煅烧铁氧体和烧结铁氧体磁体及其制备方法与流程

文档序号:26143836发布日期:2021-08-03 14:29阅读:172来源:国知局

本发明涉及烧结铁氧体磁体及其制备方法,以及用于制备这样的烧结铁氧体磁体的煅烧铁氧体,所述烧结铁氧体磁体具有调整的金属元素ca、r、a、fe和co的组成以在即使co含量比常规srlaco磁体和calaco磁体更小的情况下也表现出高磁性。



背景技术:

烧结铁氧体磁体具有出色的性价比和极高的化学稳定性,因为尽管它们的最大磁能积仅是烧结稀土磁体(例如,烧结ndfeb磁体)的最大磁能积的1/10,但是它们的主要原料是廉价的铁氧化物。因此,它们用于各种应用,如电动机、扬声器等,并且在目前的所有磁体材料中,它们以最大的权重全球生产。

典型的烧结铁氧体磁体为具有磁铅石结构的sr铁氧体,其基本组成由srfe12o19表示。在20世纪90年代后期,通过在srfe12o19中用la3+取代一部分的sr2+并用co2+取代一部分的fe3+而具有显著改善的磁性的烧结sr-la-co铁氧体磁体(以下可以简称为“srlaco磁体”)投入实际使用。另外,在2007年,具有进一步改善的磁性的烧结ca-la-co铁氧体磁体(以下可以简称为“calaco磁体”)投入实际使用。

在上述srlaco磁体和calaco磁体二者中,co对于获得高磁性来说是必不可少的。srlaco磁体含有原子比为约0.2的co(co/fe=0.017,fe含量的约1.7%),并且calaco磁体含有原子比高达约0.3的co(co/fe=0.03,fe含量的约3%)。因为作为co的原料的钴氧化物比铁氧化物(烧结铁氧体磁体的一种主要原料)昂贵十到几十倍,所以calaco磁体与srlaco磁体相比必然具有更高的成本。因此,尽管calaco磁体具有更高的磁性,但目前与calaco磁体相比使用更多的具有较低材料成本的srlaco磁体。

因为由于电动车的增加,对li离子电池的需求增大,近年来co的价格快速升高。由于这样的趋势,即使具有出色性价比的srlaco磁体也面临在保持其价格低方面的困难。在这样的情况下,必须在保持其磁性的同时减少铁氧体磁体中的co的使用。

作为具有降低的co含量的烧结ca-la-co铁氧体磁体,wo2008/105449a公开了一种烧结铁氧体磁体,其包括具有六方晶体结构的铁氧体相作为主相,构成该主相的金属元素的组成由通式rxcama1-x-m(fe12-ymy)z表示,其中r是选自由la、ce、pr、nd和sm组成的组中的至少一种元素,包括la作为必不可少的组分;a是sr和/或ba;m为选自由co、zn、ni、mn、al和cr组成的组中的至少一种元素,包括co作为必不可少的组分;并且x、m、y和z分别满足:0.2≤x≤0.5,0.13≤m≤0.41,0.7(x-m)≤0.15,0.18≤yz≤0.31,并且9.6≤12z≤11.8。在上述通式中,co含量按原子比计为0.18-0.31。

然而,在wo2008/105449a的实施例中,当co含量按原子比计低至0.18时,按原子比计sr相对于(ca+la+sr)的百分比大于0.5,sr含量高于ca含量。即,在具有低co含量的区域内,wo2008/105449a的烧结铁氧体磁体具有与基于sr-la-co的烧结铁氧体磁体的组成接近的组成,从而表明wo2008/105449a并未描述当co含量按原子比计为0.18时含有比sr更多的ca的基于ca-la-co的烧结铁氧体磁体的实施例。

jp2018-30751a公开了一种ca-la-co铁氧体化合物,其具有六方m型磁铅石结构,以及由通式ca1-xlaxfe2n-zcoz表示的金属元素ca、la、fe和co按原子比计的组成,其中x、z和n满足0.3≤x≤0.6、0.1≤z≤0.24并且4.5≤n≤5.5。在该ca-la-co铁氧体化合物中,co含量按原子比计为0.1-0.24。

