一种激光硼掺杂背钝化太阳能电池及其制备方法与流程

文档序号:22618931发布日期:2020-10-23 19:22阅读:278来源:国知局
一种激光硼掺杂背钝化太阳能电池及其制备方法与流程

本发明涉及太阳能电池技术领域,尤其涉及一种激光硼掺杂背钝化太阳能电池及其制备方法。



背景技术:

目前太阳能电池主要以晶体硅作为基底材料,由于在硅片表面周期性破坏,会产生大量垂悬键(danglingbond),使得晶体表面存在大量位于带隙中的缺陷能级;除此之外,位错、化学残留物、表面金属的沉积均会导入缺陷能级,使得硅片表面成为复合中心,造成较大的表面复合速率,进而限制了转换效率。

背钝化电池对比常规电池主要优势在于降低电池片背面界面态,提高钝化能力,并藉由延长光线路程,提高长波响应以及短路电流,使得背钝化电池较常规电池转换效率提高了1.0-1.2%甚至以上。目前业界规模化生产,以alox+sinx结构为主要的背钝化膜层,但其中si-h和-nh键的存在容易造成膜层松散并聚集大量的针孔,在经过高温退火之后,氢从si-h键中脱离留下未饱和的si+,这些过剩的si+之间发生键合,最终形成硅的聚集体,也称为硅岛,直接影响钝化效果,因此限制了背钝化电池的效率提升,降低了高效电池生产的经济效益。

现有技术的背钝化(passivateemitterrearcontact,perc)太阳能电池的结构如图1所示,其主要制程为:制绒、磷扩散、背面刻蚀、退火、背面镀膜alox、背面镀膜sinx、正面镀膜sinx、背面钝化层激光开槽、印刷正背面电极电场、高温烧结,最后形成背钝化太阳能电池。由于在电池背面,沉积了绝缘的钝化层,以此降低背面界面态,提高钝化效果,延长光线路程,提高长波响应及短路电流,再通过激光刻蚀,选择性刻蚀掉部分钝化层,让硅层裸露,再将背电场铝浆印刷在激光刻蚀区,与硅层形成直接接触,从而实现导电;因此,背面激光刻蚀区,由于部分钝化层被去除,钝化能力有所下降,直接影响了整体的背面钝化的效果,导致降低了电池的转换效率。



技术实现要素:

本发明的目的在于:提供一种激光硼掺杂背钝化太阳能电池及其制备方法,通过在电池背面形成重掺杂区域,可有效减小金属接触区域的复合损失,减少接触电阻并增强钝化能力,显着降低背表面的复合速度,并保持较高的短路电流,增加开路电压,提升填充因子,从而实现高转换效率,高稳定性的太阳能电池。

本发明采用的技术方案如下:

为实现上述目的,本发明提供一种激光硼掺杂背钝化太阳能电池,包括p型硅,所述p型硅正面向上依次设有磷掺杂层、正面钝化减反射层和ag栅指电极,所述p型硅背面向下依次设有钝化层、背面钝化减反射层和al栅指电极,所述p型硅背面还设有重掺杂区,所述重掺杂区包括硼重掺杂层和局部接触铝掺杂层,所述al栅指电极通过重掺杂区与p型硅下表面连接。

作为优选,所述p型硅正面还设有重掺杂硅层,所述ag栅指电极通过重掺杂硅层与p型硅上表面连接。

作为优选,所述正面钝化减反射层和背面钝化减反射层均为sinx膜层。

作为优选,所述钝化层为alox膜层。

作为优选,所述硼重掺杂层与p型硅下表面连接,所述局部接触铝掺杂层与al栅指电极连接。

本发明还提供一种激光硼掺杂背钝化太阳能电池的制备方法,包括以下步骤:

(1)将硅片于槽中去除损伤层并制绒;

(2)采用三氯氧磷高温扩散,反应温度为750-850℃,反应时间为30-60min,在硅片表面形成磷掺杂层,即p掺杂n+发射结;

(3)采用激光掺杂形成重掺杂硅层(n++层);

(4)采用湿法刻蚀工艺,搭配hno3/hf混合溶液,去除硅片背面的p掺杂n+结,并对背面进行抛光处理,高温退火,退火反应温度为750-850℃;

(5)在硅片背面依序沉积alox层和sinx层,形成钝化减反叠层结构;

(6)在硅片正面沉积sinx层;

(7)在硅片背面激光开槽图形上,丝网印刷硼掺杂硅纳米浆料,烘干后形成硼硅纳米薄膜;

(8)在硼硅纳米薄膜上进行激光硼掺杂,采用激光选择性刻蚀掉部分钝化层,激光熔覆硼硅纳米薄膜,形成重掺杂区并让硅层裸露;

