利用互连基板阵列的微电子封装制造的制作方法

文档序号:27761721发布日期:2021-12-03 23:53阅读:100来源:国知局
利用互连基板阵列的微电子封装制造的制作方法

1.本公开的实施例大体上涉及微电子,并且更具体地说,涉及用于利用包含集成静电放电(esd)保护栅格的互连基板阵列来制造微电子封装的方法,以及此类基板带和微电子封装。
2.缩写
3.本文中出现得相对不大频繁的缩写在初次使用时进行定义,而本文中出现得较频繁的缩写定义如下:
4.bga

球栅格阵列;
5.esd

静电放电;
6.ic

集成电路;
7.lga

焊盘栅格阵列;
8.smd

表面安装装置;以及
9.tsv

穿透基板通孔。


背景技术:

10.微电子封装包括封装主体,所述封装主体包含一个或多个半导体管芯,以及任何数量的离散smd电容器、smd电阻器、smd电感器或其它微电子部件。引线键合通常用于在给定微电子封装的端与包含于所述微电子封装中的微电子部件之间提供电互连,其中封装端取决于微电子封装是lga封装、bga封装、基于引线框架的封装还是另一种封装类型而采用各种形式。可以通过经由大批量制造互连基板阵列来同时生产多个封装而使微电子封装制造简化;即包含多个基板的结构通过介入单切道(singulation street)互连,所述单切道随后在单切期间被去除。在一种常见的制造方法中,基板面板最初生产为包含相对大量的互连基板。然后将基板面板分成多个基板带,每一基板带具有大体上矩形的形状因数,非常适合于通过不同的制造设备阶段进行改进。给定基板带可以包含布置成栅格布局的几个互连基板到数百个互连基板。基板带的伸长矩形形状因数可以通过例如管芯附接、引线键合和带模制处理阶段等不同的处理阶段促进带的线性改进和分度。在此类带级或阵列级处理之后,对所得结构进行锯切、冲压或以其它方式进行单切以产生多个离散的封装单元。可以在带单切之后执行额外的处理步骤,例如在bga封装的情况下进行球附接,以完成离散封装的制造。


技术实现要素:

11.根据本发明的一个方面,提供一种用于制造微电子封装的方法,包括:
12.获得互连基板阵列,所述互连基板阵列包括:
13.封装基板,所述封装基板包括管芯附接区;
14.单切道,所述单切道与所述封装基板穿插布置;
15.外围机器接地触点,所述外围机器接地触点邻近所述互连基板阵列的边缘区;以

16.静电放电(esd)保护栅格,所述esd保护栅格包括将所述管芯附接区电耦合到所述外围机器接地触点的esd栅格线,所述esd栅格线至少部分地形成于所述互连基板阵列的所述单切道中;
17.执行阵列级制造步骤以利用所述互连基板阵列产生互连封装阵列,同时在至少一个所述阵列级制造步骤期间通过所述esd保护栅格将所述管芯附接区电耦合到电接地;以及
18.在执行所述阵列级制造步骤之后,对所述互连封装阵列进行单切以产生多个单切的微电子封装。
19.根据一个或多个实施例,执行所述阵列级制造步骤包括利用管芯键合机器将集成电路(ic)管芯附接到所述管芯附接区,同时维持所述外围机器接地触点与所述管芯键合机器的接地特征之间的接触。
20.根据一个或多个实施例,键合包括利用导电键合材料将所述ic管芯键合到所述管芯附接区。
21.根据一个或多个实施例,如果不存在所述esd保护栅格,当利用所述管芯键合机器将所述ic管芯附接到所述管芯附接区时,所述管芯附接区将为电浮动的。
22.根据一个或多个实施例,执行所述阵列级制造步骤包括利用引线键合机器形成使键合到所述管芯附接区的集成电路管芯互连的引线键合,同时维持所述外围机器接地触点与所述引线键合机器的接地特征之间的接触。
23.根据一个或多个实施例,执行所述阵列级制造步骤包括利用具有接地夹持器机构的第一机器执行至少一个阵列级制造步骤,同时维持所述外围机器接地触点与接地夹持器机构之间的接触。
24.根据一个或多个实施例,所述esd保护栅格就体积来说主要位于所述单切道中。
25.根据一个或多个实施例,执行所述阵列级制造步骤包括:
26.将集成电路(ic)管芯键合到所述管芯附接区;
27.在将所述ic管芯键合到所述管芯附接区之后,形成使所述ic管芯与设置在所述封装基板上的基板端连接电互连的引线键合;以及
28.在使所述ic管芯与基板端连接电互连之后,对所述互连基板阵列、所述ic管芯和所述引线键合进行包覆模制以产生所述互连封装阵列。
29.根据一个或多个实施例,单切包括单切所述互连封装阵列以产生所述多个单切的微电子封装,所述多个单切的微电子封装各自包括:
30.封装基板,所述封装基板具有由所述单切工艺限定的基板侧壁;
31.以及
32.所述esd栅格线中的一个切断的esd栅格线,所述切断的esd栅格线包含于所述封装基板中并延伸到所述基板侧壁。
33.根据一个或多个实施例,所述外围机器接地触点包括伸长金属特征的一部分,当在对所述互连基板阵列、所述ic管芯和所述引线键合进行包覆模制时通过模制栅极引入模制材料时,所述伸长金属特征最先受到所述模制材料的冲击。
34.根据一个或多个实施例,所述互连基板阵列包括基板带,所述基板带具有大体上
矩形的平面形状并且包含布置成至少一个栅格布局的所述封装基板。
35.根据一个或多个实施例,所述外围机器接地触点形成为伸长金属触点,所述伸长金属触点位于所述基板带的伸长侧边缘附近并且大体上平行于所述伸长侧边缘延伸。
36.根据一个或多个实施例,执行所述阵列级制造步骤包括利用导电键合层将集成电路(ic)管芯键合到所述管芯附接区;并且
37.其中所述ic管芯包括:
38.管芯后侧,当所述ic管芯键合到所述管芯附接区时,所述管芯后侧面向所述管芯附接区;
39.管芯前侧,所述管芯前侧与所述管芯后侧相对;以及
40.esd接地结构,所述esd接地结构形成于所述管芯前侧上并且在所述ic管芯键合到所述管芯附接区时通过所述管芯后侧并通过所述导电键合层电耦合到所述管芯附接区。
41.根据一个或多个实施例,另外包括将所述esd接地结构选择为具有在所述管芯前侧的外围部分周围延伸的环形几何形状。
42.根据本发明的第二方面,提供一种互连基板阵列,包括:
43.封装基板,所述封装基板包括管芯附接区;
44.单切道,所述单切道与所述封装基板穿插布置且互连;
45.外围机器接地触点,所述外围机器接地触点邻近所述互连基板阵列的边缘区;
46.电介质基板阵列主体;以及
47.静电放电(esd)保护栅格,所述esd保护栅格形成于所述电介质基板阵列主体中并且包括将所述管芯附接区电耦合到所述外围机器接地触点的esd栅格线,所述esd栅格线至少部分地形成于所述互连基板阵列的所述单切道中。
48.根据一个或多个实施例,所述互连基板阵列包括具有大体上矩形的平面形状的基板带;
49.其中所述封装基板布置成至少第一栅格布局;并且
50.其中所述外围机器接地触点形成为伸长金属触点,所述伸长金属触点位于所述基板带的侧边缘附近并且大体上平行于所述侧边缘延伸。
51.根据一个或多个实施例,所述esd保护栅格就体积来说主要位于所述单切道中;
52.其中所述封装基板具有平均厚度;并且
53.其中所述esd栅格线各自具有小于所述封装基板的所述平均厚度的一半的厚度。
54.根据一个或多个实施例,所述封装基板包括接地平面,所述管芯附接区通过所述接地平面电耦合到所述esd保护栅格。
55.根据本发明的第三方面,提供一种微电子封装,包括:
56.封装基板,所述封装基板具有管芯附接区并且具有单切的侧壁;
57.集成电路(ic)管芯,所述ic管芯具有面向所述管芯附接区的管芯后侧并且具有与所述管芯后侧相对的管芯前侧;
58.导电键合层,所述导电键合层将所述ic管芯键合到所述管芯附接区;以及
59.切断的静电放电(esd)保护栅格线,所述切断的esd保护栅格线电耦合到所述管芯附接区,所述切断的esd保护栅格线延伸到所述封装基板的所述单切的侧壁中的一个侧壁并且穿过所述单切的侧壁中的一个侧壁。
60.根据一个或多个实施例,另外包括形成于所述管芯前侧上、具有环形几何形状并且在所述管芯前侧的外围部分周围延伸的esd接地结构,所述esd接地结构通过所述管芯后侧并通过所述导电键合层电耦合到所述管芯附接区。
附图说明
61.将结合附图在下文描述本发明的至少一个例子,在附图中,相同的标记表示相同的元件,并且:
62.图1是如根据示例实施例所示的利用包含集成esd保护栅格的互连基板阵列生产的lga封装的等角视图;
63.图2是沿着截平面2

