本发明涉及半导体集成电路制造技术,尤其涉及一种mim电容的制造方法及一mim电容。
背景技术:
在半导体集成电路制造技术领域,随着半导体技术的发展,对半导体器件性能的要求越来越高。电容是集成电路中的重要组成单元,广泛运用于存储器,微波,射频,智能卡,高压和滤波等芯片中,具体用途有带通滤波器,锁相环,动态随机存储器等等。随着半导体技术的发展,希望集成电路中电容具有高电容密度、低漏电及小电压线性的特性,且这也成为集成电路中电容制作的挑战。
集成电路芯片中的电容结构多种多样,如mos场效应管电容,pip(poly-insulator-poly)电容,可变结电容以及后段互连中的金属-绝缘层-金属(mim,metal-insulator-metal)电容和金属-氧化物-金属(mom,metal-oxide-metal)电容。存在于后段互连层中的电容结构不占用器件层的面积,且电容的线性特征要远好远其他类型的电容。然而,目前常见的后段电容结构如mim电容和mom电容都需要专门的工艺流程进行制作,也即制作mim电容和mom电容的工艺流程不能在半导体集成电路中其它半导体器件的制造工艺中同时完成,因此导致原本就极其复杂的集成电路的制造工艺更加复杂,成本更高。
请参阅图1,图1为现有技术中mim电容的制作过程示意图。如图1所示在形成用于形成两金属电极230的两个通孔210和220的过程中需要两层光罩110和120。如此形成的mim电容虽然电容密度高、漏电小且精度高,但导致mim电容的制作成本高。
请参阅图2,图2为现有技术中mom电容的制作过程示意图。如图2所示,展示出了三种不同mom电容,包括mom电容、apmom电容和vncap电容,mom电容主要利用上下两层金属导线及同层金属之间的整体电容。现有的mom电容制作工艺虽然成本低,但也需要专门的工艺流程进行制作,且漏电流大,并会影响芯片的尺寸大小。
技术实现要素:
本发明的目的在于提供一种mim电容的制造方法,以在半导体集成电路制造过程中同时完成mim电容的制造,不增加半导体集成电路制造工艺步骤,成本低,且形成的mim电容具有高电容密度、低漏电及小电压线性的特性。
本发明提供的mim电容的制造方法,包括:s1:提供一半导体衬底,半导体衬底上包括多个阱区,在阱区的表面形成多晶硅栅极结构,多晶硅栅极结构包括形成于半导体衬底表面的栅介质层和位于栅介质层上的多晶硅伪栅,去除多晶硅伪栅,在多晶硅伪栅的去除区域形成金属栅极而形成金属栅极结构,其中金属栅极结构包括栅介质层、电极阻挡层和金属栅,栅介质层形成于半导体衬底表面,电极阻挡层位于栅介质层与金属栅之间,其中在形成金属栅极结构的过程中形成mim电容的下极板;s2:在mim电容的下极板上方形成电容介电层;以及s3:在电容介电层上方形成mim电容的上极板,以使电容介电层位于下极板和上极板之间,而使下极板、上极板及电容介电层形成mim电容。
更进一步的,在步骤s1中在所述金属栅极结构的侧面形成有侧墙,在所述金属栅极结构的侧墙之外的区域形成有层间膜,侧墙通过在多晶硅伪栅去除之前形成在多晶硅伪栅的侧面而形成,层间膜也在多晶硅伪栅去除之前形成,并所述mim电容的下极板形成于层间膜中。
更进一步的,在金属栅的形成工艺过程中形成mim电容的下极板。
更进一步的,在步骤s1中在形成层间膜之后,去除多晶硅伪栅,在多晶硅伪栅的去除区域的栅介质层上形成电极阻挡层,然后覆盖一层光刻胶,对光刻胶进行光刻刻蚀工艺,以在层间膜上形成一沟槽,然后去除光刻胶,并覆盖一层金属层,所述金属层覆盖多晶硅伪栅的去除区域、沟槽及层间膜的表面,然后进行平坦化工艺,以在多晶硅伪栅的去除区域的电极阻挡层上形成金属栅,并同时在沟槽内形成mim电容的下极板。
更进一步的,所述mim电容的下极板的材质与所述金属栅的材质均为铝。
