与联邦政府资助的研究或开发相关的声明
本文描述的发明得到美国政府支持,在美国能源部授予的编号de-fc36-07go17043的合同下完成。美国政府可拥有本发明的某些权利。
本文所述主题的实施例整体涉及太阳能电池。更具体地讲,所述主题的实施例涉及太阳能电池制造方法和结构。
背景技术
太阳能电池是熟知的用于将太阳辐射转换成电能的装置。它们可以在半导体晶片上用半导体加工术制造而成。太阳能电池包括p型和n型扩散区。冲击在太阳能电池上的太阳辐射产生迁移至扩散区的电子和空穴,从而在扩散区之间形成电压差。在背接触背结(bcbj)太阳能电池中,p型和n型扩散区以及连接到它们上的金属触点位于太阳能电池的背面。金属触点允许将外部电路连接到太阳能电池上并由太阳能电池提供电力。
在高效太阳能电池中,电池参数例如分流电阻、串联电阻和本体寿命是最终制造器件上要维持的重要参数。太阳能电池加工步骤,具体地讲bcbj太阳能电池上的激光烧蚀步骤,可影响这些参数的每一者。由于串联电阻或寿命而引起的后激光损耗可以步骤成本为代价进行弥补,例如通过增加热处理或蚀刻步骤。如文中所述,当电池构造具有处于另一种极性的扩散层上的一种极性的金属时,可能普遍的是增加了对高效bcbj太阳能电池分流的复杂性。
为了与市场上提供的其他能量源进行竞争,太阳能电池不仅须高效,而且须以相对较低成本和较高产量制造。本发明的实施例涉及降低太阳能电池制造成本并提高太阳能电池可靠性的新型太阳能电池制造方法和结构。
技术实现要素:
在一个实施例中,通过激光烧蚀形成太阳能电池的接触孔,以适应多种太阳能电池设计。用具有大体均匀厚度的膜替换形成于扩散区上的膜有利于使用激光形成接触孔。可调整作为吸收层的膜厚度以匹配激光参数。可控制接触孔下的掺杂剂深度以增大激光烧蚀方法裕度。可调整激光配置以形成穿过不同厚度的介质膜的接触孔。
本领域的普通技术人员在阅读包括附图和权利要求书的本公开全文之后,本发明的这些和其他特征对于他们而言将是显而易见的。
附图说明
当结合以下附图考虑时,通过参见具体实施方式和权利要求书可以更完全地理解本文所公开的主题,其中在所有附图中,类似的附图标记是指类似的元件。附图未按比例绘制。
图1示意性地示出了示例性的bcbj太阳能电池,其具有形成于相反极性扩散区上的金属触点。
图2示出了图1的太阳能电池的俯视图。
图3示出了在图2的截面a-a处截取的图1的太阳能电池的剖视图。
图4-6示出了根据本发明实施例进行制造的太阳能电池的剖视图。
图7示出了图1的太阳能电池的另一个俯视图。
图8示出了在图7的截面b-b处截取的图1的太阳能电池的剖视图。
图9示出了根据本发明实施例的具有深扩散区的太阳能电池的剖视图。
图10-13示出了根据本发明另一个实施例进行制造的太阳能电池的剖视图。
图14示出了根据本发明另一个实施例的具有激光形成的接触孔的太阳能电池的剖视图。
图15示出了根据本发明一个实施例的具有额外介质层的图3的剖视图。
具体实施方式
在本发明中,提供了许多具体的细节,例如设备、方法和结构的例子,以提供对本发明实施例的全面理解。然而,本领域的普通技术人员将会认识到,本发明可以在没有所述具体细节中的一者或多者的情况下实施。在其他情况下,未示出或描述熟知的细节,以避免使本发明的方面模糊不清。
在一些高效太阳能电池设计中,一种极性的扩散区的金属触点可在相反极性扩散区上延伸(如,n型扩散区的金属触点形成于p型扩散区上)。在该太阳能电池设计中,关键在于使金属触点与扩散区电绝缘的层间介质没有缺陷。否则,一种极性的金属触点可能通过层间介质中的缺陷与相反极性的扩散区构成电短路。