2(在图1中标识)截取的图1所示的示例lga封装的截面视图;
64.图3是包含于图1和2所示的lga封装中的半导体管芯的等角视图,示出了在实施例中可以形成于封装管芯的前侧上的esd接地结构(此处也充当密封环)以及其它特征;
65.图4是用于利用包含集成esd保护栅格的互连基板阵列来制造多个微电子封装的示例方法,所述微电子封装例如图1和2所示的示例lga封装的多个实例;
66.图5是如根据本公开的示例实施例所描绘的已经集成有esd保护栅格的互连基板阵列(此处为基板带)的平面视图;并且
67.图6

10根据图4中所阐述的封装制造方法的示例实施方案按步骤顺序示出了在降低阵列级制造esd损害的概率的同时可以用于制造多个微电子封装的制造步骤。
68.为简单和清晰地说明起见,可以省略众所周知的特征和技术的描述和细节,以避免不必要地使后续具体实施方式中描述的本发明的示例和非限制性实施例混淆。应进一步理解,除非另有说明,否则附图中出现的特征或元件不一定按比例绘制。例如,图中某些元件或区的尺寸可以相对于其它元件或区而放大,以提高对本发明的实施例的理解。
具体实施方式
69.本公开的实施例在上文简要描述的图式的附图中示出。在不脱离如所附权利要求书所阐述的本发明的范围的情况下,本领域的技术人员可以预期对示例实施例的各种修改。
70.定义
71.以下定义适用于整个本文档。在此处或本文档中其它处未明确定义的那些术语是指其在相关技术领域中的一般含义。
72.管芯后侧