更进一步的,电极阻挡层包括tin层和tial层。
更进一步的,在金属栅极结构的tin层的形成工艺过程中形成mim电容的下极板。
更进一步的,在步骤s1中在形成层间膜之后,去除多晶硅伪栅,然后覆盖一层光刻胶,对光刻胶进行光刻刻蚀工艺,以在层间膜上形成一沟槽,然后去除光刻胶,并覆盖一层tin层,所述tin层覆盖多晶硅伪栅的去除区域的表面、沟槽及层间膜的表面,然后进行平坦化工艺,以在多晶硅伪栅的去除区域的栅介质层上形成电极阻挡层中的tin层,并同时在沟槽内形成mim电容的下极板,然后形成电极阻挡层中的tial层以及金属栅,以形成金属栅极结构。
更进一步的,所述mim电容的下极板的材质与所述电极阻挡层中的tin层的材质相同。
更进一步的,在金属栅极结构的tial层的形成工艺过程中形成mim电容的下极板。
更进一步的,在步骤s1中在形成层间膜之后,去除多晶硅伪栅,在多晶硅伪栅的去除区域的栅介质层上形成电极阻挡层中的tin层,然后覆盖一层光刻胶,对光刻胶进行光刻刻蚀工艺,以在层间膜上形成一沟槽,然后去除光刻胶,并覆盖一层tial层,所述tial层覆盖多晶硅伪栅的去除区域的表面、沟槽及层间膜的表面,然后进行平坦化工艺,以在多晶硅伪栅的去除区域的电极阻挡层中的tin层上形成tial层,并同时在沟槽内形成mim电容的下极板,然后形成金属栅,以形成金属栅极结构。
更进一步的,所述mim电容的下极板的材质与所述电极阻挡层中的tial层的材质相同。
更进一步的,在步骤s2中形成的所述电容介电层覆盖mim电容的下极板。
更进一步的,在步骤s2中形成的所述电容介电层覆盖mim电容的下极板及层间膜。
更进一步的,所述电容介电层的材质为sin、hfo2、zro、al2o3或zro。
更进一步的,在步骤s3中在电容介电层上方形成氮化钛层,然后进行光刻刻蚀工艺以形成mim电容的上极板,以使下极板、上极板及电容介电层形成mim电容。
更进一步的,还包括:s4:在形成mim电容的上极板后形成第二层间膜,第二层间膜覆盖半导体衬底上裸露的所有区域,然后进行光刻刻蚀工艺,以在第二层间膜内形成多个沟槽,并在多个沟槽中填充金属以形成多个过孔,以使其中一过孔连接金属栅极结构的金属栅而形成cmos器件的栅极,其中一过孔连接mim电容的上极板而形成mim电容的一个极板,并其中一过孔穿过电容介电层连接mim电容的下极板而形成mim电容的另一个极板。
更进一步的,在步骤s3中在电容介电层上方形成氮化钛层,然后进行光刻刻蚀工艺以形成多个氮化钛层极板,其中一氮化钛层极板位于电容介电层上方以形成mim电容的上极板,以使下极板、上极板及电容介电层形成mim电容。
更进一步的,还包括:s4:在形成mim电容的上极板后形成第二层间膜,第二层间膜覆盖半导体衬底上裸露的所有区域,然后进行光刻刻蚀工艺,以在第二层间膜内形成多个沟槽,并在多个沟槽中填充金属以形成多个过孔,以使其中一过孔连接金属栅极结构的金属栅而形成cmos器件的栅极,其中一过孔连接mim电容的上极板而形成mim电容的一个极板,并其中一过孔穿过电容介电层连接mim电容的下极板而形成mim电容的另一个极板,多个过孔更包括一连接除作为mim电容的上极板外的其它的一氮化钛层极板的过孔。
本发明还提供一种mim电容,所述mim电容采用上述的mim电容的制造方法制作而成。
本发明提供的mim电容的制造方法及一mim电容,在形成金属栅极结构的过程中形成mim电容的下极板,并在半导体集成电路的制造必须工艺过程中形成mim电容的上极板以及位于下极板和上极板之的电容介电层,以将mim电容的制造工艺集成在半导体集成电路制造的固有的工艺中,从而在半导体集成电路制造过程中同时完成mim电容的制造,不增加半导体集成电路制造工艺步骤,成本低,且形成的mim电容具有高电容密度、低漏电及小电压线性的特性。
