处理装置和处理方法与流程

文档序号:22393217发布日期:2020-09-29 18:00阅读:92来源:国知局
处理装置和处理方法与流程

本公开涉及一种处理装置和处理方法。



背景技术:

已知如下一种技术:在通过ald法进行氮化膜的成膜时,在各循环中,在吸附成膜原料的步骤与使该成膜原料氮化的步骤之间进行在处理容器内生成氢自由基来进行氢自由基吹扫的步骤(例如参照专利文献1)。

现有技术文献

专利文献

专利文献1:日本特开2018-11009号公报



技术实现要素:

发明要解决的问题

本公开提供一种能够增加基板处理区域中的氢自由基的量的技术。

用于解决问题的方案

基于本公开的一个方式的处理装置具备:处理容器,其收容基板;等离子体生成机构,其具有与所述处理容器内连通的等离子体生成空间;第一气体供给部,其设置于所述等离子体生成空间,并且供给氢气;以及第二气体供给部,其设置于所述处理容器内,并且供给氢气。

发明的效果

根据本公开,能够增加基板处理区域中的氢自由基的量。

附图说明

图1是表示一个实施方式的处理装置的结构例的图。

图2是用于说明图1的处理装置的处理容器和等离子体生成机构的图。

图3是表示一个实施方式的sin膜的形成方法的一例的流程图。

图4是表示一个实施方式的sin膜的形成方法的其它例的流程图。

图5是表示氢自由基处理的时间与膜应力的关系的图。

图6是表示进行氢自由基处理时的晶圆位置与湿蚀刻速度的关系的图。

具体实施方式

下面,参照附图来说明本公开的非限定性的例示的实施方式。在所附的全部附图中,对相同或对应的构件或部件标注相同或对应的参照标记,省略重复的说明。

〔处理装置〕

对一个实施方式的处理装置进行说明。图1是表示一个实施方式的处理装置的结构例的图。图2是用于说明图1的处理装置的处理容器和等离子体生成机构的图。

处理装置100具有下端开口的带有顶部的圆柱体状的处理容器1。处理容器1的整体例如由石英形成。在处理容器1内的上端附近设置有由石英形成的顶板2,顶板2的下侧的区域封闭。处理容器1的下端的开口经由o型圈等密封构件4而与形成为圆柱体状的金属制的岐管3连结。

岐管3支承处理容器1的下端,从岐管3的下方将晶舟5插入处理容器1内,该晶舟5将作为基板的多张(例如25~150张)半导体晶圆(以下称作“晶圆w”。)分多层地载置。晶舟5例如由石英形成。晶舟5具有三个杆6(参照图2),通过形成于杆6的槽(未图示)来支承多张晶圆w。

晶舟5经由由石英形成的保温筒7被载置于载置台8上。载置台8被支承于旋转轴10上,该旋转轴10贯穿用于将岐管3的下端的开口进行开闭的金属(不锈钢)制的盖体9。

在旋转轴10的贯穿部设置有磁性流体密封件11,将旋转轴10气密地封闭并且将该旋转轴10以能够旋转的方式支承。在盖体9的周边部与岐管3的下端之间设置有用于保持处理容器1内的密封性的密封构件12。

旋转轴10例如安装于被舟升降机等升降机构(未图示)支承的臂13的前端,晶舟5与盖体9一体地升降,相对于处理容器1内插入和脱离。此外,可以向盖体9侧固定地设置载置台8,以不使晶舟5旋转的方式进行晶圆w的处理。

另外,处理装置100具有向处理容器1内供给处理气体、吹扫气体等规定的气体的气体供给部20。

气体供给部20具有多个(例如四个)气体供给管21、22、23、24。气体供给管21、22、23例如由石英形成,向内侧贯穿岐管3的侧壁后向上方弯曲且垂直地延伸。在气体供给管21、22、23的垂直部分,在与晶舟5的晶圆支承范围对应的上下方向上的长度范围内分别隔开规定间隔地形成有多个气体孔21a、22a、23a。各气体孔21a、22a、23a向水平方向喷出气体。气体供给管24例如由石英形成,包括以贯穿岐管3的侧壁的方式设置的短的石英管。