然而,因为jp2018-30751a的ca-la-co铁氧体化合物不含sr和/或ba,所以la含量x高达0.3≤x≤0.6。在jp2018-30751a的实施例中,虽然co含量z低至0.090-0.180,但样品1-4的la含量x高达0.450-0.550。特别地,co含量z低至0.090和0.095的比较例的样品1和2的la含量x高达0.550,具有低的饱和磁化σs和各向异性磁场ha。另外,甚至在co含量z为0.134和0.180的样品3和4中,la含量x也高达0.524和0.450。为了降低烧结铁氧体磁体的材料成本,重要的是不仅降低co含量,而且降低昂贵的la的含量。因此,尽管具有高性能,但是从成本降低方面考虑,jp2018-30751a的ca-la-co铁氧体化合物是不足以令人满意的。

发明目的

因此,本发明的一个目的是提供烧结铁氧体磁体及其制备方法,以及用于提供这样的烧结铁氧体磁体的煅烧铁氧体,该烧结铁氧体磁体即使在co含量降低的情况下也具有与常规srlaco磁体和calaco磁体的磁性相同水平或者更高水平的磁性。



技术实现要素:

因此,本发明的煅烧铁氧体具有由通式ca1-x-yrxayfe2n-zcoz表示的金属元素ca、r、a、fe和co的组成,其中r是稀土元素中的至少一种且必须包括la;a是sr和/或ba;x、y、z和n表示ca、r、a、fe和co的原子比;2n表示由2n=(fe+co)/(ca+r+a)表示的摩尔比;并且x、y、z和n满足以下条件:

0.30≤(1-x-y)≤0.55,

0.25≤x≤0.35,

0.15≤y≤0.40,

(1-x-y)>y,

0<z≤0.18,并且

9.0≤(2n-z)<11.0。

在本发明的煅烧铁氧体中,原子比(1-x-y)优选地满足0.40≤(1-x-y)≤0.50。

在本发明的煅烧铁氧体中,原子比y优选地满足0.20≤y≤0.35。

在本发明的煅烧铁氧体中,原子比z优选地满足0<z≤0.17。

在本发明的煅烧铁氧体中,原子比(2n-z)优选地满足9.0≤(2n-z)≤10.5。

在本发明的煅烧铁氧体中,原子比(2n-z)优选地满足9.0≤(2n-z)≤10.0。

本发明的烧结铁氧体磁体具有由通式ca1-x-yrxayfe2n-zcoz表示的金属元素ca、r、a、fe和co的组成,其中r是稀土元素中的至少一种且必须包括la;a是sr和/或ba;x、y、z和n表示ca、r、a、fe和co的原子比;2n表示由2n=(fe+co)/(ca+r+a)表示的摩尔比;并且x、y、z和n满足以下条件:

0.15≤x≤0.35,

0.05≤y≤0.40,

(1-x-y)>y,

0<z≤0.18,并且

7.5≤(2n-z)<11.0。

在本发明的烧结铁氧体磁体中,原子比(1-x-y)优选地满足0.40≤(1-x-y)≤0.50。

在本发明的烧结铁氧体磁体中,原子比y优选地满足0.20≤y≤0.35。

在本发明的烧结铁氧体磁体中,原子比z优选地满足0<z≤0.17。

在本发明的烧结铁氧体磁体中,原子比(2n-z)优选地满足7.5≤(2n-z)≤10.5。

在本发明的烧结铁氧体磁体中,原子比(2n-z)优选地满足7.5≤(2n-z)≤10.0。

本发明的烧结铁氧体磁体还可以含有以sio2计大于0质量%且1.5质量%以下的si。

本发明的用于制备上述烧结铁氧体磁体的方法包括以下步骤:

将含有金属元素ca、r、a、fe和co的原料粉末混合以制备具有由通式ca1-x-yrxayfe2n-zcoz表示的金属元素组成的原料粉末混合物,其中r是稀土元素中的至少一种且必须包括la;a是sr和/或ba;x、y、z和n表示ca、r、a、fe和co的原子比;2n表示由2n=(fe+co)/(ca+r+a)表示的摩尔比;并且x、y、z和n满足以下条件:

0.30≤(1-x-y)≤0.55,

0.25≤x≤0.35,

0.15≤y≤0.40,

(1-x-y)>y,

0<z≤0.18,并且

9.0≤(2n-z)<11.0,

将所得到的原料粉末混合物煅烧,

将所得到的煅烧体粉碎,

将所得到的煅烧体粉末成型,和

将所得到的生坯烧结。

在本发明的制备方法中,在煅烧步骤之后并且在成型步骤之前,可以将(a)大于0质量%且1.5质量%以下的sio2或者(b)大于0质量%且1.5质量%以下的sio2和以cao计大于0质量%且1.5质量%以下的caco3加入到100质量%的煅烧体或煅烧体粉末中。

发明效果

本发明可以提供一种烧结铁氧体磁体,通过调整金属元素ca、r、a、fe和co的组成,该烧结铁氧体磁体在co含量低于常规srlaco磁体和calaco磁体的情况下具有高的br和hcj。通过具有本发明的组成,即使在co含量按原子比计为0.18以下的情况下,也可以获得比常规srlaco磁体的磁性更高并且与常规calaco磁体的磁性相当的磁性,并且进一步地,即使当co含量降低至按原子比计小于0.15时,也可以获得与常规srlaco磁体的磁性相当的磁性。因为本发明的烧结铁氧体磁体(其co含量降低同时将磁性保持在与常规srlaco磁体和/或calaco磁体相比相同或更高的水平)在低成本的情况下具有高性能,所以其可以适用于各种电动机等。

具体实施方式

[1]煅烧铁氧体

本发明的煅烧铁氧体具有由通式ca1-x-yrxayfe2n-zcoz表示的金属元素ca、r、a、fe和co的组成,其中r是稀土元素中的至少一种且必须包括la;a是sr和/或ba;x、y、z和n表示ca、r、a、fe和co的原子比;2n表示由2n=(fe+co)/(ca+r+a)表示的摩尔比;并且x、y、z和n满足以下条件:

0.30≤(1-x-y)≤0.55,

0.25≤x≤0.35,

0.15≤y≤0.40,

(1-x-y)>y,

0<z≤0.18,并且

9.0≤2n-z<11.0。

在本发明的煅烧铁氧体中,r是稀土元素中的至少一种且必须包括la。当含有除了la以外的稀土元素时,其量优选为r的总量的50摩尔%以下。原子比x(r含量)满足以下条件:0.25≤x≤0.35。当原子比x小于0.25或大于0.35时,不能获得高的br和hcj。原子比x的下限优选为0.275,并且原子比x的上限优选为0.325。因此,原子比x的优选范围是0.275-0.325。

a是sr和/或ba。原子比y(a含量)满足以下条件:0.15≤y≤0.40。当原子比y小于0.15或大于0.40时,不能获得高的br和hcj。原子比y的范围优选为0.20≤y≤0.35,更优选0.20≤y≤0.30。

原子比(1-x-y)(ca含量)满足以下条件:0.30≤(1-x-y)≤0.55。当原子比(1-x-y)小于0.30或大于0.55时,不能获得高的br和hcj。原子比(1-x-y)的优选范围是0.40≤(1-x-y)≤0.50。

原子比(1-x-y)(ca含量)和原子比y(a含量)满足以下关系:(1-x-y)>y。当不满足此关系时,不能获得高的br和hcj。

原子比z(co含量)满足以下条件:0<z≤0.18。当原子比z大于0.18时,不能充分降低co的用量。另一方面,原子比z为0(不含co)导致低的hcj。原子比z的上限优选为0.17。另外,原子比z的下限优选为0.08,更优选0.1。因此,原子比z的优选范围是0≤z≤0.17,并且原子比z在此范围内的优选实例是0.08≤z≤0.18,以及0.08≤z≤0.17,0.1≤z≤0.18,0.1≤z≤0.17等。

原子比(2n-z)(fe含量)满足以下条件:9.0≤(2n-z)<11.0。当原子比(2n-z)小于9.0或为11.0以上时,不能获得高的br和hcj。原子比(2n-z)的范围优选为9.0≤(2n-z)≤10.5,进一步优选9.0≤(2n-z)≤10.0。

尽管金属元素ca、r、a、fe和co的组成由上述通式(原子比)表示,但是包含氧(o)的组成由通式ca1-x-yrxayfe2n-zcozoα表示。氧的摩尔比α基本上为19,尽管其根据fe和co的化合价以及x、y和z以及n的值可变。另外,氧与金属元素的比率根据当在还原性气氛中烧结时氧的空位以及铁氧体相中的fe和co的化合价变化等而改变。因此,在实际煅烧铁氧体中的氧的摩尔比α可以偏离19。因此,本发明使用按原子比计的金属元素的组成,其可以最容易地确定煅烧或烧结铁氧体的组成。