附图说明
图1为现有技术中mim电容的制作过程示意图。
图2为现有技术中mom电容的制作过程示意图。
图3为本发明一实施例的mim电容的制造方法的流程图。
图4为本发明一实施例的集成在半导体集成电路中的mim电容的结构示意图。
图5为本发明一实施例的mim电容的下极板制过程示意图。
图6为本发明另一实施例的mim电容的下极板制过程示意图。
图7为本发明另一实施例的mim电容的下极板制过程示意图。
具体实施方式
下面将结合附图,对本发明中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在不做出创造性劳动的前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明一实施例中,提供一种mim电容的制造方法,具体的,请参阅图3,图3为本发明一实施例的mim电容的制造方法的流程图。并请参阅图4,图4为本发明一实施例的集成在半导体集成电路中的mim电容的结构示意图。本发明一实施例的mim电容的制造方法,包括:s1:提供一半导体衬底100,半导体衬底100上包括多个阱区,在阱区的表面形成多晶硅栅极结构,多晶硅栅极结构包括形成于半导体衬底100表面的栅介质层210和位于栅介质层210上的多晶硅伪栅,去除多晶硅伪栅,在多晶硅伪栅的去除区域220形成金属栅极而形成金属栅极结构300,其中金属栅极结构300包括栅介质层210、电极阻挡层330和金属栅340,栅介质层210形成于半导体衬底100表面,电极阻挡层330位于栅介质层210与金属栅340之间,其中在形成金属栅极结构300的过程中形成mim电容200的下极板410;s2:在mim电容的下极板410上方形成电容介电层420;s3:在电容介电层420上方形成mim电容的上极板430,以使电容介电层420位于下极板410和上极板430之间,而使下极板410、上极板430及电容介电层420形成mim电容200。
如上所述,在形成金属栅极结构的过程中形成mim电容的下极板,并在半导体集成电路的制造过程中形成mim电容的上极板以及位于下极板和上极板之的电容介电层,以将mim电容的制造工艺集成在半导体集成电路制造的固有的工艺中,从而在半导体集成电路制造过程中同时完成mim电容的制造,不增加半导体集成电路制造工艺步骤,成本低,且形成的mim电容具有高电容密度、低漏电及小电压线性的特性。
在本发明一实施例中,在步骤s1中在所述金属栅极结构300的侧面形成有侧墙510,在所述金属栅极结构300的侧墙510之外的区域形成有层间膜520,侧墙510通过在多晶硅伪栅去除之前形成在多晶硅伪栅的侧面而形成,层间膜520也在多晶硅伪栅去除之前形成,并所述mim电容的下极板410形成于层间膜520中。
更具体的,在本发明一实施例中,在金属栅极结构300的金属栅340的形成工艺过程中形成mim电容的下极板410。具体的,可参阅图5,图5为本发明一实施例的mim电容的下极板制过程示意图。具体的,在步骤s1中在形成层间膜520之后,去除多晶硅伪栅,在多晶硅伪栅的去除区域220的栅介质层210上形成电极阻挡层330,然后覆盖一层光刻胶610,对光刻胶610进行光刻刻蚀工艺,以在层间膜520上形成一沟槽521,然后去除光刻胶610,并覆盖一层金属层710,所述金属层710覆盖多晶硅伪栅的去除区域220、沟槽521及层间膜520的表面,然后进行平坦化工艺,以在多晶硅伪栅的去除区域220的电极阻挡层330上形成金属栅340,并同时在沟槽521内形成mim电容的下极板410。也即将mim电容的下极板410的形成工艺集成在形成金属栅极结构300的过程中。具体的,在本发明一实施例中,所述mim电容的下极板410的材质与所述金属栅340的材质均为铝(al)。