气体供给管21的垂直部分设置于处理容器1内。从原料气体供给源21c经由气体配管21b向气体供给管21供给包含成膜原料的气体(在以下称作“原料气体”。)。在气体配管21b设置有流量控制器21d和开闭阀21e。由此,经由气体配管21b和气体供给管21将来自原料气体供给源21c的原料气体供给至处理容器1内。作为原料气体,例如能够利用二氯硅烷(dcs;sih2cl2)、一氯硅烷(mcs;sih3cl)、三氯硅烷(tcs;sihcl3)、四氯化硅(stc;sicl4)、六氯乙硅烷(hcd;si2cl6)等含有氯(cl)的硅(si)化合物。

气体供给管22的垂直部分设置于处理容器1内。从氢气供给源22c经由气体配管22b向气体供给管22供给氢气(h2)。在气体配管22b设置有流量控制器22d和开闭阀22e。由此,经由气体配管22b和气体供给管22将来自氢气供给源22c的h2气体供给至处理容器1内。

气体供给管23的垂直部分设置于后述的等离子体生成空间。从氢气供给源22c经由气体配管22b向气体供给管23供给h2气体。另外,从氮化气体供给源23c经由气体配管23b向气体供给管23供给氮化气体。在气体配管22b、23b分别设置有流量控制器22d、23d和开闭阀22e、23e。由此,经由气体配管22b和气体供给管23将来自氢气供给源22c的h2气体供给至等离子体生成空间,使该h2气体在等离子体生成空间中等离子体化后供给至处理容器1内。另外,经由气体配管23b和气体供给管23将来自氮化气体供给源23c的氮化气体供给至等离子体生成空间,使该氮化气体在等离子体生成空间中等离子体化后供给至处理容器1内。作为氮化气体,例如能够利用氨(nh3)、氮(n2)、亚肼(n2h2)、肼(n2h4)、甲基肼(ch3(nh)nh2)等有机肼化合物。

从非活性气体供给源24c经由气体配管24b向气体供给管24供给非活性气体。在气体配管24b设置有流量控制器24d和开闭阀24e。由此,来自非活性气体供给源24c的非活性气体经由气体配管24b和气体供给管24被供给至处理容器1内。作为非活性气体,例如能够利用氩(ar)、氮(n2)。对从非活性气体供给源24c经由气体配管24b和气体供给管24向处理容器1内供给非活性气体的情况进行了说明,但不限定于此。也可以从气体供给管21、22、23中的任一个进行供给。

在处理容器1的侧壁的一部分中形成有等离子体生成机构30。等离子体生成机构30使氮化气体等离子体化来生成用于氮化的活性种,并且使h2气体等离子体化来生成氢(h)自由基。

等离子体生成机构30具备气密地焊接于处理容器1的外壁的等离子体划分壁32。等离子体划分壁32例如由石英形成。等离子体划分壁32的截面呈凹状,将形成于处理容器1的侧壁的开口31覆盖。开口31在上下方向上形成得细长,以能够在上下方向上覆盖被晶舟5支承的全部的晶圆w。在由等离子体划分壁32规定并且与处理容器1内连通的内侧空间、即等离子体生成空间中配置有前述的用于喷出氮化气体和h2气体的气体供给管23。此外,用于喷出原料气体的气体供给管21和用于喷出h2气体的气体供给管22设置于沿着等离子体生成空间外的处理容器1的内侧壁的、靠近晶圆w的位置。在图2中表示在工作开口31的位置配置气体供给管21及气体供给管22的例子,但不限于此。另外,也可以分别配置多个气体供给管。

另外,等离子体生成机构30还具有高频电源35和一对等离子体电极33。一对等离子体电极33具有细长的形状,以沿上下方向彼此相向的方式配置在等离子体划分壁32的两侧的壁的外表面。高频电源35经由供电线34而与一对等离子体电极33的各等离子体电极连接,向一对等离子体电极33供给例如13.56mhz的高频电力。由此,向由等离子体划分壁32规定出的等离子体生成空间内施加高频电场。从气体供给管23喷出的氮化气体和h2气体在被施加有高频电场的等离子体生成空间内被等离子体化,由此生成的用于氮化的活性种和氢自由基经由开口31被供给到处理容器1的内部。

在等离子体划分壁32的外侧,以覆盖该等离子体划分壁32的方式安装有绝缘保护外罩36。在绝缘保护外罩36的内侧部分设置有制冷剂通路(未图示),通过在制冷剂通路中流通冷却后的氮气(n2)等制冷剂来将等离子体电极33进行冷却。

