一种铜铟镓硫微纳二级阵列及其制备方法和应用

文档序号:28659048发布日期:2022-01-26 19:43阅读:102来源:国知局
一种铜铟镓硫微纳二级阵列及其制备方法和应用

1.本发明属于太阳能光伏电池技术领域,具体涉及一种铜铟镓硫微纳二级阵列及其制备方法和应用。


背景技术:

2.金属硫属化合物半导体材料,以其优异的物理和化学性能在光电、光催化和传感器领域受到较多关注,与此同时,随着纳米技术的发展和纳米材料合成工艺的改进,像纳米线、纳米片及纳米棒等不同形貌的金属硫属化合物半导体不断被合成和应用。
3.中国专利cn201310733812.2公开了一种用于太阳能电池的基于纳米粒子铜铟硫硒薄膜的制备方法。该发明采用磁控溅射法,在衬底上依次沉积背电极和铜铟硫吸收层后进行硒化处理,制得铜铟硫硒吸收层。在吸收层外侧依次制备cds缓冲层、本征氧化锌高阻层、氧化铟锡薄膜低阻抗层,得到用于太阳能电池的铜铟硫硒薄膜。该发明操作方法简便,不引入其它杂质,同时对环境友好,适合工业化生产;但在吸收层的制备过程中对温度和电压要求较高,相应增加了合成的成本。
4.中国专利cn109589991a公开了一种锌铟硫/铜铟硫二维异质结光催化剂、其制备方法及应用。该发明首先将锌源化合物、铟源化合物和硫源化合物溶解在水中制备成悬浊液,并将悬浊液在100℃~250℃反应10小时以上,将产物离心收集,洗涤,干燥得到znin2s4光催化剂;然后将铜源化合物、铟源化合物、硫源化合物以及znin2s4光催化剂分散到乙二醇中制备成悬浊液;并在100℃~250℃反应10小时以上后,将产物离心收集,洗涤,干燥,得到znin2s4/cuins2二维异质结光催化剂。该合成方法简单,而且得到的二维异质结具有较好的结晶性,纯度也较高;但产物离心收集后得到的是粉末,在光伏领域应用时与衬底之间的结合力较在衬底上直接生长的材料要弱,不利于在光伏领域直接进行应用。
5.中国专利cn105118877b公开了一种铜铟镓硫硒薄膜材料的制备方法;该发明在太阳能电池基底上通过反应溅射的方法制备预制层铜铟镓硫,在一定条件下进行硒化退火,得到铜铟镓硫硒薄膜材料。这种反应溅射预制层后硒化的方法制备出的铜铟镓硫硒薄膜材料能够精确控制薄膜中各元素的化学计量比、膜的厚度和成分的分布,薄膜的致密度高,体积膨胀小,可有效地解决现有方法制备铜铟镓硫硒半导体薄膜材料过程中存在的成分不易控制、均匀性欠佳、表面缺陷较多及易产生不利杂相等问题;但该发明中硒化退火对温度要求较高,相应的增加了材料的合成成本,同时硒化处理后薄膜表面容易形成二元杂质相。
6.中国专利cn110364422b 公开了一种铜铟镓硫二维纳米结构阵列及其制备方法和应用;该发明通过水热法合成cuxs纳米片团簇,再通过连续离子层吸附(silar)与退火方式相结合来合成铜铟镓硫二维纳米结构阵列。通过该方法合成的二维纳米结构阵列排列有序,周期性好,光吸收性能优良。但该专利中的材料是通过水热反应直接在衬底上沉积,其与衬底的结合力远不如直接在衬底上原位生长的材料。通过silar合成材料需要重复以下4个步骤:1)衬底在目标化合物的一种离子前驱液中浸泡,以吸附阳离子;2)将衬底表面未吸附紧的多余离子用去离子水(diw)清洗掉;3)将衬底放到目标化合物的阴离子前驱液中浸
泡,阴、阳两种离子反应得到目标化合物;4)用去离子水将表面未发生反应的离子清洗掉。该过程非常繁琐耗时,而且受浸泡时间不能精准把控和前驱液浓度变化的影响,沉积的薄膜普遍存在颗粒大小不均匀的问题;同时,退火需要较高的温度,而退火温度也需要不断的摸索,这无疑增加了材料的合成成本。
7.r. inguanta等就以氧化铝为模板,利用恒压电沉积法制备了cigs纳米线阵列,并进行了光电化学测试和带隙分析。测试结果表明,由于存在阴极光电流且cigs带隙值为1.55 ev,该纳米线阵列可以用于纳米线太阳能电池,而且其带隙与太阳能电池的最优带隙1.45 ev比较接近。但通过该方法制备的cigs纳米线是非晶,也即该纳米线在应用时仍然会由于自身的晶体结构及缺陷的存在使光电转换效率降低。
8.从现有的文献报道来看,纳米材料应用于光伏领域可以增大对光的吸收,提高光电转化效率。虽然有通过使用模板的电化学方法制备的一维纳米阵列,通过水热法合成的二维光催化剂粉末,但是目前还不存在一种工艺简单、制作成本较低且能够用于大面积纳米材料制备的方法,而且当前制备的二维纳米薄膜太阳能电池同样需要随着太阳光照射方向的变化不断改变电池板的方向,容易造成太阳能电池成本的提高。