更具体的,如图4所示,在本发明一实施例中,电极阻挡层330包括tin层332和tial层331。在金属栅极结构300的tin层332的形成工艺过程中形成mim电容的下极板410。具体的,可参阅图6,图6为本发明另一实施例的mim电容的下极板制过程示意图。具体的,在步骤s1中在形成层间膜520之后,去除多晶硅伪栅,然后覆盖一层光刻胶610,对光刻胶610进行光刻刻蚀工艺,以在层间膜520上形成一沟槽521,然后去除光刻胶610,并覆盖一层tin层720,所述tin层覆盖多晶硅伪栅的去除区域220的表面、沟槽521及层间膜520的表面,然后进行平坦化工艺,以在多晶硅伪栅的去除区域220的栅介质层210上形成电极阻挡层330中的tin层332,并同时在沟槽521内形成mim电容的下极板410,然后形成电极阻挡层330中的tial层331以及金属栅340,以形成金属栅极结构300。也即将mim电容的下极板410的形成工艺集成在形成金属栅极结构300的过程中。具体的,在本发明一实施例中,所述mim电容的下极板410的材质与所述电极阻挡层330中的tin层332的材质相同。
更具体的,在本发明一实施例中,在金属栅极结构300的tial层331的形成工艺过程中形成mim电容的下极板410。具体的,可参阅图7,图7为本发明另一实施例的mim电容的下极板制过程示意图。具体的,在步骤s1中在形成层间膜520之后,去除多晶硅伪栅,在多晶硅伪栅的去除区域220的栅介质层210上形成电极阻挡层330中的tin层332,然后覆盖一层光刻胶610,对光刻胶610进行光刻刻蚀工艺,以在层间膜520上形成一沟槽521,然后去除光刻胶610,并覆盖一层tial层730,所述tial层730覆盖多晶硅伪栅的去除区域220的表面、沟槽521及层间膜520的表面,然后进行平坦化工艺,以在多晶硅伪栅的去除区域220的电极阻挡层330中的tin层332上形成tial层321,并同时在沟槽521内形成mim电容的下极板410,然后形成金属栅340,以形成金属栅极结构300。也即将mim电容的下极板410的形成工艺集成在形成金属栅极结构300的过程中。具体的,在本发明一实施例中,所述mim电容的下极板410的材质与所述电极阻挡层330中的tial层的材质相同。
如上所述,分别将mim电容的下极板410的形成工艺集成在金属栅340、tin层332和tial331的形成工艺中,但本发明对此并不做限定,可将mim电容的下极板410的形成工艺集成在金属栅极结构300中任一可以作为电容极板的层的形成工艺中,如此可在半导体器件的cmos器件的栅极的制造过程中即可同时形成mim电容的下极板410,因此可减少半导体集成电路的制造工艺,降低成本。
更具体的,如图4所示,上述栅介质层210包括界面层211、高介电常数层212和刻蚀阻挡层213a和213b。
所述界面层211位于所述高介电常数层212和半导体衬底100之间。
所述刻蚀阻挡层213a和213b位于所述高介电常数层212和电极阻挡层330之间。
所述界面层211的材料包括氧化硅。
所述高介电常数层212的材料包括二氧化硅,氮化硅,三氧化二铝,五氧化二钽,氧化钇,硅酸铪氧化合物,二氧化铪,氧化镧,二氧化锆,钛酸锶或硅酸锆氧化合物。
所述刻蚀阻挡层213a和213b的材料包括金属氮化物;较佳为,如图4中,刻蚀阻挡层213a的金属氮化物为氮化钛,刻蚀阻挡层213b的金属氮化物为氮化钽。
在本发明一实施例中,所述电容介电层420可为任何可与电容极板构成电容的绝缘材质,在本发明一实施例中,所述电容介电层420的材质为sin、hfo2、zro、al2o3或zro。在本发明一实施例中,通过沉积工艺形成所述电容介电层420。