在处理容器1的与开口31相向的侧壁部分设置有用于对处理容器1内进行真空排气的排气口37。排气口37与晶舟5对应地在上下方向上细长地形成。在与处理容器1的排气口37对应的部分,以覆盖排气口37的方式安装有截面形成为u字状的排气口外罩构件38。排气口外罩构件38沿处理容器1的侧壁向上方延伸。排气口外罩构件38的下部经由排气口37而与用于对处理容器1进行排气的排气管39连接。排气管39与控制处理容器1内的压力的压力控制阀40以及包括真空泵等的排气装置41连接,排气装置41经由排气管39对处理容器1内进行排气。

另外,以包围处理容器1的外周的方式设置有将处理容器1及其内部的晶圆w进行加热的圆柱体状的加热机构42。

另外,处理装置100具有控制部50。控制部50例如对处理装置100的各部的动作进行控制、例如通过开闭阀21e、22e、23e、24e的开闭进行各气体的供给/停止、通过流量控制器21d、22d、23d、24d进行气体流量的控制、通过排气装置41进行排气控制。另外,控制部50例如通过高频电源35进行高频电力的接通/断开控制、通过加热机构42进行晶圆w的温度的控制。

控制部50例如可以为计算机等。另外,进行处理装置100的各部的动作的计算机的程序存储于存储介质中。存储介质例如可以为软盘、光盘、硬盘、闪存、dvd等。

如以上所说明的那样,处理装置100具备设置于处理容器1内并且向处理容器1内供给h2气体的气体供给管22、以及设置于等离子体生成空间并且向等离子体生成空间供给h2气体的气体供给管23。由此,除了在等离子体生成空间生成氢自由基以外,还能够在处理容器1内的收容有晶圆w的区域(以下称作“晶圆处理区域”。)内生成氢自由基。具体地说,从气体供给管23供给的h2气体在等离子体生成空间中被等离子体化而生成氢自由基。该氢自由基经由开口31到达处理容器1内的晶圆w。另一方面,从配置在晶圆w附近的气体供给管22供给的h2气体通过在等离子体生成空间中生成的氢自由基间接地被活性化而生成氢自由基。因此,不提高用于生成等离子体的高频电力等就能够增加晶圆处理区域中的氢自由基的量。其结果是,到达晶圆w的中央部的氢自由基的量增加,到达晶圆w的周缘部的氢自由基的量与到达晶圆w的中央部的氢自由基的量之差变小,因此氢自由基处理的面内均匀性提高。

〔处理方法〕

关于一个实施方式的处理方法,列举通过前述的处理装置100在晶圆w之上形成氮化硅膜(sin膜)的情况为例进行说明。图3是表示一个实施方式的sin膜的形成方法的一例的流程图。

首先,将处理容器1内的温度调整为规定温度(例如400℃~630℃),将搭载有多张晶圆w的晶舟5搬入处理容器1内。接着,通过排气装置41对处理容器1内进行排气,并且将处理容器1内调压为规定压力(例如13.3pa~666.6pa)。

接着,如步骤s31所示,通过排气装置41对处理容器1内进行排气,并且从气体供给管24向处理容器1内供给作为非活性气体的n2气体。由此,将处理容器1内的气氛气体置换为n2气体。步骤s31的处理条件优选为n2气体流量:200sccm~10000sccm,时间:3秒~10秒。

接着,如步骤s32所示,从气体供给管21向处理容器1内供给dcs气体来作为原料气体,使硅(si)吸附于晶圆w的表面。步骤s32的处理条件优选为dcs气体流量:500sccm~5000sccm,时间:3秒~10秒。

接着,如步骤s33所示,从气体供给管24向处理容器1内供给非活性气体,来对通过步骤s32供给至处理容器1内的多余的dcs气体进行吹扫。步骤s33的处理条件优选为n2气体流量:200sccm~10000sccm,时间:3秒~10秒。

接着,如步骤s34所示,对处理容器1内进行排气并且从气体供给管23向等离子体生成空间供给h2气体,通过等离子体生成机构30使h2气体等离子体化来生成氢自由基。而且,使生成的氢自由基作用于通过步骤s32吸附的si。另外,从气体供给管22向处理容器1内供给h2气体。此时,从气体供给管22供给至处理容器1内的h2气体的一部分或全部在处理容器1内被等离子体化而生成氢自由基。由此,由于从气体供给管23供给的h2气体产生的氢自由基和由于从气体供给管22供给的h2气体产生的氢自由基作用于吸附于晶圆w的si。像这样,晶圆处理区域中的氢自由基的量增加,因此到达晶圆w的中央部的氢自由基的量增加,到达晶圆w的周缘部的氢自由基的量与到达晶圆w的中央部的氢自由基的量之差变小。其结果是,氢自由基处理的面内均匀性提高。步骤s34的处理条件优选为高频电力:50w~250w,h2气体流量:500sccm~4000sccm,时间:5秒~120秒。