沿着与管芯的前侧(定义如下)正交的轴线与管芯的前侧相对的管芯的侧(外主表面)。
73.管芯前侧

键合垫唯一地或绝大部分位于其上的管芯的侧(外主表面)。
74.金属

一种按重量百分比计主要由一种或多种金属组分构成的材料。
75.微电子封装

包含例如载有集成电路的半导体芯片管芯的一个或多个微电子部件的离散单元,所述微电子部件由基板支撑并且至少部分地由封装主体封闭。当包含例如一个或多个管芯和无源smd装置的多个互连微电子部件时,微电子封装可以更具体地被称作“系统级封装”或“sip”。
76.综述
77.如上文所提及,微电子封装通常是通过处理互连基板阵列而同时制造的,所述互连基板阵列例如处理从较大基板面板切割的基板带。此类基板带可以经历利用管芯键合机器执行的初始管芯附接处理阶段,所述管芯附接处理阶段将一个或多个半导体管芯(也可能是其它微电子部件)附接到包括于基板带中的每一基板。管芯键合机器可以包括例如夹持器机构或分度器的某些特征,其接合基板带的边缘以保持带抵靠着所述机器的支撑表面;所述支撑表面例如金属卡盘的上部表面。在管芯附接之后,具有类似特征的引线键合机器可以进一步处理基板带。具体地说,此类引线键合机器可以用于形成使新附接的管芯和附接到基板带的任何其它微电子部件电互连到互连基板的基板端(或端连接)的引线键合。基板端连接可以是例如基板的导电特征,其提供到封装的外部可接近端的连接;例如就lga封装而言,基板端连接可以是设置在lga基板的前侧或“管芯支撑表面”上的键合垫,所述键合垫电耦合到沿着lga基板的后侧或底侧暴露的键合垫或“焊盘”。
78.上文所描述的制造技术使得能够以相对简化、有成本效益的方式制造相对大量的微电子封装。然而,在某些情况下,不合需要的高比例的微电子封装可能无法通过阵列级处理之后的质量测试。此类良率损失直接增加了可行或可销售的微电子封装的各封装生产成本。当微电子封装在上述管芯附接和互连(例如,引线键合)处理步骤之后的某个节点处未能通过性能参数测试时,可能会出现良率损失。微电子封装未能通过质量测试测量的原因可能有多种;通常,导致特定封装报废且可能损坏的特定失效模式或精密机构仍然是未知的。虽然在任何给定微电子封装制造工艺中此类良率损失理想地被驱动到零,但这在现实条件下通常是不切实际的;并且在当前制造实践中,通常可以允许有一定量的不可避免的良率损失。然而,已发现,当某些条件由于阵列级制造esd事件而导致装置损坏的可能性增大时,此类良率损失可能会加剧;所述阵列级制造esd事件即在互连基板阵列的处理期间,例如在用于从基板带产生lga封装、bga封装和类似微电子封装的管芯附接和引线键合处理步骤期间发生的esd事件。由于例如产生在最终电和功能测试期间不大可能检测到的低级别潜在缺陷,阵列处理esd事件还可能会对封装可靠性产生长期负面影响。例如,已确定esd事件可以在电介质膜中产生点缺陷,尽管所述点缺陷微小且极难检测,但可以随时间随功率和温度循环传播,并最终导致装置失效。类似地,由阵列级制造esd事件导致的潜在缺陷可能在晶体管栅极氧化层内作为微小的位错出现,所述位错通常无法检测到,但可能随时间最终引发装置场失效模式。
79.当在特定系统或应用内安装和利用时,人们早已认识到esd事件损坏包含于完成的微电子封装内的微电子部件的可能性。然而,在互连基板阵列的阵列级处理期间,例如在基板带的带级处理期间,提供esd保护的有效解决方案很少(如果存在的话)。其中一个原因可能是目前工业领域普遍缺乏对阵列级制造期间发生的破坏性esd事件的认识。取决于处理参数和其它因素,esd事件在阵列级处理期间可能很少发生;并且当发生时,此类esd事件在量值或持续时间上可能足够轻微,以避免损害包含于微电子封装内的敏感部件区,例如晶体管栅极电介质层。此类阵列级制造esd事件的此不常见或强度不足可能是由于基板带的导电特征通过与管芯键合机器、引线键合机器和用以执行不同的阵列级制造工艺的类似处理设备的接地金属特征接触而出现的断断续续的、无意的接地。另外,当附接许多常规半导体芯片管芯时,严重的阵列级制造esd事件的电位最小化,例如由具有常见晶格朝向的块状硅(si)晶片构成的管芯通过其相应厚度具有相对低的电阻率;例如,正如沿着从管芯主
体的前侧延伸到后侧的竖直轴线所测得的,电阻率为100千欧(ω)或更小。相反,已确定当基板带(或其它互连基板阵列)的导电特征保持电浮动和/或高电阻率的半导体管芯附接到基板带时,相对严重的阵列级制造esd事件对敏感部件造成损坏并导致对应的良率损失的机会明显增大。
80.除了在洁净室环境内执行阵列级处理之外,可以降低阵列级制造esd事件的倾向的一种方式是使用负离子发生器;即被配置成在处理期间针对微电子工件导入强制电离气流的装置。然而,此类负离子发生器在阵列级处理期间的潜在用途与各种缺点相关联。负离子发生器通常是成本相对较高且体积较大的装置。由于强制气流冲击基板带(或其它互连基板阵列)所固有的对流冷却效应,使用负离子发生器可能会干扰在阵列级处理期间实现理想高温(例如,用于在引线键合期间形成金属间化合物的理想温度)。即使抛开此类限制,负离子发生器在持续防止阵列级制造esd事件方面也可能是无效的。考虑到这一点,当前行业持续存在对降低在基板带或其它互连基板阵列的阵列级处理期间发生严重的制造esd事件的可能性的技术解决方案的需求。理想地,此类解决方案将能够集成到各种不同的基板带(或其它互连基板阵列)中,几乎不需要额外的成本且同时对改变现有基板设计或布局的需求极少。还将希望此类解决方案与用以执行管芯附接、电互连(例如,引线键合)和其它阵列级处理步骤的各种制造设备类型兼容。
81.为了满足上述行业需要,下文公开了互连基板阵列、微电子封装以及用于利用包含集成esd保护栅格的互连基板阵列来制造微电子封装的方法。在许多情况下,下文描述的互连基板阵列采用具有大体上矩形的平面形状或形状因素的基板带形式,并且因此主要如下所述。然而,应强调,本文中呈现的教示同样适用于任何类型的互连基板阵列,而不管其形状因数或结构组成如何,对所述互连基板阵列进行处理以产生在阵列级处理期间易受esd损坏影响的多个微电子封装。有利的是,下文描述的esd保护栅格的实施例可以集成到现有基板阵列设计中,几乎不需要额外的成本且同时提供与包括管芯附接和引线键合机器的各种阵列级处理设备的兼容性。另外,本文中所描述的集成esd保护栅格在防止或至少降低阵列级制造esd事件的严重性方面是非常有效的,包括当高电阻率的管芯附接到给定互连基板阵列的指定管芯键合区域时;例如,使用氮化镓(gan)结构、砷化镓(gaas)结构或非常适合于tsv集成的某种硅(si)材料(包括高电阻率的si材料)生产的ic管芯,仅列举了几个例子。通过减少大批量制造规模下的良率损失,可以实现可观的成本节约;例如,在某些情况下,测试表明良率损失可以减少3%以上。另外,通过使由阵列处理eds事件轻微坏的微电子封装的实例最小化并且基于质量测试参数的余量,可以实现达成理想封装性能水平和提高总体可靠性方面的更大一致性。
82.集成esd保护栅格的实施例包括相交的栅格线,所述栅格线使互连基板阵列的管芯附接区与外围接地结构或触点电互连,所述外围接地结构或触点位于集成有esd保护栅格的基板阵列的一个或多个外围边缘附近。例如,就具有伸长侧边缘的基板带而言,esd保护栅格可以连接到一个或多个伸长外围接地触点,例如大体上平行于带的伸长侧边缘延伸的伸长条形金属区。在基板带(或其它互连基板阵列)被包封或包覆模制的情况下,外围接地触点可以与带的模制栅极金属特征组合或连接到所述模制栅极金属特征;即当在带级处理期间最先注入或以其它方式分配到带上时,带的金属化区域与模制材料接触。此类外围接地触点在阵列级处理期间与处理设备(例如,接地夹持器机构或分度器)的接地结构电接
触,以向接地提供从互连基板阵列的管芯附接区延伸到电接地的低电阻路径。在给定管芯利用例如含金属的环氧树脂的导电键合材料附接到指定管芯附接区的情况下,同样提供低电阻电路径,所述低电阻电路径来自管芯后侧,穿过管芯附接区、穿过集成esd保护栅格、穿过外围机器接地触点,并且最终到达处理设备的电接地(机壳接地)。因此,每一ic管芯附近的高度充电的静电场(e场)积聚的可能性降低以对应地使得严重的阵列级制造esd事件的可能性降低,这可能会在阵列级处理期间以其它方式潜在地损坏ic管芯(或键合到基板阵列的其它微电子部件)。更广泛地说,并入到给定微电子封装中的此类半导体管芯和任何其它微电子部件(例如,smd)受到保护,从而免受在经历阵列级制造的整个封装的任何给定位置处发生的esd事件的影响。
83.以上文所描述的方式,将esd保护栅格集成到基板带或其它互连基板阵列中使阵列级制造esd事件的可能性和严重性最小化。具体地说,当高电阻率的ic管芯在阵列级处理期间键合到基板阵列、互连并以其它方式进行处理时,这又降低了由于此类esd事件而可能以其它方式发生的良率损失。同时,集成esd保护栅格至少部分地(如果不是主要地)形成于互连基板阵列的单切道中;例如,大部分esd保护栅格的体积可以位于给定基板阵列的单切道中。因此,esd保护栅格的提供占形成互连基板阵列的封装基板的设计相关区域的一小部分。按照推论,执行管芯附接、互连(例如,引线键合)和任何额外的阵列级处理步骤(例如,基板阵列包覆模制)以将集成基板阵列转换成易于单切的互连封装阵列,之后可以在将互连基板阵列单切为单个单元期间去除大部分(如果不是大体上整个(同样就体积来说))esd保护栅格。然而,esd保护栅格的小型制品可以保留在完成的微电子封装中,例如先前直接或间接地将管芯附接区连接到esd保护栅格并且现在于封装基板的外围侧壁处终止的切断的栅格线(下文也称作“延伸突片”),如下文进一步论述。
84.在实施例中,还可以利用半导体管芯的前侧层中的独特前侧esd接地结构提供针对阵列级制造esd事件的额外保护,所述半导体管芯键合到互连基板阵列的管芯附接区。此类前侧esd接地结构可以在邻近给定管芯的外边缘的位置处形成于管芯前侧上;并且另外,所述esd接地结构可以通过一个或多个tsv电耦合到管芯后侧;如先前所指出,术语“tsv”表示“穿透基板通孔”,更具体地说,术语“穿透硅通孔”保留以用于tsv形成于至少部分地由硅构成的管芯中的实例。此提供类esd接地结构可以有益于进一步提供从管芯前侧延伸到管芯后侧的低电阻率接地路径,并且因此,所述低电阻率接地路径穿过管芯附接区、穿过集成esd保护栅格,并且到达处理设备的机壳或机器接地。在某些情况下,这又可以减少半导体管芯的前侧附近的静电荷积聚,从而进一步降低管芯对阵列级制造esd损坏的敏感性。如果需要,可以利用给定esd接地结构以在完成的封装中提供其它功能。此类其它功能可以包括形成屏蔽结构以减少射频(rf)应用中的rf干扰或串扰,例如就包含rf功率管芯的功率放大器(pa)封装而言。在其它情况下,esd接地结构可以实现为在半导体管芯的前侧的上部外围周围延伸的环形结构,以形成防止水分和其它污染物进入的物理屏障。当提供此功能时,esd接地结构还可以在下文被称作“接地密封环”。在另外的实施例中,可以在不使用此类前侧esd接地结构的情况下进行下文所描述的制造方法,同时处理包含集成esd保护栅格的基板带(或其它互连基板阵列)。现将结合图1