技术实现要素:

9.针对现有技术的不足,本发明目的在于提供一种铜铟镓硫微纳二级阵列及其制备方法和应用,该微纳二级阵列可有效解决光伏领域应用中太阳能电池中光生载流子复合率高、制备过程繁琐耗时、制备成本高、对太阳光不能有效利用以及对光线入射角度敏感等问题。
10.为了实现上述目的,本发明采用如下技术方案:一种铜铟镓硫微纳二级阵列,其由在衬底上生长的规则排列的微米级半导体球冠、和球冠表面的半导体纳米片构成。本发明所述二级阵列具有优于铜铟镓硫薄膜的光生载流子分离率和光吸收性能,在光伏领域应用时可有效提高太阳能电池的性能。
11.上述的铜铟镓硫微纳二级阵列,所述半导体为具有单晶结构的铜铟镓硫。
12.具体的,上述微纳二级阵列中,球冠的直径为0.5-100μm,纳米片的厚度为0.1nm-1μm。
13.本发明提供了一种上述铜铟镓硫微纳二级阵列的制备方法,其包括以下步骤:1)将洁净的衬底放入反应釜底部,加入第一前驱液;反应釜密封后,在80-300℃下加热2h-50h,清洗、干燥后,衬底表面生长有球冠状起伏结构的硫化亚铜薄膜;2)将生长有硫化亚铜薄膜的衬底取出,放入另一反应釜底部,加入第二前驱液;反应釜密封后,在80℃-200℃下加热2h-50h,清洗、干燥后,得到铜铟镓硫微纳二级阵列。
14.具体的,第一前驱液或第二前驱液的体积与反应釜容积的比例为3-2:5。
15.进一步的,步骤1)所述第一前驱液由硫代乙酰胺溶于乙二醇中制成,硫代乙酰胺浓度为0.01-1mol/l。
16.进一步的,步骤2)所述第二前驱液由质量比为0.6-1:7:6的硫代乙酰胺、氯化铟和氯化镓溶于乙二醇中制成。
17.具体的,步骤1)所述衬底为铜片,或表面沉积有铜膜的陶瓷、云母、高分子塑料、金属、硅片、玻璃或不锈钢片;铜膜的厚度为50nm-50μm。沉积方法包括物理气相沉积法或电化
学沉积法;所述物理气相沉积法为溅射法、热蒸发法、电子束蒸发法、激光束蒸发法或硒化法等;所述电化学沉积法为脉冲电化学沉积、恒压电化学沉积或恒流电化学沉积等。沉积方法采用本领域常规技术即可,本发明不再详述。
18.本发明还提供了上述铜铟镓硫微纳二级阵列在光伏领域的应用。
19.和现有技术相比,本发明的有益效果如下:1)本发明铜铟镓硫微纳二级阵列是在铜片或者铜膜上自生长的,保证了二级阵列和衬底之间较好的电接触,同时铜片还可以作为后期太阳能电池的电极和散热片;2)本发明是在衬底上,通过两步水热法直接生长出单晶的铜铟镓硫微纳二级阵列。由于是前驱液与铜衬底或铜膜直接反应后的原位生长,所以二级阵列与衬底结合力极好。