图1示意性地示出了示例性背面接触背面结(bcbj)太阳能电池300,其具有形成于相反极性扩散区上的金属触点。在图1的例子中,p型(标为352)和n型(标为351)扩散区形成于基板401(如,单晶或多晶硅)中。在其他实施例中,p型和n型扩散区形成于401基板背面表面上的另一层(如多晶硅)中。为了清晰说明,图1中未示出层间介质。
太阳能电池300包括金属触点301和303。金属触点301为n极性金属触点,因为它们电连接到对应的n型扩散区。类似地,金属触点303(图1中仅示出一个)为电连接到对应p型扩散区的p极性金属触点。金属触点301和303可交错。一个金属触点301在图1中示出为透明线迹,以便更清楚地显示下面的n型扩散区。如图1所示,n极性金属触点301越过p型扩散区的各部分。这就有可能使得n极性金属触点301通过居间的层间介质(未在图1中示出;参见图3和8的305)与p型扩散区构成电短路。
图2示出了太阳能电池300的一部分的俯视图。太阳能电池300包括穿过层间介质形成的接触孔302,所述层间介质将n极性金属触点301与下面的扩散区隔开。n极性金属触点301通过对应的接触孔302接触下面的n型扩散区。
图3示出了在图2的截面a-a处截取的太阳能电池300的剖视图。如图3所示,太阳能电池300包括层间介质305,其使n极性金属触点301与下面的扩散区电绝缘。接触孔302穿过层间介质305形成,以允许n极性金属触点301电连接到对应的n型扩散区。接触孔302通常通过常规的掩蔽和湿蚀刻形成。发明人发现蚀刻方法中使用的一些蚀刻剂可使层间介质305中的现有瑕疵(如,针孔、凹点和其他缺陷)变得更糟,造成瑕疵变成全方位的缺陷。例如,一些蚀刻剂可扩大现有针孔。又如,一些蚀刻剂可导致穿过层间介质305构成电短路306。
使用激光而非常规湿蚀刻方法来形成接触孔302有利地避免了使层间介质305中可能存在的瑕疵变得更糟。通过避免在接触孔形成过程中使层间介质305暴露于有害蚀刻剂,激光烧蚀步骤保留了层间介质305的完整性。
图4示出了根据本发明实施例进行制造的太阳能电池300的剖视图。太阳能电池300具有正面153和背面152。正面153朝向太阳,在正常工作时收集太阳辐射。背面152与正面153相背对。
在图4的例子中,基板101包括n型单晶硅片。p型和n型扩散区形成于太阳能电池基板101中,但也可以形成于太阳能电池基板101上形成的另一层(如,多晶硅)中。用随机棱锥纹理化基板101的正面表面,以增大太阳辐射收集效率。钝化区107使基板101的正面表面钝化,以使复合最小化。在一个实施例中,钝化区107为通过从正面153扩散n型掺杂剂形成的n型钝化区。n型掺杂剂可包含磷。在一个实施例中,通过在投入磷的熔炉中加热基板101,来形成钝化区107。磷扩散到基板101的正面中,从而形成钝化区107。太阳能电池的背面152上的二氧化硅层108是形成钝化区107的副产品。更具体地讲,使n型掺杂剂扩散到基板101中并形成钝化区107的加热步骤还导致基板101的背面表面上的氧化层108的生长。
抗反射涂层109形成于正面153上,并且抗反射涂层110形成于背面152上。在一个实施例中,抗反射涂层109和110包含氮化硅。在正面153上,抗反射涂层109形成于基板101的正面表面上的钝化区107上。在背面152上,抗反射涂层110形成于氧化层108上。