10描述利用包含集成esd保护栅格的互连基板阵列制造的微电子封装的例子,在实施例中,此类封装有效但非必要地另外包含接地密封环或其它此类前侧esd接地结构。
85.利用包含集成esd保护栅格的互连基板阵列制造的示例微电子封装
86.图1和2分别是通过处理包含集成esd保护栅格的互连基板阵列制造的示例微电子封装20的等角和截面视图。在此特定例子中,微电子封装20采用lga封装的形式,且将因此在下文中被称作“lga封装20”。然而,应强调,以下描述同样适用于能够利用已集成有esd保护栅格的互连基板阵列制造的其它封装类型,例如bga封装。可能根据本文中阐述的教示制造的其它封装类型的非穷尽性列表包括bga封装和扁平无引脚封装或微型引线框架(mlf)封装,例如方形扁平无引脚(qfn)封装和双平面扁平无引脚(dfn)封装。下文结合图4

10论述用于制造lga封装20以及多个类似或相同封装的示例方法。然而,首先,更详细地描述lga封装20以提供其中可以更好地理解本说明书的实施例的非限制性上下文。
87.一般来说,lga封装20与典型的lga封装有许多共同的结构特征。例如,lga封装20包括具有前侧或“管芯支撑表面”24和相对后侧26的封装基板22(下文称为“lga基板22”)。模制封装主体28形成于lga基板22的管芯支撑表面24上方并且键合到所述管芯支撑表面24。一个或多个微电子装置键合到lga基板22并且嵌入在模制封装主体28内。例如,从图2的截面中可见,半导体或集成电路管芯30(下文称为“ic管芯30”)可以通过管芯键合层32附接到lga基板22的管芯支撑表面24。具体地说,ic管芯30可以键合到管芯支撑表面24的设计区或区域,在本文中被称作“管芯附接区31”。管芯附接区31的至少一部分由导电材料构成,并且通过管芯键合层32电耦合到ic管芯30(具体地说,如下文所描述,电耦合到管芯后侧36)。为了提供此类电连接,管芯键合层32由导电键合材料(例如,金属填充的环氧树脂、焊料或烧结材料)构成。作为更具体的例子,在一些实施方案中,管芯键合层32可以由装载有例如银(ag)或铜(cu)颗粒的金属颗粒的管芯附接材料构成。在其它情况下,并且作为第二例子,管芯键合层32可以由按重量计主要由ag、cu或其组合构成的烧结材料构成。
88.ic管芯30包括与下部主表面或“后侧”36相对的上部主表面或前侧34。ic管芯30的后侧36通过管芯键合层28附接到封装基板22的上部主表面或管芯支撑表面24,如先前所提及。电路系统与多个键合垫38(图2中可以看见其中一个)一起形成于ic管芯30的前侧34上。另外,在实施例中,esd接地结构40形成于ic管芯30的前侧34上,如下文进一步描述。键合垫38经由引线键合54与lga基板22的导电特征42、44、46、48、50、52中的所选导电特征电互连。具体地说,如图2的右侧上所指示,对于一个此类键合垫38,每一键合垫38可以电连接到包括于lga基板22的上部图案化金属层42、44中的图案化焊盘垫或键合垫44。上部图案化金属层42、44可以通过任何数量的tsv50、52且通过任何数量的介入图案化金属层电耦合到下部图案化金属层46、48。在所示例子中,下部图案化金属层46、48限定暴露于后侧26处的多个较小端或焊盘46,其可以布置成大体上平行于lga基板22的边缘区延伸的一个或多个行(在图1中最佳地观察到)。另外,下部金属层46、48还可以被图案化以限定相对较大的中心触点,在实施例中,所述中心触点可以充当lga封装20的额外端48并且还可以充当散热片或散热器。在所示例子中,端48为lga封装20的接地平面和接地端,且因此在下文中被称作“接地端48”。lga基板22的各种导电特征通过电介质主体56电隔离,所述电介质主体56可以形成为一层或多层印刷电路板(pcb)树脂、包含填料的电介质聚合物、多层氧化铝、低温共烧陶瓷或其它电介质材料。在另外的实施例中,lga基板22可以包含更多或更少数量的布线层或可以另外具有不同的构造,例如无核心基板的构造。一般来说,然后,本公开的实施例适用于任何组件或可能出现esd损坏且利用具有任何合适的基板构造和组成的基板阵列或载体
实行esd损坏的制造工艺。
89.ic管芯30可以利用任何合适的管芯技术制造而成,并且可以取决于ic管芯30的期望功能性而包括不同的ic设计。在实施例中,可以利用硅(si)或另一种半导体材料的块状工件来造ic管芯30。在其它实施例中,可以使用分层管芯结构来生产ic管芯30。这在图2中针对ic管芯30笼统地示出,所述ic管芯30示出为包括其上产生有前侧层62的管芯主体58、60。当例如利用单切的块状硅(si)晶片工件产生ic管芯30时,管芯主体58、60可以由单种半导体材料构成。可替换的是,管芯主体58、60可以由不同材料的多个层构成,包括半导体材料的至少一个层或主体。在此后一方面中,在利用分层(例如,gan)管芯技术生产ic管芯30的实施方案中,管芯主体58、60的上部部分58可以按重量计基本上或主要由第一半导体材料(例如,gan)构成,而管芯主体58、60的下部部分60由其上形成有第一半导体(例如,gan)层的另一种材料(或材料的组合)构成,例如碳化硅(sic)。在其它情况下,可以利用提供相对高电阻的管芯的另一种管芯技术来制造ic管芯30,例如使用gaas管芯结构或具有非常适用于tsv集成的高电阻率晶格朝向的si材料生产的ic管芯。前侧层62还包括限定键合垫38和互连线的额外图案化金属层、用于在图案化金属层的离散特征之间提供隔离的电介质层,以及可能至少部分地限定ic管芯30的前侧34的外钝化层。可以提供与管芯前侧34相对的背垫金属层或多层系统64,以促进与管芯键合层28的冶金键合和低电阻电接触。当例如ic管芯30采用射频(rf)功率管芯的形式时,此类构造可能是有用的,所述rf功率管芯包含用于rf信号或功率放大目的的一个或多个晶体管,例如场效应晶体管(fet)。在其它实施例中,ic管芯30可以包括其它电路元件(包括一个或多个双极晶体管)和/或可以缺少此类背垫金属层或多层系统。