此外,使氢自由基作用于所吸附的si的效果的一例如下。在供给dcs气体时,dcs中包含的cl、h等杂质、过剩的si呈团簇状地物理吸附于被化学吸附的si。在该状态下供给nh3气体而形成的sin包含cl、h等杂质、过剩的si团簇等,没有充分地形成si-n键,并且还包括气孔。通过作用氢自由基,能够将作为杂质的cl、h和过剩的si以hcl、sih4等形式去除。由此,大致成为吸附有单原子层si的状态,通过在该状态下供给nh3气体,能够设为杂质、气孔少且充分地形成了si-n键的状态。

接着,如步骤s35所示,从气体供给管24向处理容器1内供给非活性气体,来对通过步骤s34供给至处理容器1内的多余的h2气体进行吹扫。步骤s35的处理条件优选为n2气体流量:200sccm~10000sccm,时间:3秒~10秒。

接着,如步骤s36所示,从气体供给管23向等离子体生成空间供给nh3气体来作为氮化气体,通过等离子体生成机构30使nh3气体等离子体化来生成用于氮化的活性种,使通过步骤s32吸附的si氮化。步骤s36的处理条件优选为nh3气体流量:500sccm~10000sccm,时间:10秒~60秒。

接着,如步骤s37所示,判定步骤s31~s36是否达到规定次数,在达到规定次数的情况下结束处理,在没有达到规定次数的情况下返回步骤s31。

像这样,在一个实施方式的sin膜的形成方法中,以间隔进行吹扫的方式按照si的吸附、氢自由基处理、si的氮化的顺序重复进行,由此形成具有期望的膜厚的sin膜。而且,在步骤s34中,除了从设置于等离子体生成空间的气体供给管23以外还从设置于处理容器1内的气体供给管22供给h2气体。由此,能够对所吸附的si供给比以往更多的量的氢自由基,因此到达晶圆w的中央部的氢自由基的量增加,到达晶圆w的周缘部的氢自由基的量与到达晶圆w的中央部的氢自由基的量之差变小。其结果是,氢自由基处理的面内均匀性提高。

接着,对通过前述的处理装置100在晶圆w之上形成sin膜的方法的其它例进行说明。图4是表示一个实施方式的sin膜的形成方法的其它例的流程图。

在图4所示的例子中,与图3所示的例子的不同点是,在供给作为氮化气体的nh3气体来使si氮化的步骤之后且供给作为原料气体的dcs气体来吸附si的步骤之前追加进行氢自由基处理。

首先,将处理容器1内的温度调整为规定温度(例如400℃~630℃),将搭载有多张晶圆w的晶舟5搬入处理容器1内。接着,通过排气装置41对处理容器1内进行排气,并且将处理容器1内调压为规定压力(例如13.3pa~666.6pa)。

接着,进行步骤s41~s46。步骤s41~s46与图3所示的sin膜的形成方法中的步骤s31~s36相同。

接着,如步骤s47所示,从气体供给管24向处理容器1内供给非活性气体,来对通过步骤s46供给至处理容器1内的多余的nh3气体进行吹扫。步骤s47的处理条件优选为n2气体流量:200sccm~10000sccm,时间:3秒~10秒。

接着,如步骤s48所示,对处理容器1内进行排气,并且从气体供给管23向等离子体生成空间供给h2气体,通过等离子体生成机构30使h2气体等离子体化来生成氢自由基。而且,使生成的氢自由基作用于通过步骤s46氮化后的si。另外,从气体供给管22向处理容器1内供给h2气体。此时,从气体供给管22供给至处理容器1内的h2气体的一部分或全部在处理容器1内被等离子体化而生成氢自由基。由此,由于从气体供给管23供给的h2气体产生的氢自由基和由于从气体供给管22供给的h2气体产生的氢自由基作用于被吸附于晶圆w且氮化后的si。像这样,晶圆处理区域中的氢自由基的量增加,因此到达晶圆w的中央部的氢自由基的量增加,到达晶圆w的周缘部的氢自由基的量与到达晶圆w的中央部的氢自由基的量之差变小。其结果是,氢自由基处理的面内均匀性提高。步骤s48的处理条件优选为高频电力:50w~250w,h2气体流量:500sccm~4000sccm,时间:5秒~120秒。