在图5中,对太阳能电池300进行激光烧蚀步骤以形成到达p型和n型扩散区的接触孔。激光烧蚀步骤可涉及发射一条或多条激光束以从背面152移除材料,从而暴露p型和n型扩散区用于金属化。在图5的例子中,激光烧蚀步骤移除抗反射涂层110和氧化层108的一部分以形成到达p型和n型扩散区的接触孔。激光烧蚀步骤可通过如下方式进行:将激光束发射通过激光扫描器,激光扫描器在背面152上扫描激光束以形成接触孔。可采用市售激光源和扫描器进行激光烧蚀。采用激光的示例性太阳能电池烧蚀系统在提交于2010年7月1日的共同拥有的美国专利申请no.12/829,275中有所公开。还可采用利用激光的其他烧蚀系统。
使用激光形成到达p型和n型扩散区的接触孔有利地消除了掩蔽和固化步骤,而这些步骤在用传统蚀刻方法形成接触孔的其他方法中可能是必要的。此外,激光烧蚀防止抗反射涂层110和氧化层108及可能存在的任何层间介质暴露于蚀刻剂,蚀刻剂可使现有缺陷或瑕疵变得更糟。
在图6中,金属触点112和113形成于接触孔中以与对应的扩散区进行电连接。在图6的例子中,金属触点112形成于接触孔中以与p型扩散区进行电连接。相似地,金属触点113形成于接触孔中以与n型扩散区进行电连接。金属触点112和113可交错,并且可包含铜或金属化所用的其他单层或多层导电材料。金属触点112和113可通过例如电镀形成。金属触点112和113允许将电路连接到太阳能电池上并由太阳能电池提供电力。到达p型扩散区的金属触点112可越过n型扩散区。相似地,到达n型扩散区的金属触点113可越过p型扩散区。因为金属触点形成于由激光烧蚀而成的接触孔中,金属触点与相反极性扩散区构成电短路的机会大大减少。
本发明发现的潜在的激光相关问题现将结合图7和8进行描述。图7示出了图1的太阳能电池300的一部分的另一俯视图。太阳能电池300包括穿过层间介质形成的接触孔307,所述层间介质将p极性金属触点303与下面的扩散区隔开。
图8示出了在图7的截面b-b处截取的太阳能电池300的剖视图。接触孔307(即,307-1、307-2、...)穿过层间介质305形成以允许p极性金属触点303电连接到下面的p型扩散区。
在图8的例子中,接触孔307通过激光烧蚀形成。如果激光未正确控制,激光束可穿通扩散区,从而因随后形成的金属触点与基板构成电短路而不利地影响太阳能电池的运行。在图8的例子中,激光烧蚀步骤形成一路穿过层间介质305、一路穿过p型扩散区并进入基板401中的接触孔307-1。解决该激光穿通问题的一种方式是把扩散区制造得更深,如现将结合图9解释的。
图9示出了根据本发明实施例的具有深扩散区的太阳能电池400的剖视图。在图9的例子中,p型扩散区(标为402)形成于太阳能电池基板411中,该基板包括单晶硅片。在其他实施例中,p型扩散区形成于基板411的背面表面上所形成的另一层(如,多晶硅)中。在图9的例子中,接触孔405(即,405-1、405-2、...)通过激光烧蚀穿过层间介质403形成。p极性金属触点404通过接触孔405电连接到p型扩散区。应该指出的是,本发明中的所有附图(包括图9)未按比例绘制。