构成本发明的煅烧铁氧体的主相为具有六方磁铅石(m型)结构的化合物相(铁氧体相)。通常,磁性材料、特别是烧结磁体由多种化合物组成,并且决定其性质(物理性质、磁性等)的化合物被定义为“主相”。

术语“具有六方磁铅石(m型)结构”意指当在一般条件下测量煅烧铁氧体的x射线衍射时主要观察到六方磁铅石(m型)结构的x射线衍射图。

[2]烧结铁氧体磁体的制备方法

以下将会详细说明本发明的用于通过上述煅烧铁氧体制备烧结铁氧体磁体的方法。

本发明的用于制备烧结铁氧体磁体的方法包括以下步骤:

将含有金属元素ca、r、a、fe和co的原料粉末混合以制备具有由上述通式ca1-x-yrxayfe2n-zcoz表示的组成的原料粉末混合物,其中x、y、z和n满足以下条件:

0.30≤(1-x-y)≤0.55,

0.25≤x≤0.35,

0.15≤y≤0.40,

(1-x-y)>y,

0<z≤0.18,并且

9.0≤(2n-z)<11.0,

将所得到的原料粉末混合物煅烧,

将所得到的煅烧体粉碎,

将所得到的煅烧体粉末成型,和

将所得到的生坯烧结。

(1)原料粉末的混合步骤

可用作原料粉末的是化合物如这些金属的氧化物、碳酸盐、氢氧化物、硝酸盐、氯化物等,而与它们的化合价无关。ca化合物包括ca的碳酸盐、氧化物、氯化物等。la化合物包括氧化物如la2o3等,氢氧化物如la(oh)3等,碳酸盐如la2(co3)3·8h2o等。元素a的化合物包括sr和/或ba的碳酸盐、氧化物、氯化物等。fe化合物包括铁氧化物、铁氢氧化物、铁氯化物、轧制氧化皮等。co化合物包括氧化物如coo、co3o4等,氢氧化物如coooh、co(oh)2等,碳酸盐如coco3等,和碱式碳酸盐如m2coco3·m3co(oh)2·m4h2o(m2、m3和m4为正数)等。

为了加快煅烧反应,如果需要的话,可以将高达约1质量%的含b(硼)化合物如b2o3、h3bo3等加入到总量为100质量%的原料粉末中。特别地,加入h3bo3对改善磁性是有效的。h3bo3的添加量优选为0.3质量%以下,并且更优选约0.1质量%。因为h3bo3在烧结时有效地控制晶粒的形状和尺寸,所以优选地在煅烧之后(在微粉碎或烧结之前)将其加入,或者可以在煅烧之前和之后都将其加入。

将满足本发明的煅烧铁氧体的上述组成的原料粉末混合以获得原料粉末混合物。原料粉末的混合可以在湿条件或干条件下进行。通过利用介质如钢球进行搅拌,可以将原料粉末更均匀地混合。在湿式混合的情况下,优选地使用水作为分散介质。为了提高原料粉末的分散性,可以使用已知的分散剂如聚羧酸铵、葡糖酸钙等。可以在脱水之前或之后煅烧原料混合物浆料。

(2)煅烧步骤

通过电炉、燃气炉等来加热通过干式或湿式混合获得的原料粉末混合物,以通过固相反应形成具有六方磁铅石(m型)结构的铁氧体化合物。这个过程被称为“煅烧”,并且所得到的化合物被称为“煅烧体”。因此,本发明的煅烧铁氧体可以被称为“铁氧体化合物”。

在煅烧步骤中,形成铁氧体相的固相反应随着温度升高而进行。当煅烧温度低于1100℃时,残留未反应的赤铁矿(fe2o3),导致低的磁性。另一方面,当煅烧温度超过1450℃时,晶粒生长过多,需要大量时间进行粉碎步骤。因此,煅烧温度优选为1100-1450℃。煅烧时间优选为0.5-5小时。