此外,使氢自由基作用于氮化后的si的效果如下。有时会成为在步骤s44的氢自由基处理中未被去除的杂质即cl、h和物理吸附的过剩的si团簇未被氮化而残留的状态。当在该状态下供给dcs气体并覆盖si-n键不充分的部分时,形成的sin会形成为si-n键不充分的膜。通过作用氢自由基,能够将作为杂质的cl、h和过剩的si以hcl、sih4等形式去除。由此,能够设为杂质、气孔少且si-n键充分地形成的状态。

接着,如步骤s49所示,判定步骤s41~s48是否达到规定次数,在达到规定次数的情况下结束处理,在没有达到规定次数的情况下返回步骤s41。

像这样,在一个实施方式的sin膜的形成方法中,以间隔进行吹扫的方式按照si的吸附、氢自由基处理、si的氮化及氢自由基处理的顺序重复进行,由此形成具有期望的膜厚的sin膜。而且,在步骤s44和步骤s48中,除了从设置于等离子体生成空间中的气体供给管23以外还从设置于处理容器1内的气体供给管22供给h2气体。由此,能够对所吸附的si供给比以往更多的量的氢自由基,因此到达晶圆w的中央部的氢自由基的量增加,并且到达晶圆w的周缘部的氢自由基的量与到达晶圆w的中央部的氢自由基的量之差变小。其结果是,氢自由基处理的面内均匀性提高。

〔实施例〕

接着,说明为了确认一个实施方式的处理方法的效果而进行的实施例。

在实施例1中,使用前述的处理装置100,通过图3所示的sin膜的形成方法在直径为300mm的晶圆w上形成sin膜。此外,在实施例1中,在进行氢自由基处理时,从气体供给管22和气体供给管23供给h2气体。另外,将每1循环的h2气体的供给时间(氢自由基处理的时间)调整为30秒、60秒、120秒。另外,测定所形成的各个sin膜的膜应力。并且,关于将氢自由基处理的时间调整为60秒而形成的sin膜测定晶圆w的面内的湿蚀刻速度。

为了与实施例1进行比较,除了在进行氢自由基处理时仅从气体供给管23供给h2气体来进行氢自由基处理这一点以外,以与实施例1相同的处理条件在晶圆w上形成sin膜(比较例1)。另外,测定所形成的各个sin膜的膜应力。并且,关于将氢自由基处理的时间调整为60秒而形成的sin膜测定晶圆w的面内的湿蚀刻速度。

图5是表示氢自由基处理的时间与膜应力的关系的图。在图5中,横轴表示每1循环的氢自由基处理的时间[秒],纵轴表示膜应力[mpa]。另外,在图5中,三角(▲)标记表示实施例1的测定结果,圆(●)标记表示比较例1的测定结果。

如图5所示,可知:使每1循环的氢自由基处理的时间越长,则sin膜的膜应力越小。另外,在每1循环的氢自由基处理的时间相同的情况下,实施例1的sin膜的膜应力小于比较例1的sin膜的膜应力。即,可以说:通过在进行氢自由基处理时除了从设置于等离子体生成空间的气体供给管23以外还从设置于处理容器1内的气体供给管22供给h2气体,能够有效地减小sin膜的膜应力。即,能够在短时间内形成具有期望的膜应力的膜。认为其原因是:虽然为了改变膜应力需要改变晶圆w整面的膜状态,但通过除了从设置于等离子体生成空间的气体供给管23以外还从设置于处理容器1内的气体供给管22供给h2气体,到达晶圆w的中央部的氢自由基的量尤其增加。

图6是表示进行氢自由基处理时的晶圆位置与湿蚀刻速度的关系的图。在图6中,横轴表示晶圆位置[mm],纵轴表示湿蚀刻速度另外,在图6中,三角(▲)标记表示实施例1的测定结果,圆(●)标记表示比较例1的测定结果。此外,晶圆位置0mm表示晶圆中心,晶圆位置-150mm、+150mm表示晶圆端。

如图6所示可知:在任意的晶圆位置处,实施例1的sin膜的湿蚀刻速度小于比较例1的sin膜的湿蚀刻速度。据此可以说:通过在进行氢自由基处理时除了从设置于等离子体生成空间的气体供给管23以外还从设置于处理容器1内的气体供给管22供给h2气体,能够形成致密的sin膜。