在图9的例子中,p型扩散区形成得相对较深。例如,p型扩散区可具有比0.5μm更深的深度407。p型扩散区的深度由激光烧蚀步骤的方法裕度决定。优选地,使所需激光烧蚀深度最小化以用于该方法,然后在横截面上进行测量。然后通过控制掺杂剂形成方法(如,熔炉温度和时间、起始掺杂剂浓度等),来将扩散区的掺杂剂深度设置为比所需的激光烧蚀深度更深。深扩散区有利地允许具有更宽方法裕度的激光烧蚀步骤。在具有p型扩散区的太阳能电池的背面上形成的深n型扩散区还可具有与p型扩散区相同的深度。
在图9的例子中,接触孔405-1以相对较深的深度形成于p型扩散区中。深接触孔405-1可归因于通常与方法控制相关的问题、激光烧蚀方法裕度或其他问题。然而,与图8不同的是,由于p型扩散区的深度,接触孔405-1不能一路穿通p型扩散区。金属触点404形成于接触孔405(即,405-1、405-2、...)中。金属触点404可安全越过相反极性的扩散区(即,n型扩散区),因为金属触点404形成于激光烧蚀而成的接触孔中。
发明人还发现一些太阳能电池设计中存在的不同膜厚度可使激光烧蚀复杂化。此类太阳能电池设计的例子示于图10中。
图10示出了具有要穿过其形成接触孔的不均匀膜423的太阳能电池420的剖视图。在图10的例子中,膜423包括层间介质。膜423可为形成于太阳能电池基板421上的单层介质或多层介质叠堆(如,氧化物和/或氮化物;氧化物和/或聚酰亚胺)。太阳能电池基板421可包括单晶硅片。p型和n型扩散区可形成于太阳能电池基板421中,或形成于太阳能电池基板421上形成的另一层(如,多晶硅)中。
在图10的例子中,p型扩散区上的膜423的部分比n型扩散区上的膜423的部分更厚。在其他情况下,n型扩散区上的膜423的部分比p型扩散区上的膜423的部分更厚。膜厚度的该差异可归因于形成p型和n型扩散区的方法,例如扩散区上形成掺杂剂源的顺序。与形成穿过膜423到达p型扩散区的接触孔相比,形成穿过膜423到达n型扩散区的接触孔需要更少的激光能量。因此,使用相同的激光能量来形成到达p型和n型扩散区的接触孔可导致穿通p型扩散区或其他问题。另一方面,使用不同激光能量来形成到达p型和n型扩散区的接触孔可需要多个激光烧蚀步骤并可导致处理延迟,这不仅仅因为有额外的步骤,而且要对不同能量重新配置激光。
对于图10的太阳能电池设计,p型扩散区上的介质叠堆的厚度可在500-10000埃范围内,并且p型扩散区的扩散深度可在200-2000nm范围内。对于高效太阳能电池,即效率大于20%的太阳能电池,如果没有激光损伤的话,标准本体复合速率(brr)和饱和电流密度(jo)将分别小于1000hz和120fa/cm2。为了避免烧蚀一路穿过基部中的结点并增大brr和jo,同时仍然能够完全移除正在烧蚀的膜,必须使用正确的激光条件。使用短于540nm的波长同时使吸收深度保持最小,防止了brr增大到超过1000hz。使用脉冲长度短于20ps的激光将会使热烧蚀深度保持在低于2000nm。然后调整激光能量,使得达到烧蚀阈值(如,1-20μj)。完整的氧化物移除进而在成品太阳能电池中产生小于1ω-cm2的串联电阻。然而,由于高效太阳能电池上存在这些膜叠堆厚度条件,若不增大brr和jo,单一激光脉冲将仍然不能清除整个介质叠堆。也就是说,使brr保持在小于1000hz并使jo保持在小于120fa/cm2将产生大于1ω-cm2的串联电阻,而得到小于1ω-cm2的串联电阻将导致brr增大到高于1000hz。该问题可通过使用2种或更多种激光脉冲来解决,其中脉冲-脉冲间隔相隔小于500ns,并且后续脉冲的幅度介于第一脉冲的幅度的10%与100%之间。这就允许移除更多材料,无需额外增大brr和jo。示例性的多脉冲激光烧蚀方法在提交于2010年6月7日并且全文以引用方式并入本文的共同拥有的美国专利申请no.12/795,526中有所描述。也可使用其他多脉冲激光烧蚀方法。
