有四个接触点132,包括设置在每个电阻器的两个端部的两个端部接触点。在两个端部接触点132-1、132-2上设置两个端部节点(节点a138和节点b139),并且在中间接触点132-3、132-4上设置一个中间节点对136与137。本例中的节点对136与137包括多个金属层(散热金属n133-1、散热金属n+1133-2、散热金属n+2133-3、...)和至少一个通孔(散热器通孔n134-1与134-2、(散热器通孔n+1134-3与134-4......),用以热耦合多个金属层中的相邻金属层。在电阻器131的中心处,即在电阻器131中串联连接的两个子电阻器的连接区域处的热量可以经由节点对136与137被导入半导体元件中的大散热器(例如,网状电源平面/接地平面)。
在一些实施例中,当电阻被分成多个子电阻时,可以在电阻下方插入一个或多个中间金属节点对,并且电阻中心的热量可以通过一个或多个中间金属节点对导入装置的基板。并且,在一些实施例中,一个电阻器可以具有设置在电阻器顶部的中间金属节点对和设置在电阻器底部的中间金属节点对。
根据一些实施例,电阻器顶部的接触点可以由钨形成。并且,根据一些实施例,每个金属层或每个散热器金属可以由铝合金形成。并且,根据一些实施例,可以基于元件的尺寸、元件的成本、金属层的材料、以及元件的其他部分的材料等来优化中间节点对中的金属层的数量。当电阻上存在多个中间节点对时,不同中间节点对中金属层的数量和/或材料可以不同。
根据本揭露的一些实施例,图10示出了图2中的第一组示例性半导体器件的几何设计。在实施例1a110中,电阻器111具有与两个端节点之间的距离相等的电阻器长度l1001,并且具有如图10所示的电阻器宽度w1002。所插入的中间散热器金属具有金属长度1003和金属宽度1004。更具体地说,当散热器节点包括多个金属层时,每个散热器金属层可以具有不同的金属长度或宽度。
此处散热器节点的几何设计的目标是减少半导体元件中的寄生电容。在插入节点之前,电阻器和元件的基板之间会存在寄生电容。寄生电容与形成电容的两个极板之间的公共区域成比例。在如图10所示的实施例1a中,如图10所示,因为节点设置在电阻器的顶部并且经由接触点电性连接到电阻器,所以散热器金属节点的插入将不会引入太多额外的寄生电容,特别是当节点被电阻器完全覆盖或阻挡时而不接触基板,也就是没有可以连接节点和基板而不穿透电阻器的垂直直线时更是如此。
在一些实施例中,中间金属具有与电阻器相同的几何形状并且与电阻器并联放置。如图10所示,在元件的顶视图中,散热器金属和电阻器都具有矩形形状。
当金属节点包括多个金属层时,金属层包括:与电阻器上的对应接触点接触的第一金属层(散热金属n),以及其他金属层(散热金属n+i,i=1,2...)设置在第一金属层上。在一些实施例中,多个金属层中的每一层具有与电阻器相同的形状。并且在一些实施例中,每个金属层的面积小于或等于电阻器的面积。
在一些实施例中,第一层(散热器金属n)具有:小于或等于电阻器长度l1001的第一金属长度1003,以及小于或等于电阻器长度宽度w1002的第一金属宽度1004,并且每个其他层(散热器金属n+1)具有:大于或等于第一金属长度1003的金属长度1003-i,以及大于或等于第一金属宽度1004的金属宽度1004-i。在一些实施例中,第一层(散热金属n)具有:从0.1*l和1l之间的范围中选择的第一金属长度1003,以及从0.1*w和40w之间的范围中选择的第一金属宽度1004,并且其他各层(散热器金属n+1)具有:从0.1*l和40l之间的范围中选择的金属长度1003-i,以及从0.1*w和40w之间的范围选择的金属宽度1004-i。
根据本揭露的一些实施例,图11示出了图5中的第二组示例性半导体元件的几何设计。在实施例2a120中,电阻器121具有等于两个端节点之间的距离的电阻器长度l1101,并且具有电阻器宽度w1102,如图11所示。插入的中间散热器金属具有金属长度1103和金属宽度1104。更具体来说,当散热器节点包括多个金属层时,每个散热器金属层可以具有不同的金属长度或宽度。