另外,相比于晶圆w的周缘部(例如晶圆位置-150mm、150mm),在晶圆w的中央部(例如晶圆位置-75mm、0mm)处,实施例1的sin膜相对于比较例1的sin膜的湿蚀刻速度的下降比例更大。据此可以认为:通过在进行氢自由基处理时除了从设置于等离子体生成空间的气体供给管23以外还从设置于处理容器1内的气体供给管22供给h2气体,到达晶圆w的中央部的氢自由基的量尤其增加。

另外,当氢自由基处理的面内均匀性提高时,起到以下的效果。

在通过ald法形成sin膜的情况下,当在步骤s32中供给dcs气体时,原理上dcs气体吸附于基底的化学吸附位点,但当达到饱和吸附量时不再进一步吸附dcs气体。因此,进行单原子层的si的化学吸附。

但是,在以往的ald法中,实际上,dcs气体中包含的cl等杂质进行物理吸附而凝集,si也经由杂质进行物理吸附而凝集成为si团簇,产生si的过度吸附。

在该情况下,在晶圆表面平坦且表面积小的状态时,杂质容易吸附,因此si的过度吸附的量变多,与此相对地,在晶圆表面的凹凸多而表面积大的状态时,杂质难以到达凹部的底,因此si的过度吸附的量少。而且,这会成为产生由于晶圆的表面状态的不同而成膜量发生变动的负载效应。另外,由于这样的si的过度吸附,还容易产生由于晶圆w的投入张数的变动而sin膜的膜厚变动。

为了抑制这样的负载效应,能够将物理吸附于饱和吸附的si之上的cl等杂质和过度的si去除即可。

因此,在一个实施方式中,在通过ald法形成sin膜时,在供给dcs气体的工序(步骤s32)之后,进行氢自由基处理(步骤s34)来将在进行步骤s32时物理吸附的杂质和过度的si去除。另外,此时除了从设置于等离子体生成空间的气体供给管23以外还从设置于处理容器1内的气体供给管22供给h2气体。因此,能够对吸附于晶圆w的表面的si供给比以往更多的量的氢自由基。其结果是,能够以良好的面内均匀性去除在进行步骤s32时物理吸附的杂质和过度的si。

具体地说,在使用dcs气体的情况下,cl等杂质和过度的si以团簇状被物理吸附于化学吸附的单原子层的si之上,但通过作用氢自由基,能够去除物理吸附的cl等杂质和si。而且,理想情况是仅使化学吸附的单原子层的si残留。

由此,不论晶圆w的表面状态如何都能够使si层接近单原子层状态,能够抑制最终形成的sin膜由于晶圆w的表面状态而产生膜厚的变动、即负载效应。

此外,在上述的实施方式中,气体供给管23为第一气体供给部的一例,气体供给管22为第二气体供给部的一例。

应该认为,本次公开的实施方式在所有方面均为例示,而非限制性的。上述的实施方式可以在不脱离所附的权利要求书及其主旨的情况下以各种方式进行省略、置换、变更。

在上述的实施方式中,列举形成氮化硅膜(sin膜)的情况为例进行了说明,但只要进行成膜的膜为氮化膜即可,不限定于氮化硅膜。例如,也能够对氮化钛膜、氮化硼膜、氮化钨膜、氮化铝膜等应用本公开的技术。在形成氮化钛膜的情况下,例如使用ticl4气体来作为原料气体。在形成氮化硼膜的情况下,例如使用bcl3气体来作为原料气体。在形成氮化钨膜的情况下,例如使用wcl6气体来作为原料气体。在形成氮化铝膜的情况下,例如使用alcl3气体来作为原料气体。

另外,可以为包含氧、碳、硼、氟中的任一种元素或多中元素的氮化膜。例如,当以氮化硅膜为例时,除了sin以外,还可以为sion、sicn、siocn、sibn、sibcn、sibocn、sifn或sicfn等。在进行吸附的步骤、生成氢自由基的步骤、进行氮化的步骤或新设置的步骤中,选自氧、碳、硼以及氟中的一个以上的元素被取入含si层。在形成氮化膜的循环中进行该取入的工序即可。

在上述的实施方式中,列举基板为半导体晶圆的情况为例进行了说明,但不限于此。例如,基板也可以为平板显示器(fpd:flatpaneldisplay)用的大型基板、el元件或太阳能电池用的基板。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1