(3)煅烧体的粉碎步骤

将通过上述步骤获得的煅烧体通过锤式粉碎机等进行粗粉碎,然后通过振动磨、气流粉碎机、球磨机、磨碎机等进行微粉碎,获得煅烧体粉末(微粉碎粉末)。煅烧体粉末的平均粒度优选为约0.4-1.2μm,并且更优选约0.4-0.8μm。当磁性的改善重要时,煅烧体粉末的平均粒度进一步优选为0.5-0.65μm。通过空气渗透法使用粉末比表面积计(例如,可得自shimadzucorporation的ss-100)等测量粉末的平均粒度。可以通过干式或湿式粉碎或者二者进行煅烧体的粉碎步骤。在湿式粉碎的情况下,使用水和/或非水溶剂(有机溶剂如丙酮、乙醇、二甲苯等)作为分散介质。通常,形成包含煅烧体和水(分散介质)的浆料。可以将以固体计0.2-2质量%的量的已知分散剂和/或表面活性剂加入到浆料中。在湿式粉碎后,可以将浆料浓缩。

(4)煅烧体粉末的成型步骤

在成型步骤中,在除去分散介质的同时,将在粉碎步骤后的浆料在磁场中或在没有磁场的情况下压制成型。通过在磁场中压制成型,可以使粉末颗粒的晶体取向对齐(取向),从而显著提高磁性。为了改善取向,可以在成型之前将0.1-1质量%的各分散剂和润滑剂加入到100质量%的浆料中。在成型之前,如果需要的话,可以将浆料浓缩。优选地通过离心分离、压滤等进行浓缩。

在煅烧步骤之后并且在成型步骤之前,可以将烧结助剂加入到煅烧体或煅烧体粉末(粗粉碎或微粉碎粉末)中。烧结助剂优选为单独的sio2,或者sio2和caco3二者。如根据其组成明显的,本发明的烧结铁氧体磁体被归类为calaco磁体。因为calaco磁体含有ca作为主相组分,所以与srlaco磁体中不同,在没有加入诸如sio2、caco3等的烧结助剂的情况下形成能够烧结的液相。即,在烧结铁氧体磁体中没有加入主要形成晶界相的sio2和caco3的情况下,可以制备本发明的烧结铁氧体磁体。然而,为了抑制hcj的降低,可以加入下述量的sio2和caco3作为烧结助剂。

相对于100质量%的煅烧体或煅烧体粉末,sio2(如果加入的话)的量优选为大于0质量%且1.5质量%以下。另外,相对于100质量%的煅烧体或煅烧体粉末,caco3(如果加入的话)的量以cao计优选为大于0质量%且1.5质量%以下。烧结助剂的添加可以在粉碎步骤之前、期间或之后,只要其在成型之前即可。除了sio2和caco3以外,还可以加入cr2o3、al2o3等作为烧结助剂。其各自的量可以为1质量%以下。

将caco3的添加量换算为cao的量。caco3的添加量(质量%)由cao的量(质量%)通过下式计算:(caco3的分子量xcao的量)/cao的分子量。例如,当加入以cao计0.5质量%的caco3时,caco3的添加量为(100.09x0.5质量%)/56.08=0.892质量%,因为caco3的分子量为100.09=40.08(ca的原子量)+12.01(c的原子量)+48.00(o的原子量x3),并且cao的分子量为56.08=40.08(ca的原子量)+16.00(o的原子量)。

(5)生坯的烧结步骤

如果需要的话,将通过压制成型获得的生坯脱脂,然后烧结。烧结在电炉、燃气炉等中进行。烧结在氧浓度优选为10体积%以上的气氛中进行。烧结气氛中的氧浓度更优选为20体积%以上,并且最优选100体积%。烧结温度优选为1150-1250℃。保持烧结温度的时间(烧结时间)优选为0小时(在烧结温度下无保持时间)至2小时。

如以下实施例中所示的,本发明使用例如:(a)包括以下的烧结条件:在从室温到烧结温度的温度范围内以400℃/小时的平均速率升高温度,将该烧结温度保持预定的时间段(烧结时间)(包括无保持时间),然后在从该烧结温度到800℃的温度范围内以300℃/小时的平均速率降低温度,(b)包括以下的烧结条件:在从800℃到烧结温度的温度范围内以600℃/小时以上且1000℃/小时以下的平均速率升高温度,将该烧结温度保持烧结时间(包括无保持时间),然后在从该烧结温度到800℃的温度范围内以1000℃/小时以上的平均速率降低温度等。