在实施例2a中,如图11所示,因为节点设置在电阻器和基板之间,并且没有直接电性连接到电阻器,所以散热器金属节点插入会对元件引入一些额外的寄生电容。
在一些实施例中,中间金属具有与电阻器相同的几何形状并且与电阻器并联放置。如图11所示,散热器金属和电阻器在元件的俯视图中具有矩形形状。
当金属节点包含多个金属层时,金属层包括:与电阻器下方的电介质层接触的第一金属层(散热器金属n-1),以及设置在第一金属层下方的其他金属层(散热器金属n-i,i=2,3…)。在一些实施例中,多个金属层中的每一个具有与电阻器相同的形状。并且在一些实施例中,每个金属层的面积小于或等于电阻器的面积。
在一些实施例中,第一层(散热器金属n-1)具有:小于或等于电阻器长度l1101的第一金属长度1103-1,以及小于或等于电阻器宽度w1102的第一金属宽度1104,并且其他各层(散热金属n-i)具有大于或等于第一金属长度1103的金属长度1103-i(i=2,3...),以及大于或等于第一金属长度1104的金属长度1104-i(i=2,3...)。在一些实施例中,第一层(散热器金属n-1)具有:选自0.1*l和1l之间的范围的第一金属长度1103,以及选自0.1*w和40w的范围中选择的金属宽度1104,其他各层(散热金属n-i)具有:选自0.1*l和1l之间的范围的第一金属长度1103-i(i=2,3...),以及选自0.1*w和40w的范围中选择的金属宽度1104-i(i=2,3...)。
可以理解的是,实施例3a中示例性半导体元件的几何设计可以按照与第10与11图所示的实施例1a和二的几何设计类似的方式进行。
图12示出了根据本揭露的一些实施例的用于形成半导体元件的示例性方法1200的流程图。如图12所示,在1202处形成电阻器,其中电阻器具有顶面、底面和两个端部。两个端部接触点分别在两个端部的顶面上的1204处形成。在1206处,两个端部接触点之间的顶面上形成至少一个中间接触点,两个端部金属节点分别在两个端部接触点1208处形成。在1210处,在至少一个中间接触点上形成至少一个中间金属节点。
图13示出了根据本揭露的一些实施例的用于形成半导体器件的另一示例性方法1300的流程图。如图13所示,在1302处形成电阻器,其中电阻器具有顶面、底面和两个端部。在1304处,两个端部接触点分别在两个端部的顶面上的形成。在1306处,两个端部金属节点分别在两个端部接触点的形成。在1308处,在底面下方的形成电介质层。在1310处,至少一个中间金属节点在介电层下方并且在两个端部之间形成。
图14示出了根据本揭露的一些实施例的用于形成半导体器件的又一示例性方法1400的流程图。如图14所示,在1402处,形成包含了串联连接的多个电阻器的电阻器层,其中多个电阻器中的每一个皆具有顶面、底面和两个端部。在1404处,两个端部接触点分别形成在电阻器的两个端部处的顶面上。在1406处,在每个接触点上的形成金属节点。在1408处,设置在两个电阻器的两个相邻端部上方的任意两个金属节点热耦合,以形成一对耦合的金属节点。
可以理解的是,图12、图13、图14中的步骤的顺序皆可根据本揭露的不同实施例做改变。