90.如上文所提及,在实施例中,esd接地结构40还可以形成于ic管芯30的前侧34上。当被提供时,esd接地结构40通过例如穿过管芯主体58、60形成的一个或多个tsv 66电耦合到管芯后侧36,如图2中的细节气泡68所指示。在包封或包覆模制ic管芯30之前,esd接地结构40可以从前侧34的外部暴露,以进一步减少在制造lga封装20期间沿着ic管芯30的前侧34的静电荷积聚。另外,在实施例中,可以利用esd接地结构40来为封装后制造的额外目的服务。例如,在实施例中,esd接地结构40的尺寸可以被设定成且定位成充当emi屏蔽。在其它情况下,esd接地结构40可以形成为具有在前侧34的外围周围延伸且充当密封环的环形几何形状;即防止污染物进入前侧层62的物理屏障。通过简单地参考图3可以更充分地理解这一点,图3描绘了可以产生esd接地结构40以具有在管芯前侧34的前侧34的外围周围延伸的环形几何形状的一种方式,如所描绘,所述环形几何形状可能侧接管芯键合垫38。esd接地结构40可以由各种不同的导电材料构成,所述导电材料包括:非金属材料,例如多晶硅;以及金属材料,例如金、锗金、钨硅化物和铝铜钨,仅列举了几个例子。
91.lga封装20另外包括esd保护栅格线的至少一个切断的节段70(下文被称作“突片延伸部70”),其延伸到并且穿透或穿过lga基板22的侧壁72,或更笼统地说lga封装20的侧壁72,如图1和2所示。延伸突片70是较大esd保护栅格的制品或残余物,所述较大esd保护栅格集成到产生lga封装20的互连基板阵列中。就此而言,便于利用呈基板带形式的此类互连基板阵列同时制造lga封装20与许多类似的lga封装,所述互连基板阵列包含在带的阵列级处理期间提供增强的esd保护的集成esd保护栅格。在其它实施例中,集成esd保护栅格的一大部分可以保留在完成的lga封装20内;然而,如下文更充分地描述,当处于部分制造、互连
状态时,集成esd保护栅格有利地主要位于使lga封装分离的单切道内。因此,在单切互连封装阵列以产生包括lga封装20的多个单切的lga封装单元之后,集成lga保护栅格可能会很大程度上受损。下文结合图4

10的部分中阐述了用于制造lga封装20以及多个类似或相同的封装的示例方法的另外说明,以及esd保护栅格的示例实施例的更详细论述。
92.利用包含集成esd保护栅格的互连基板阵列示例封装制造方法
93.现在转而参看图4,呈现了用于利用已集成有集成esd保护栅格的互连基板阵列来制造多个微电子封装的示例封装制造方法74。根据前述描述,封装制造方法74将被描述为产生与上文结合图1

3所论述的lga封装20类似或相同的多个lga封装,在图4

10中视需要继续引用先前引用的附图标记。然而,应强调,封装制造方法74可以用于其它lga封装的制造中,并且更广泛地说,用于在阵列级处理期间得益于增强的esd保护的其它封装类型的制造中。例如,下文所描述的方法可能易于适用于产生bga封装,所述bga封装可以通过导致球附接或碰撞的大部分处理阶段而与lga封装类似。值得注意的是,因为下文所描述的esd保护栅格是集成到互连基板阵列(例如,基板带)自身中的无源结构,所以esd保护栅格可移到各种互连基板阵列中或能够集成到各种互连基板阵列中,并且易于部署到大部分装配工艺中。如上文所提及,方法74的变化形式同样适用于制造其它微电子封装类型,包括但不限于bga和mlf(例如,qfn和dfn)封装。
94.在所示例子中,封装制造方法74被分成三个处理阶段或块76、78、80。为了开始方法74(阶段76),通过独立制造、从供应商购买或以其它方式获得包括一个或多个集成esd保护栅格的互连基板阵列。此处,在阶段76期间获得的集成基板阵列是包含布置成两个栅格布局84的相对大量的互连lga基板的伸长基板带82,所述栅格布局84由介入中间区或区域86分离。基板带82沿着纵向轴线(由虚线88表示)伸长且包括大体上平行于纵向轴线88延伸的两个纵向(纵长的)边缘90。外围机器接地触点92形成于基板带82的边缘区周围。例如,如图4的上部部分所示,外围机器接地触点92可以形成为伸长的带或条,其位于基板带82的伸长边缘90之一附近并且大体上平行于所述伸长边缘90之一延伸(并且按照推论,大体上平行于带82的纵向轴线88延伸)。外围机器接地触点92的此类定位促进通过与处理设备的一个或多个工件的接地特征物理接触而实现电接地;所述处理设备例如包括于管芯附接机器和/或引线键合机器中的夹持器机构或分度机构。在基板带82包覆模制的实施例中,接地触点92还可以充当模制金属区,所述模制金属区定位于模制期间在被引导到带82上方时最先与加热模制材料接触的带82的位置处。换句话说,外围机器接地触点92可以形成为伸长金属特征的一部分,在实施例中,当在互连基板阵列、ic管芯和引线键合包覆模制时通过模制栅极引入模制材料时,所述伸长金属特征最先受到所述模制材料的冲击。
95.参考图5,示出了基板带82的区的更详细平面视图。两个esd保护栅格94集成到基板带82中,其中每一esd保护栅格94与基板栅格布局84之一穿插布置。每一esd保护栅格94包含形成于基板带82的电介质主体(下文中称为“电介质带主体100”)中的多个导电迹线或线96、98。在实施例中,迹线或线96、98(下文称为“esd栅格线96、98”)形成为金属(例如,铜(cu))特征,各自具有小于基板带82的平均总厚度(并且可能小于平均厚度的一半)的厚度,如沿着正交于基板带82的前侧的轴线(对应于图5中的坐标图例102的z轴)所测得。在esd保护栅格94主要位于基板带82的单切道中并且带82通过锯切实现单切的实施例中,这可以使锯片磨损最小化。除了延伸突片70之外,esd保护栅格94各自包括纵向esd栅格线96(平行于
基板带82的纵向轴线88延伸且对应于图5中的坐标图例102的x轴)和横向esd栅格线98(垂直于基板带82的纵向轴线88延伸且对应于坐标图例102的y轴)。如图所示,esd栅格线96、98相交以形成栅格或晶格状结构,其中栅格线96、98侧接互连封装(lga)基板22的外围。esd栅格线96、98可以主要(如果不是基本上完全)形成于基板带82的单切道中,并且因此在单切带82之后去除,如下文结合图6