后者的烧结条件(b)由于非常高的升温速率和降温速率可以缩短交货时间。尽管在直到800℃的温度范围内的升温速率没有特别限制,但是考虑到交货时间的缩短,其优选与在从800℃到烧结温度的温度范围内的升温速率相同。即,在从室温或炉内温度(预热温度等)到烧结温度的整个温度范围内,平均升温速率优选为600℃/小时以上且1000℃/小时以下。另外,尽管在从800℃到接近室温的温度范围内的降温速率没有特别限制,但是考虑到交货时间的缩短,其优选与在从烧结温度到800℃的温度范围内的降温速率相同或接近。附带地,在本发明的实施方案中使用的温度表示要热处理的物体(生坯或烧结体)的温度。通过与在烧结炉中要热处理的物体接触的r型热电偶进行温度测量。

在烧结步骤之后,通过已知的制备步骤如机械加工步骤、清洁步骤、检查步骤等制备最终的烧结铁氧体磁体。

[3]烧结铁氧体磁体

通过上述步骤获得的本发明的烧结铁氧体磁体具有由通式ca1-x-yrxayfe2n-zcoz表示的金属元素ca、r、a、fe和co的组成,其中r是稀土元素中的至少一种且必须包括la;a是sr和/或ba;x、y、z和n表示ca、r、a、fe和co的原子比;2n表示由2n=(fe+co)/(ca+r+a)表示的摩尔比;并且x、y、z和n满足以下条件:

0.15≤x≤0.35,

0.05≤y≤0.40,

(1-x-y)>y,

0<z≤0.18,并且

7.5≤(2n-z)<11.0。

因为在本发明的煅烧铁氧体中在不加入作为烧结助剂的sio2和caco3的情况下产生液相,使得能够进行如上所述的煅烧铁氧体的烧结,所以在没有加入caco3时,只要不考虑在制备步骤期间可能含有的杂质,烧结铁氧体磁体的组成与煅烧铁氧体的组成基本上相同。

另一方面,当加入caco3作为烧结助剂时,烧结铁氧体磁体与煅烧体相比具有更高比例的ca,以及更低比例的其他元素。例如,当将以cao计1.5质量%的caco3作为烧结助剂加入到本发明的煅烧铁氧体中时,r、a和fe的量最多从煅烧体中的0.25≤x≤0.35、0.15≤y≤0.40以及9.0≤(2n-z)<11.0变化为烧结磁体中的0.15≤x≤0.35、0.05≤y≤0.40以及7.5≤(2n-z)<11.0。

烧结铁氧体磁体中的原子比(1-x-y)、y和z的优选范围为:0.40≤(1-x-y)≤0.50,0.20≤y≤0.35,以及0<z≤0.17。另外,烧结铁氧体磁体中的原子比(2n-z)的范围优选为7.5≤(2n-z)≤10.5,并且进一步优选7.5≤(2n-z)≤10.0。烧结铁氧体磁体中的co含量z的下限、上限和范围可以与煅烧铁氧体中的相同。

本发明的烧结铁氧体磁体中的包括氧(o)的组成以及主相和六方磁铅石(m型)结构的定义与本发明的煅烧铁氧体相同。尽管烧结铁氧体磁体中的原子比x、y和(2n-z)的范围与煅烧铁氧体中的不同,但是限制烧结铁氧体磁体中的原子比x、y、z和(2n-z)的理由与煅烧铁氧体相同。因此,省略对它们的说明。顺带地,原子比(1-x-y)的范围不可避免地通过原子比x和y的范围的变化而改变。