因为p型和n型扩散区上的介质叠堆厚度可不同并因此需要不同激光能量来达到适当brr/串联电阻平衡,激光烧蚀工具变得相对较复杂,需要对进行制造的太阳能电池的不同区域改变功率。这就要求激光与光束传输系统之间的精确空间协调,以使激光功率与位置同步,避免由于激光失准产生分流(即,电短路)。失准可通过减慢光束传输系统而避免。然而,这样做会导致工具通量下降,从而增加达到某通量所需的工具成本。作为解决方案,可调整介质叠堆,使得在一个区域上的理想激光参数例如能量和脉冲数不会导致另一区域中的烧蚀。例如,可使p型扩散区上的介质叠堆厚度为5000-10000埃,并可使n型扩散区上的介质叠堆厚度小于2500埃。这就允许具有两个脉冲的3μj激光能量烧蚀n型扩散区上的介质叠堆,而不烧蚀p型扩散区上的介质叠堆。
在激光失准可造成如上所述分流问题(如,在图3中,电短路306)的任何情况中,发明人已发现额外介质层可以图案化的方式沉积,从而阻止激光进行烧蚀。图15示出了图3的剖视图,不同的是添加了在p型扩散区上的层间介质层305的部分上图案化的额外介质层355。图15所示的其他元件已结合图3进行讨论。
在图15的例子中,额外介质层355可包含可作为牺牲品烧蚀的材料,例如着色油墨。额外介质层355可足够厚(如,大于500埃)以防止吸收所用的激光波长。额外介质层355还可包含透射激光的材料(如,聚酰亚胺)但足够厚(如,大于500埃)以防止下面的烧蚀材料蚀穿。额外介质层355还可包含半透明材料,前提条件是牺牲层和从下方射出的材料的直接烧蚀的组合不会导致在额外介质层355中形成针孔。应该指出的是,额外介质层355还可具有防止介质击穿的性质,如随后将在下面讨论的。
根据本发明的实施例,通过移除膜423及此前在p型和n型扩散区上形成的任何其他材料,来制备用于激光烧蚀的图10的太阳能电池420。在介质叠堆彼此相差超过200埃的情况中,该方法特别有利。该方法还在图11中示出,其中p型和n型扩散区上的所有材料已被移除以暴露p型和n型扩散区的背面表面。例如,可使用常规湿蚀刻方法来移除图10的膜423。将膜423及p型和n型扩散区上的任何其他材料移除以控制随后形成于p型和n型扩散区上的膜的厚度。因此,在图12的例子中,大体均匀膜424形成于p型和n型扩散区。本质上,膜424替换不均匀膜423。膜424可包括以大体均匀厚度沉积的层间介质(如,沉积或热生长的氧化物,接着是氮化硅)。膜424可通过化学气相沉积法、其他实现均匀膜沉积的沉积或生长方法沉积。在图13中,用均匀膜424替换非均匀膜423,随后接着是激光烧蚀步骤以穿过膜424形成接触孔,从而暴露p型和n型扩散区的部分。接触孔允许金属触点电连接到对应的扩散区。到达p型扩散区的金属触点可越过n型扩散区。相似地,到达n型扩散区的金属触点可越过p型扩散区。因为金属触点形成于由激光烧蚀而成的接触孔中,金属触点与相反极性扩散区构成电短路的机会大大减少。