10进一步论述。
96.在可替换实施方案中,esd保护栅格94可以具有其它结构布局或布设方案,假设集成到给定互连基板阵列(此处为基板带82)中的esd保护栅格将管芯附接区电耦合到另外包括于基板阵列中的外围机器接地触点。就此而言,并且如最佳地在图5的上部部分中呈现的详细气泡104中所见,所示lga基板22的管芯附接区31可以各自通过第一栅格线节段(即,延伸突片70)、接着esd栅格线96、98电连接到外围机器接地触点92。具体地说,在所示实施例中,延伸突片70从金属化特征71延伸到例如芯片帽的无源smd的端可以随后通过例如焊接键合到的位置处。延伸突片70从特征71延伸到所示栅格线98,且因此较大的esd保护栅格94,如详细气泡104所示。特征71通过基板带82的某些金属布设特征电耦合到金属化管芯附接区31,所述金属布设特征可以包括各种通孔、互连线和接地平面;例如,图2所示的接地平面48。延伸突片70(且更广泛地说,esd保护栅格94)同样电耦合到管芯附接区31,尽管在所示例子中是间接的耦合。
97.在另外的实施例中,延伸突片70可以重新定位到将管芯附接区31电耦合到较大的esd保护栅格94的不同位置处;例如,正如详细气泡104的虚线所示,在某些实施例中,延伸突片70可以(通过设计)移动到直接将管芯附接区31之一连接到邻近的栅格线98且因此连接到较大的esd保护栅格94的位置73。此外,在又另外的实施例中,可以在每个所示位置70、73处形成延伸突片以进一步增强esd保护;应注意,在实施例中,可以形成将每一封装基板22的导电特征电耦合到较大的esd保护栅格94的任何可行数量的延伸突片,而几乎不需要额外的成本且几乎不需要改变基板布设布局,其条件是给定封装基板22的布局或布设方案在不违反设计规则的情况下可以适应延伸突片70的多个实例。另外,多个延伸突片70集成于给定基板22内的不同位置处可以通过以下方式来增强封装管芯的esd保护:确保到接地的低阻抗路径是提供以耗散或减少esd能量的,而不考虑可能出现esd事件的特定位置或“冲击点”。这在用于制造较大的sip基板的情况下可能尤其有益,所述基板例如图5所示的基板22,具有其上可能会出现此类esd事件的相对大的区域。
98.外围机器接地触点92有利地位于基板带82的一个或多个外围边缘附近,以促进在阵列级处理期间与用于处理基板带82(且因此组装微电子封装)的设备的一个或多个工件的电接地特征的接触,所述处理如在封装制造方法74(图4)的处理阶段78期间执行。在图4的例子中,基板带82可以在阵列级处理期间进行至少以下处理步骤或阶段:利用管芯附接机器108执行的管芯附接106、利用引线键合机器112进行的引线键合110,以及利用合适的模制(例如,注入或转移模制)设备(未示出)执行以产生一个或多个包覆模制的包覆模制114,互连封装阵列116。在阵列级处理之后,互连封装阵列116在处理阶段80期间被单切,并且可以进行任何额外的处理步骤以产生完成封装制造方法74的多个单切的封装20。仅通过举例提供这些处理步骤,应注意,在可替换实施例中,可以在互连基板阵列的阵列级处理期间实行其它处理步骤。例如,在实施例中,可以利用不同于引线键合的不同互连技术来使微电子装置与封装端连接电互连,例如利用导电材料(例如,含有金属颗粒的墨水)以形成必
需的互连线的三维印刷工艺。类似地,在其它实施例中,可以不执行包覆模制;并且可能的是,不同类型的封装壳体可以键合到每一封装基板22以封闭包含于其中的微电子部件。最后,尽管处理阶段106在本文中被称作“管芯附接”处理阶段,但应了解,在阶段106期间,除了一个或多个管芯之外,任何数量和类型的微电子部件(包括离散的无源smd部件)也可以键合到每一封装基板22。
99.如先前所指示,外围机器接地触点92有利地形成为沿着基板带82的外边缘区延伸,以促进与在带82的阵列级处理期间利用的处理设备的一个或多个工件的接地特征的接触。对于具有上部支撑表面122的处理设备或机器120的通用工件,在图5中示出了此类接地机器特征118的例子,所述上部支撑表面122例如金属卡盘的上部表面,在利用机器120进行的阵列级处理步骤期间支撑基板带82(和其它此类基板带)。在实施例中,接地机器特征118采用夹持器机构的形式;本文中广泛定义的术语“夹持器机构”指代例如管芯键合机器或引线键合机器的阵列级制造机器的任何机械特征,所述阵列级制造机器在处理期间接合工件(此处为互连基板阵列)以抵靠着支撑表面(例如,支撑表面122)夹持或保持工件。本文中还利用术语“分度器”指代进一步用于以控制器方式相对于机器支撑表面选择性地推动或移动工件(互连基板阵列)的夹持器机构。如在图5中由符号124所指示,此类夹持器机构118可以至少部分地由导电材料(例如,金属或合金)构成,所述导电材料电接地并且与给定外围机器接地触点92接触,以在处理(例如,管芯附接或引线键合)之前固定基板带82。具体地说,夹持器机构188可以电耦合到处理设备120的机壳接地,所述机壳接地又电耦合到接地,以提供用于耗散来自esd事件的盈余电流的返回路径。
100.在实施例中,支撑表面122还可以电接地,如在图5中由符号126进一步所指示。因此,在其它实施例中,外围机器接地触点92可以进一步沿着基板带82的后侧(未示出的主表面)暴露,以与支撑表面122接地。值得注意的是,由于封装基板22的后侧之间的接触是断断续续的,位于互连封装基板22的后侧上的导电特征可能无法可靠地提供此类后侧接地,应注意,在实施例中,由于例如带82是通过处理设备的特定工件来推动的方式,整个基板带82可能无法抵靠着支撑表面122保持平坦或齐平。另外或可替换的是,电介质焊接掩模特征可以存在于基板带82的后侧上,进而防止任何此类导电后侧特征与支撑表面122之间的物理接触。相比而言,外围机器接地触点92的沿着基板带82的上部表面或前侧暴露的设置提供可靠的界面,用于通过与夹持器机构118或设备120的另一接地结构特征(例如,负载弹簧的引脚或柱塞)接触而接触处理设备120的接地特征,所述接地特征在适当时下降成与外围机器接地触点92接触(或以其它方式与外围机器接地触点92接触)。然而,同样,有可能沿着基板带82的后侧提供外围机器接地触点(具体地说,如果此类触点特征升高的话),用于接触接地支撑表面122,以除了沿着带82的前侧或上部表面暴露的外围机器接地触点92之间的接触之外或代替所述接触而增强esd耗散,如图5所示且在下文进一步描述。
101.接下来转而参看图6