当将大于0质量%且1.5质量%以下的sio2作为烧结助剂加入到100质量%的煅烧体或煅烧体粉末中时,sio2在烧结期间形成液相,构成烧结铁氧体磁体中的晶界相中的一种组分,所得到的烧结铁氧体磁体含有以sio2计大于0质量%且1.5质量%以下的si。尽管包含si导致烧结铁氧体磁体中的金属元素ca、r、a、fe和co的量的相对降低,但是在通式ca1-x-yrxayfe2n-zcoz中各金属元素的百分比不变。顺带地,以sio2计的si含量通过以下方式确定:将通过烧结铁氧体磁体的组分分析(例如,icp原子发射光谱法)测量的ca、sr、ba、la、fe、co和si的百分比(质量%)换算为caco3、srco3、baco3、la(oh)3、fe2o3、co3o4和sio2的百分比(质量%)。在含有除了la以外的稀土元素r’的情况下,以sio2计的si含量类似地通过以下方式确定:将ca、sr、ba、la、r’、fe、co和si的百分比(质量%)换算为caco3、srco3、baco3、la(oh)3、r’氧化物、fe2o3、co3o4和sio2的百分比(质量%)。

将通过以下实施例更详细地说明本发明,而不意图将本发明限制于此。

实施例1

将caco3粉末、la(oh)3粉末、srco3粉末、fe2o3粉末和co3o4粉末以给出表示1中所示的原子比(1-x-y)、x、y、z和(2n-z)(在示出金属元素ca、r、a、fe和co的组成的通式ca1-x-ylaxsryfe2n-zcoz中)的百分比进行配制,并且在将0.1质量%的h3bo3粉末加入到它们的总量为100质量%的情况下在湿式球磨机中混合4小时。将各个所得到的混合物干燥并且造粒以获得30种类型的原料粉末混合物(样品1-30)。

将所有30种类型的原料粉末混合物在表1中所示的煅烧温度在空气中煅烧3小时,获得30种类型的煅烧体。

将各种煅烧体用小型磨机粗粉碎以获得各种粗煅烧体粉末。在将表1中所示的量的caco3粉末(量以cao计表示)和sio2粉末加入到100质量%的各种粗煅烧体粉末中的情况下,将各种粗煅烧体粉末在含有水作为分散介质的湿式球磨机中微粉碎至表1中所示的平均粒度[通过空气渗透法使用粉末比表面积计(可得自shimadzucorporation的ss-100)测量],获得30种类型的微粉碎浆料。

在除去水的同时,在其中压制方向与磁场方向平行的平行磁场成型机(垂直磁场成型机)中,将各种微粉碎浆料在约2.4mpa的压力下在约1t的磁场中压制成型,获得30种类型的生坯。

将各种生坯放入烧结炉中,并且在表1中所示的烧结条件a或b下烧结。在烧结条件a中,在从室温到表1中所示的烧结温度的范围内以1000℃/小时的平均速率升高温度,同时使空气以10l/分钟的流速在烧结炉中流动,并且在该烧结温度下进行烧结1小时。在烧结之后,将烧结炉中的加热器关闭,并且将空气的流速从10l/分钟改变为40l/分钟,从而在从该烧结温度到800℃的温度范围内以1140℃/小时的平均速率降低温度。然后使所得到的烧结体在炉中冷却至室温。在烧结条件b中,在从室温到表1中所示的烧结温度的范围内以400℃/小时的平均速率升高温度,同时使空气以10l/分钟的流速在烧结炉中流动,并且在该烧结温度下进行烧结1小时。在烧结之后,将烧结炉中的加热器关闭,从而在空气的流速保持在10l/分钟的情况下,在从该烧结温度到800℃的温度范围内以300℃/小时的平均速率降低温度。然后使所得到的烧结体在炉中冷却至室温。

关于30种类型的烧结铁氧体磁体,在表1中示出了br、hcj和hk/hcj的结果。在表1中,具有*的样品4和7不满足本发明的组成条件,因为它们的煅烧体中的稀土元素的原子比x小于0.25。除了样品4和7以外的样品(没有*)满足本发明的组成条件。顺带地,在j-h曲线(其中j表示磁化强度,并且h表示磁场强度)中,hk为在第二象限中j为0.95xjr(jr为剩余磁化=br)的位置处的h的值。

表1示出了配制原料粉末时的原子比(制剂组成)。在考虑到在煅烧步骤之前加入的h3bo3等的量以及在煅烧步骤之后并且在成型步骤之前加入的烧结助剂(caco3和sio2)的量的情况下,烧结铁氧体磁体中的原子比(烧结磁体的组成)可以由制剂组成计算,并且计算值与通过用icp原子发射光谱仪(例如,可得自shimadzucorporation的icpv-1017等)来分析烧结铁氧体磁体获得的值基本上相同。表2中的原子比同样如此。