(9)采用丝网印刷,依照网版图形设计,在硅片正面印刷银浆,背面印刷铝浆及银浆,经过高温烧结后,形成欧姆接触,制作得到激光硼掺杂背钝化太阳能电池。

作为优选,所述步骤(5)和(6)采用原子层沉积(ald)或等离子增强化学气相沉积(pecvd)法制备膜层。

作为优选,所述alox层的制备采用tma和o2/n2o的混合气体,反应温度为200-350℃,厚度为5-15nm;sinx层采用sih4和nh3的混合气体,反应温度为300-550℃,厚度为70-110nm,折射率为1.9-2.2,结构为单层或双层或三层。

作为优选,所述硼掺杂硅纳米浆料中,硅纳米颗粒粒径为1-5nm,硼元素的质量百分含量为10-50%。

作为优选,所述激光硼掺杂采用皮秒激光,波長为532nm,脉冲宽度为10-30ps,功率为10-30w,光斑形状为圆形或矩形。

综上所述,由于采用了上述技术方案,本发明的有益效果是:

本发明通过在电池背面设置氧化铝层和氮化硅层,形成钝化减反叠层结构,同时在硼硅纳米薄膜上进行激光熔覆形成掺杂的硅熔覆层,经激光开槽后的硼元素扩散进入硅片,形成重掺杂区域,可有效减小金属接触区域的复合损失,减少接触电阻并增强钝化能力,显着降低背表面的复合速度,并增加了原子态的氢饱和,基体表面悬挂键提供大量的固定电荷场钝化效应,进而保持较高的短路电流,增加开路电压,提升填充因子,从而实现高转换效率,高稳定性的太阳能电池。

附图说明

本发明将通过例子并参照附图的方式说明,其中:

图1是现有技术中背钝化太阳能电池的结构示意图;

图2是本发明背钝化太阳能电池的结构示意图。

图中标记为:1-p型硅,2-磷掺杂层,3-正面钝化减反射层,4-重掺杂硅层,5-ag栅指电极,6-钝化层,7-背面钝化减反射层,8-重掺杂区,801-硼重掺杂层,802-局部接触铝掺杂层,9-al栅指电极。

具体实施方式

下面将结合附图对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

实施例1

参阅图2,本实施例提供一种激光硼掺杂背钝化太阳能电池,包括p型硅1,所述p型硅1正面向上依次设有磷掺杂层2(n+层)、sinx正面钝化减反射层3和ag栅指电极5,所述p型硅1正面还设有重掺杂硅层4(n++层),所述ag栅指电极5通过重掺杂硅层4与p型硅1上表面连接,所述p型硅1背面向下依次设有alox钝化层6、sinx背面钝化减反射层7和al栅指电极9,所述p型硅1背面还设有重掺杂区8,所述重掺杂区8包括硼重掺杂层801(p++层)和局部接触铝掺杂层802(p+层),所述al栅指电极9通过重掺杂区8与p型硅1下表面连接,所述硼重掺杂层801与p型硅1下表面连接,所述局部接触铝掺杂层802与al栅指电极9连接。

实施例2

本实施例提供一种激光硼掺杂背钝化太阳能电池的制备方法,包括以下步骤:

(1)采用碱制绒,将硅片于槽中去除损伤层并制绒,形成0.5μm-5μm高的金字塔绒面;

(2)采用三氯氧磷(pocl3)高温扩散,反应温度为750-850℃,反应时间为30-60min,在硅片表面形成磷掺杂层,即p掺杂n+发射结;

(3)采用激光掺杂形成重掺杂硅层(n++层);

(4)采用湿法刻蚀工艺,搭配hno3/hf混合溶液,去除硅片背面的p掺杂n+结,并对背面进行抛光处理,高温退火,退火反应温度为750-850℃;

(5)采用原子层沉积(ald)或等离子增强化学气相沉积(pecvd)法在硅片背面依序沉积alox层和sinx层,形成钝化减反叠层结构;

(6)采用等离子增强化学气相沉积(pecvd)法,在硅片正面沉积sinx层;

(7)在硅片背面激光开槽图形上,丝网印刷硼掺杂硅纳米浆料,烘干后形成硼硅纳米薄膜,所述硼掺杂硅纳米浆料中,硅纳米颗粒粒径为1-5nm,硼元素的质量百分含量为10-50%;

(8)在硼硅纳米薄膜上进行激光硼掺杂,采用激光选择性刻蚀掉部分钝化层,激光熔覆硼硅纳米薄膜,形成重掺杂区并让硅层裸露,其中,激光硼掺杂采用皮秒激光,波長为532nm,脉冲宽度为10-30ps,功率为10-30w,光斑形状为圆形或矩形。

(9)采用丝网印刷,依照网版图形设计,在硅片正面印刷银浆,背面印刷铝浆及银浆,经过高温烧结后,形成欧姆接触,制作得到激光硼掺杂背钝化太阳能电池。

实施例3

本实施例在实施例2的基础上优选,所述alox层的制备采用tma和o2/n2o的混合气体,反应温度为200-350℃,厚度为5-15nm;

所述sinx层采用sih4和nh3的混合气体,反应温度为300-550℃,厚度为70-110nm,折射率为1.9-2.2,所述sinx层可以为单层或双层或三层结构。

最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1