在其中一个实施例中,公开了一种半导体元件。该半导体器件包括:具有顶面、底面和两个端部的电子元件;设置在顶面上的多个接触点;以及布置在多个接触点上的多个金属节点。多个接触点包括分别设置在两个端部处的两个端部接触点以及设置在两个端头接触点之间的至少一个中间接触点。多个金属节点包括分别设置在两个端部接触点上的两个端部金属节点以及设置在至少一个中间接触点上的至少一个中间金属节点。半导体元件中至少一个中间金属节点包含多个金属层和至少一个垂直互连通路,垂直互连通路热耦合多个金属层中的相邻金属层。半导体元件中至少一个中间金属节点中的多个金属层包含第一金属层与设置在第一金属层上的一第二金属层。第一金属层与相应的接触点接触,并具有小于或等于电子元件的长度的第一长度,和小于或等于电子元件的宽度的第一宽度。第二金属层具有大于或等于第一长度的第二长度,和大于或等于第一宽度一第二宽度。半导体元件中至少一个些金属节点中的金属层中的每一个都具有与电子元件相同的形状。每个金属层的面积都小于或等于电子元件的面积。半导体元件也包含设置于金属节点上方的接地面,至少一个中间金属节点将电子元件热耦合于接地面。半导体元件也包含设置于多个金属节点上方的电源平面,至少一个中间金属节点将电子元件热耦合于电源平面。半导体元件也包含设置在底面下方一介电层,以及至少一个金属节点设置于介电层下方,每一个金属节点皆布置于两个端部之间。半导体元件中的电子元件由高电阻材料形成。
在另一个实施例中,公开了一种半导体器件。该半导体器件包括:具有顶面、底面和两个端部的电子元件;两个端部接触点分别设置在顶面和两个端部;两个端部金属节点分别设置在两个端部接触点上;设置在底面下方的电介质层;以及至少一个中间金属节点,中间金属节点设置在电介质层下方并且在两个端部之间。半导体元件中至少一个中间金属节点包含多个金属层和至少个一通孔,通孔热耦合金属层中的相邻金属层。半导体元件中至少一个中间金属节点中的金属层还包含第一金属层与第二金属层。第一金属层与介电层接触,且具有小于或等于所述电子元件的长度的第一长度,以及小于或等于电子元件的宽度的一第一宽度。第二金属层设置于第一金属层下方,且具有大于或等于第一长度的第二长度,以及大于或等于第一宽度的第二宽度。半导体元件也包含一个基底,基底设置于至少一个中间金属节点下方,中间金属节点将电子元件热耦合于基底上。半导体元件中的电子元件由高电阻材料形成。
在又一个实施例中,公开了一种半导体器件。该半导体器件包括:包含了串联连接的多个电子元件的电子元件层;包含了设置在电子元件层上的多个端部接触点的接触层;以及第一金属节点层,其包括了布置在接触层上的第一组多个金属节点。多个电子元件中的每一个都具有顶面、底面和两个端部。多个端部接触点包含了设置在多个电子元件中的每一个的顶面上的两个端部接触点。两个端部接触点分别布置在电子元件的两个端部处。多个金属节点中的每一个皆设置在多个端部接触点中的对应的一个上。在第一组多个金属节点中,布置在两个电子元件的两个相邻端部上方的任意两个金属节点热耦合以形成一对耦合的金属节点。半导体元件中的每对耦合金属节点皆包含多个金属层和至少一对平行通路,平行通路热耦合金属层中的相邻金属层。半导体元件中每对耦合金属节点中的金属层包含第一金属层与第二金属层。第一金属层与接触层接触,并具有小于或等于电子元件层的长度的一第一长度,和小于或等于该电子元件层的宽度的第一宽度。设置于第一金属层上,并具有大于或等于第一长度的第二长度,和大于或等于第一宽度的第二宽度。半导体元件也包含设置于第一金属节点层上方的接地面,至少一对耦合金属节点将电子元件层热耦合于接地面。半导体元件也包含还包含设置于第一金属节点层上方的电源面,至少一对耦合金属节点将电子元件层热耦合于电源面。半导体元件也包含介电层与第二金属节点层。介电层设置于电子元件层下面。第二金属节点层包含布置于介电层下方的多个金属节点,里面的中的每一个金属节点皆设置于电子元件的端部下方,且布置于两个电子元件的两个相邻端部下方的任意两个金属节点彼此热耦合。半导体元件中的每一个电子元件皆由高电阻材料形成。
以上说明书概述了若干实施例的特征,使得本领域的普通技术人员可以更好地理解本揭露的各方面。本领域的技术人员可以很容易地使用本揭露作为设计或修改用于实现相同目的和/或实现与本文介绍的实施例具有相同优点的其他制程和设计的基础。本领域技术人员应该认识到,这些类似于本揭露的构造并不脱离本揭露的精神和范围,并且可以在不脱离本揭露的精神和范围的情况下进行各种改变、替换和变更。