如图4所示,更具体的,在本发明一实施例中,在步骤s2中形成的电容介电层420覆盖mim电容的下极板410。更具体的,在本发明一实施例中,在步骤s3中在电容介电层420上方形成氮化钛层,然后进行光刻刻蚀工艺以形成mim电容的上极板430,以使下极板410、上极板430及电容介电层420形成mim电容。也即将高电阻氮化钛作为上极板。更具体的,在本发明一实施例中,所述mim电容的制造方法还包括s4:在形成mim电容的上极板430后形成第二层间膜530,第二层间膜530覆盖半导体衬底上裸露的所有区域,然后进行光刻刻蚀工艺,以在第二层间膜530内形成多个沟槽,并在多个沟槽中填充金属以形成多个过孔800,以使其中一过孔连接金属栅极结构300的金属栅340而形成cmos器件的栅极,其中一过孔连接mim电容的上极板430而形成mim电容的一个极板,并其中一过孔穿过电容介电层420连接mim电容的下极板410而形成mim电容的另一个极板。
更具体的,在本发明一实施例中,在步骤s2中形成的电容介电层420覆盖mim电容的下极板410及层间膜520。如图4所示,更具体的,在本发明一实施例中,在步骤s3中在电容介电层420上方形成氮化钛层,然后进行光刻刻蚀工艺以形成多个氮化钛层极板700,其中一氮化钛层极板位于电容介电层420上方以形成mim电容的上极板430,以使下极板410、上极板430及电容介电层420形成mim电容。如图4所示,更具体的,在本发明一实施例中,所述mim电容的制造方法还包括s4:在形成mim电容的上极板430后形成第二层间膜530,第二层间膜530覆盖半导体衬底上裸露的所有区域,然后进行光刻刻蚀工艺,以在第二层间膜530内形成多个沟槽,并在多个沟槽中填充金属以形成多个过孔800,以使其中一过孔连接金属栅极结构300的金属栅340而形成cmos器件的栅极,其中一过孔连接mim电容的上极板430而形成mim电容的一个极板,并其中一过孔穿过电容介电层420连接mim电容的下极板410而形成mim电容的另一个极板,多个过孔800更包括一连接除作为mim电容的上极板430外的其它的一氮化钛层极板700的过孔,以在半导体集成电路中形成一有源器件或无源器件。也即在半导体集成电路中的有源器件或无源器件的制造过程中同时完成mim电容的上极板430的制造。
在半导体集成电路的制造过程中,氮化钛层的制造是半导体集成电路的制造过程中的必备工艺,本发明将由氮化钛层形成的氮化钛层极板700中的其中一个作为mim电容的上极板430,也即将mim电容的上极板430制造工艺集成在半导体集成电路中必须的氮化钛层的制造工艺中,从而在半导体集成电路制造过程中同时完成mim电容的制造,不增加半导体集成电路制造工艺步骤,成本低,且形成的mim电容具有高电容密度、低漏电及小电压线性的特性。
更具体的,在本发明一实施例中,本发明的mim电容的制造方法应用于28nm和14nm以及以下小尺寸工艺中。
在本发明一实施例中,上述的平坦化工艺为业界适用的任何平坦化工艺,如化学机械研磨工艺(cmp)。
在本发明一实施例中,上述任一材料层的形成工艺可为业界适用的任何成膜工艺,如沉积工艺。
在本发明一实施例中,还提供一种mim电容,该mim电容采用上述的mim电容的制造方法制作而成。
综上所述,在形成金属栅极结构的过程中形成mim电容的下极板,并在半导体集成电路制造的必须工艺过程中形成mim电容的上极板以及位于下极板和上极板之的电容介电层,以将mim电容的制造工艺集成在半导体集成电路制造的固有的工艺中,从而在半导体集成电路制造过程中同时完成mim电容的制造,不增加半导体集成电路制造工艺步骤,成本低,且形成的mim电容具有高电容密度、低漏电及小电压线性的特性。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。