穿过图10的膜423的接触孔还可通过激光烧蚀步骤中使用的激光的适当控制来形成。介质膜的典型烧蚀通过间接烧蚀的方法进行,其中激光能量被吸收到基板中,并且膜经由烧蚀基板的向外力射出。这种类型的膜烧蚀被称为间接烧蚀。例如,当所关注的膜不强烈地与激光波长进行交互时,烧蚀深度和基板中的损伤主要由脉冲长度、波长和激光脉冲数引起,所有这些均需要减小,以便获得最小基板烧蚀深度。如果膜或所关注膜叠堆中的一个膜强烈地与激光波长进行交互,则激光方法参数将需要相应地进行调整,例如通过增加脉冲数或通过转换激光波长使得发生直接烧蚀。某些类型的膜可使用多个脉冲通过直接烧蚀移除,而不在硅中烧蚀。使用多个激光脉冲的示例性激光烧蚀方法在提交于2010年6月7日并且全文以引用方式并入本文的共同拥有的美国专利申请no.12/795,526中有所描述。在不减损本发明优点的情况下,还可使用其他多脉冲激光烧蚀方法。
用以改良介质层(如,p型或n型掺杂二氧化硅)或介质叠堆的光学性质使之适合激光烧蚀参数的方法可包括通过组分控制或通过将吸收化合物添加到介质层中以调整介质层而得到直接或间接烧蚀,来调整介质的折射率和吸收系数。作为特定的例子,对于530nm或更长的激光波长的小于2.0的折射率导致发生间接烧蚀并防止残余材料留在基板上。
如图10所应用的,可进行第一激光烧蚀步骤以穿过p型扩散区上的膜423的部分形成接触孔。第一激光烧蚀步骤可根据第一激光配置,其具有针对p型扩散区上的膜423的部分的特性具体调整的参数。可进行第二激光烧蚀步骤以穿过n型扩散区上的膜423的部分形成接触孔。第二激光烧蚀步骤可根据第二激光配置,其具有针对n型扩散区上的膜423的部分的特性具体调整的参数。第一配置不同于第二配置。例如,第一配置可涉及激光发射多个激光脉冲,以钻穿p型扩散区上的膜423的部分。又如,第二配置可涉及激光发射单个激光脉冲,以钻穿n型扩散区上的膜423的部分。
所得结构示意性地示于图14中,其中通过具有根据第一配置的激光发射的激光烧蚀形成穿过膜423并暴露p型扩散区的接触孔435-1和435-2,并且通过具有根据第二配置的激光发射的激光烧蚀形成穿过膜423并暴露n型扩散区的接触孔435-3。金属触点可形成于接触孔435(即,435-1、435-2、435-3)中。金属触点可安全形成于相反极性的扩散区上(如,p型扩散区上的n极性金属触点),因为金属触点位于激光烧蚀而成的接触孔中。
在另一个实施例中,当可能存在层间介质中的缺陷,例如结合图3所述的缺陷时,可按一定方式调整沉积在背面上的抗反射涂层(如,图4-6的抗反射涂层110)以改善背面叠堆的介质完整性。例如,背面抗反射涂层的厚度和/或电阻率可增加大约50-100埃。又如,抗反射涂层可包括两层,例如非晶硅层,其均匀沉积在氮化硅层顶部或底部。优选地,为了节省制造成本,在相同工具中按照相同方法步骤原位(即,相同荷载)形成非晶硅层和氮化硅层。使用如本文所述的两层抗反射涂层有利地不仅增加了抗反射涂层的厚度,而且增大了其介电常数,从而促进了激光烧蚀。
在反向偏压中,例如可在层间介质膜两端施加超过6伏特。如果电压施加于局部,则具有约400埃范围内的厚度的典型等离子体增强化学气相沉积(pecvd)氮化物膜在该电压下会击穿。用于此类施加的介质膜的目标击穿场可大于1×107v/cm。可通过将50-100埃的非晶硅层添加到氮化硅层上(这可减小施加于叠堆内的有效场)得到目标击穿场。
本发明公开了用于制造太阳能电池的改善的方法和结构。虽然已提供了本发明的具体实施例,但是应当理解,这些实施例是用于举例说明的目的,而不用于限制。通过阅读本发明,许多另外的实施例对于本领域的普通技术人员而言将是显而易见的。