10,根据示例封装制造方法74(图4)的示例实施方案示出了若干制造步骤,适当地实行所述若干制造步骤以制造多个微电子封装,同时降低阵列级制造esd损坏的可能性。首先参考图4,示出了基板带82的有限区,所述有限区包括与两个部分描绘的封装基板22`毗邻的完全描绘的封装基板22`;撇号“`”符号表示所示封装基板22`以其预单切的形式示出。参照集中描绘的封装基板22`,图6

10所示的截面大体上对应于图2所示的lga封装20的截面,其中沿用相同的附图标记以表示先前上文所论述的那些结构特
征。封装基板22`在当前的制造时刻以基板带82的形式保持互连,并且通过单切道128连接(且因此与之穿插布置);即基板带82的区在带82的后续单切期间去处,如下文结合图10所描述。因此,在此制造阶段,esd栅格线96保持完整且位于单切道128内,如图所示。可以进一步看到,延伸突片70延伸到单切道128以连接到esd栅格线96,且因此连接到较大的esd保护栅格94(图5)。esd栅格线70、96、98可以在基板制造期间与封装基板22`的其它导电特征一起形成(例如,利用众所周知的金属电镀和图案化工艺),并且具体地说,可以形成为形成于基板面板上方的上部图案化金属层的一部分,基板带82从所述基板面板断裂。然而,不同实施例中形成esd栅格线70、96、98的特定方式也将不同,这取决于esd保护栅格设计和基板类型(同样应注意,可以结合本公开的实施例利用各种类型的基板)。
102.参考图7,随后执行管芯附接以经由导电键合层32将一个或多个管芯30键合到其对应的管芯附接区31,并且可能地,将其它微电子部件附接到每一封装基板22的其它未示出区。如先前所强调,管芯附接处理期间可能会出现esd事件,如图7中由符号130所指示。在不存在包括所示延伸突片70和esd栅格线98的esd保护栅格94的情况下,当(如常规阵列级处理中常常出现的)基板带82的导电特征不接触处理设备的接地区(此处,管芯键合设备用于附接ic管芯30)且保持电浮动时,不提供低电阻电路径的接地。在此情况下,大量静e场可以沿着ic管芯30的相应前侧34积聚;并且当产生足够的差值时,通过ic管芯30的放电导致对管芯30的敏感区(例如,晶体管栅极电介质)的潜在esd损坏和/或其它潜在地损坏安装到封装基板22的其它esd敏感部件。在晶体管损坏的情况下,此类esd损坏可能会加剧栅极