表1

表1(续)

注释:(1)微粉碎浆料中的粉碎粉末的平均粒度。

表1(续)

如表1中所示,原子比z(co含量)小于0.15且其他金属元素的原子比被调整为满足本发明的组成条件的样品1-3、5、6、8-13和18具有0.433-0.441t的br和304-391ka/m的hcj。这表明即使在co含量比常规srlaco磁体更小的情况下,满足本发明的组成条件的烧结铁氧体磁体也具有与常规srlaco磁体相同水平的磁性。

另外,原子比z(co含量)为0.15-0.18且其他金属元素的原子比被调整为满足本发明的组成条件的样品14-17和19-30具有0.435-0.442t的br和352-407ka/m的hcj,从而在具有与常规srlaco磁体相同水平的co含量的情况下表现出超过常规srlaco磁体的磁性。特别地,在la和co含量相对于常规calaco磁体降低的情况下,原子比x(la含量)在0.325≤x≤0.35范围内且原子比z(co含量)在0.17≤z≤0.18范围内的烧结铁氧体磁体具有与常规calaco磁体(la含量:按原子比计约0.5,并且co含量:按原子比计约0.3)相当的磁性。

另一方面,原子比x(la含量)为0.20的样品4和7表现出0.432t以下的br和312ka/m以下的hcj,即与常规srlaco磁体相比更低的磁性,这是因为它们不满足本发明中的0.25≤x≤0.35的条件。

如根据表1明显的,在不同烧结条件a和b下制备的各自具有相同组成(sio2的量可稍有不同)的样品对(8和9,10和11,12和13,14和15,16和17,19和20,21和22,23和24,25和26,27和28,以及29和30)具有高的br和hcj,而与它们的烧结条件无关。特别地,在条件a下的烧结倾向于提供更高的hcj,并且在条件b下的烧结倾向于提供更高的br。

原子比z(co含量)为0.18并且满足本发明的组成条件的样品16和17表现出高的br和hcj,尽管hk/hcj稍低。另一方面,原子比z(co含量)为0.17的样品25-30表现出高的br和hcj以及高的hk/hcj。这些结果表明,在0<z≤0.17范围内的原子比z(co含量)对于需要高hk/hcj的应用来说是优选的。

实施例2

以与实施例1相同的方式制备7种类型的烧结铁氧体磁体(样品31-37),除了在通式ca1-x-ylaxayfe2n-zcoz中改变原子比z(co含量)(样品31和32)和原子比(2n-z)(fe含量)(样品34-37),或使用ba作为元素a(样品33)。所有样品31-37都满足本发明的组成条件。关于各个样品,在表2中示出了制剂组成、煅烧温度、caco3(以cao计)和sio2的添加量、在球磨之后的平均粒度、烧结条件和烧结温度以及烧结铁氧体磁体的br、hcj和hk/hcj。

表2

表2(续)

注释:(1)微粉碎浆料中的粉碎粉末的平均粒度。

表2(续)

如根据表2明显的是,原子比z(co含量z<0.10)比实施例1(z≥0.10)中更低的样品31和32具有0.435t的br和334-346ka/m的hcj。这表明,只要满足本发明的组成条件,即使co含量比实施例1中更低,也可以获得具有与常规srlaco磁体相同水平的磁性的烧结铁氧体磁体。

包含ba代替sr作为元素a的样品33具有与实施例1中的样品14(其除了包含sr作为元素a以外,具有基本上相同的组成)相同水平的br,以及与样品14相比稍低的hcj,但是样品33的hcj与常规srlaco磁体处于相同水平。这表明,只要满足本发明的组成条件,即使使用ba代替sr,也可以获得具有与常规srlaco磁体相比相同水平或更高水平的磁性的烧结铁氧体磁体。

已发现,与具有与样品34-36相同的原子比z(co含量)的实施例1中的样品相比,在本发明的组成范围内的fe含量的原子比(2n-z)=9.00(其比实施例1(9.50)中低)的样品34-36具有更高的hcj,并且原子比z(co含量)从0.10增加到0.15导致更高的hcj。另外,在本发明的组成范围内的与实施例1(9.50)中相比具有更高铁含量的原子比(2n-z)=10.00的样品37具有与实施例1中相比稍低、但与常规srlaco磁体相同水平的br。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1