源极泄漏(igss)电平、阈值电压失配(δvth)和使管芯性能降低的其它关键参数。相比而言,在所示例子中,esd保护栅格94完成到接地的低电阻电路径,如图7中的虚线132所表示。此路径132从管芯附接区31延伸,穿过互连封装基板22`的导电特征(包括接地平面48)、大体上穿过延伸突片70和esd保护栅格94、穿过外围机器接地触点92(图4和5),并且通过处理设备的接地特征(此处为管芯附接机器108(图4))最终到达电接地系统,所述接地特征接触基板带82的外围机器接地触点92。通过沿着此路径传导,静电荷可能会易于耗散,以减少沿着ic管芯30的相应前侧34的电荷积聚;并且因此,在管芯附接期间防止出现esd事件或降低此类esd事件应出现时的严重性。
103.进而参看图8,在管芯附接之后执行引线键合,以形成使新附接的管芯30电互连到封装基板22`的端连接的引线键合54,并且进一步形成与键合到基板22`(如果存在的话)的各种其它微电子部件的互连。同样,如符号134所指示,在没有提供潜在地损坏管芯30的esd保护栅格94和键合到封装基板22`的其它敏感部件的情况下,引线键合期间可能会出现严重的esd事件。然而,由于本例子中的esd保护栅格94的集成,上文所描述的低电阻电路径132形成为从管芯附接区31延伸、穿过接地平面48、穿过延伸突片70和esd保护栅格94的其余部分,并且最终到达放置成与处理设备的接地特征接触的一个或多个外围机器接地触点92;例如,就图8所示的制造阶段而言,为图4所示的引线键合机器112的接地特征。本质上,然后esd保护栅格94提供防止在阵列级处理步骤期间可能会以其它方式出现的对敏感封装部件的esd损坏的无源屏蔽,包括但不限于管芯附接(图7)和/或引线键合(图8)。另外,当提供时,前侧esd接地结构40可以进一步使此低电阻接地路径延伸到管芯30的相应前侧34,用于额外增强esd保护,这在某些实施方案中可能是有益的。在其它实施例中,管芯30可以不具有此类esd接地结构40(例如,在ic管芯30的相应后侧36已充当接地端的例子中,如在例
如包含充当功率放大器的fet且具有接地源极端的rf功率管芯的情况下,此类结构40可能不太有益),并且可以通过将一个或多个esd保护栅格94集成到基板带82中来单独提供增强的esd保护。
104.在引线键合之后,可以包封或包覆模制基板带以产生包覆模制的互连封装阵列116,如先前结合示例封装制造方法74的步骤114所描述。图9示出了所得结构,其中附图标记28`标识模制封装主体,所述模制封装主体在此处理阶段以较大模制块134的形式保持互连。然后执行单切以将互连封装阵列116分成离散单元或lga封装20,如图10所示。为此目的,可以利用任何合适的单切工艺,包括锯切或冲压。单切去除了先前存在于单切道128内的结构,从而就体积来说破坏了大部分(如果不是大体上整个)esd保护栅格94。然而,如先前所论述且如图10所示,延伸突片70以制品或残余物形式保留在新单切的lga封装20内,每一突片70延伸到封装基板22的单切的侧壁,或更笼统地说,lga封装20的单切的侧壁;术语“单切的侧壁”是指由单切限定的侧壁。因此,任何给定lga封装20包含直接或间接电耦合到管芯附接区31的至少一个延伸突片70。另外的延伸突片70延伸到单切的封装侧壁并穿过侧壁(具体地说,穿过由封装基板的边缘限定的侧壁的部分)。因此,如果在互连封装阵列的单切之后未采取额外的步骤用于以某种方式覆盖突片70的暴露末端,则从封装外部可以看到延伸突片70的外部末端。
105.总结
106.因此,已提供包含集成esd保护栅格的互连基板阵列和一些方法,所述方法用于利用根据此类方法生产的此类互连基板阵列和微电子封装来制造微电子封装。通过将esd保护栅格集成到各种互连基板阵列中,可以有利地使阵列级制造esd事件的可能性和严重性最小化,以提高封装性能的均一性、减少良率损失并因此减少封装制造成本。还可以通过减少阵列级制造esd事件来提高总体封装可靠性,否则可能会产生低级别潜在缺陷,所述低级别潜在缺陷即使不是在最终阶段测试期间无法检测到的,至少也是难以检测到的。值得注意的是,本文中所描述的esd保护栅格的实施例可以集成在各种互连基板类型和设计中,几乎不需要改变布局且成本极小;例如,在没有提供本文中所描述的esd保护栅格的情况下,上文所描述的封装制造工艺的实施例可以有益地与阵列级处理期间持续或断断续续地保持电浮动的任何基板阵列或“载体”结合使用。另外,esd保护栅格与当前存在的处理设备的各种不同的工件兼容。最后,在至少一些情况下,上文所描述的制造方法的实施例可以通过集成前侧esd接地结构来提供额外增强的esd保护,所述前侧esd接地结构可以形成于包含于给定微电子封装内的半导体管芯的前侧上。当存在时,此类前侧esd接地结构可以进一步有助于提供从给定管芯的前侧到管芯的后侧、最终通过esd保护栅格并到达电接地触点的低电阻电路径,所述电接地触点是由用于在阵列级处理期间处理微电子封装以及其它封装的机构或设备提供的。
107.在实施例中,用于制造微电子封装的方法包括独立制造、购买或以其它方式获得互连基板阵列。互连基板阵列包括:封装基板,所述封装基板包括管芯附接区;单切道,所述单切道与封装基板穿插布置;外围机器接地触点,所述外围机器接地触点邻近互连基板阵列的边缘区;以及esd保护栅格,所述esd保护栅格包括将管芯附接区电耦合到外围机器接地触点的esd栅格线。esd栅格线至少部分地形成于互连基板阵列的单切道中。所述方法另外包括以下步骤或过程:执行阵列级制造步骤以利用互连基板阵列产生互连封装阵列,同
时在至少一个阵列级制造步骤期间通过esd保护栅格将管芯附接区电耦合到电接地。在执行阵列级制造步骤之后,对互连封装阵列进行单切以产生多个单切的微电子封装。另外,在至少一些实施方案中,执行阵列级制造步骤可以包括:利用管芯键合机器将ic管芯附接到管芯附接区,同时维持外围机器接地触点与管芯键合机器的接地特征之间的接触;例如,ic管芯可以利用导电键合材料键合到管芯附接区。另外或可替换的是,如果不存在esd保护栅格,当利用管芯键合机器将ic管芯附接到管芯附接区时,所述管芯附接区将为电浮动的。换句话说,如果不存在esd保护,当利用管芯键合机器将ic管芯附接到管芯附接区时,所述管芯附接区将为电浮动的。
108.还提供了具有集成esd保护栅格的互连基板阵列,例如基板带。在实施例中,互连基板阵列包括:封装基板,所述封装基板包括管芯附接区;单切道,所述单切道与封装基板穿插布置;至少一个外围机器接地触点,所述至少一个外围机器接地触点邻近互连基板阵列的边缘区;电介质基板阵列主体;以及esd保护栅格,所述esd保护栅格形成于电介质基板阵列主体中。esd保护栅格包括将管芯附接区电耦合到外围机器接地触点的esd栅格线。esd栅格线至少部分地形成于互连基板阵列的单切道中。另外,在至少一些情况下,互连基板阵列采用具有大体上矩形的平面形状的基板带的形式,封装基板布置成至少第一栅格布局,并且外围机器接地触点形成为伸长金属触点,所述伸长金属触点位于基板带的伸长侧边缘附近并且大体上平行于所述伸长侧边缘延伸。在其它情况下,esd保护栅格就体积来说主要位于单切道中,并且esd栅格线各自具有小于封装基板的一半厚度的厚度。另外或可替换的是,封装基板包括接地平面,管芯附接区通过所述接地平面电耦合到esd保护栅格。
109.前述内容还公开了利用具有集成esd保护栅格的互连基板阵列来进行制造的微电子封装类型。在实施例中,微电子封装包括:封装基板,所述封装基板具有管芯附接区并且具有单切的侧壁;ic管芯,所述ic管芯具有面向管芯附接区的管芯后侧并且具有与管芯后侧相对的管芯前侧;以及导电键合层,所述导电键合层将ic管芯键合到管芯附接区。切断的esd保护栅格线(例如,上文所描述的延伸突片70)电耦合到管芯附接区。另外,切断的esd保护栅格线延伸到并且穿过或穿透封装基板的单切的侧壁中的一个侧壁。在至少一些实施方案中,微电子封装另外包括形成于管芯前侧上、具有环形几何形状并且在管芯前侧的外围部分周围延伸的esd接地结构。当提供时,esd接地结构通过管芯后侧并通过导电键合层电耦合到管芯附接区。
110.尽管在前述具体实施方式中已经呈现了至少一个示例实施例,但应了解,存在大量变化形式。还应了解,示例实施例仅仅是例子,并且并不意图以任何方式限制本发明的范围、适用性或配置。更准确地说,前述具体实施方式将向本领域的技术人员提供用于实施本发明的示例实施例的便利指南,应理解,可以在不脱离如所附权利要求书中阐述的本发明的范围的情况下对示例实施例中描述的元件的功能和布置作出各种改变。上文已经根据在前述具体实施方式的过程中介绍某些元件的顺序使用了数字标识符,例如“第一”、“第二”、“第三”等。此类数字标识符还可以用于后续权利要求书中以指示权利要求书中的介绍次序。因此,此类数字标识符可以在具体实施方式与后续权利要求书之中变化以反映元件介绍次序的差异。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1