具体的讲,第一个水热反应是前驱液中的硫代乙酰胺释放的硫和铜片或者铜膜上的铜直接反应后生成硫化亚铜,第二个水热反应是硫化亚铜和前驱液中的in、ga和s继续反应生成cuingas. 所以两步都是溶液和衬底直接反应,也就是原位生长后形成的材料,结合力会比一般直接沉积的要强。其中,通过调节水热法中前驱液的浓度、水热温度和时间能够实现对微纳二级阵列中纳米片厚度和组成元素比例的调节,实现微纳二级阵列的可控生长;3)本发明具有合成方法简单,对合成条件和设备要求不高,成本低廉,合成条件可控,反应产物可以方便地进行大面积应用等优点;4)本发明合成的微纳二级阵列中,组成纳米阵列的纳米片具有较大的比表面积,在光伏领域应用时,能够显著增加对光的吸收;同时,在太阳能电池中进行应用时,光的吸收和光生载流子的分离沿着两个相互垂直的方向,能够有效解决太阳能电池中光生载流子复合的问题。另外,由于微纳二级阵列的规则排列,使得从各个角度入射的光线都能够得到很好的吸收,降低了纳米薄膜对光线入射角度的敏感性,在光伏领域应用时可以避免随着太阳位置改变而导致电池性能降低,或需不断随光照角度变化而改变太阳能电池角度,导致成本增加的问题;5)本发明合成的微纳二级阵列排列有序,周期性好,光吸收性能优良,可用于高效率大面积太阳能电池的制备。
附图说明
20.图1是实施例2的铜铟镓硫微纳二级阵列示意图(纵切);其中,1-衬底,2-铜膜,3-铜铟镓硫纳米片,4-微米级铜铟镓硫球冠;图2是实施例4中具有球冠状起伏结构硫化亚铜薄膜的扫描电镜图;图3是实施例4中铜铟镓硫微纳二级阵列的扫描电镜图。
具体实施方式
21.以下结合实施例对本发明的具体实施方式作进一步详细说明。
22.实施例1一种铜铟镓硫微纳二级阵列,其制备方法包括以下步骤:(1)将铜片衬底用0-6号砂纸打磨,并依次用酒精、丙酮、去离子水超声清洗5min后,吹干,放入不锈钢反应釜底部;将硫代乙酰胺溶于乙二醇中(硫代乙酰胺浓度为0.05mol/l)获得第一前驱液,倒入反应釜中,第一前驱液体积与反应釜容积的比例为3:5;
(2)将反应釜密封后,80℃加热36h,将铜片衬底取出,清洗、干燥后,铜片衬底表面生长有球冠状起伏结构的硫化亚铜薄膜;(3)将步骤(2)所得生长有硫化亚铜薄膜的铜片衬底放入另一反应釜底部,将质量比为0.6:7:6的硫代乙酰胺、氯化铟、氯化镓溶于乙二醇中获得第二前驱液,倒入反应釜中,第二前驱液体积与反应釜容积的比例为3:5;(4)将反应釜密封后,200℃加热18h,将铜片衬底取出,清洗、干燥后,得到铜铟镓硫微纳二级阵列。
23.所制得的铜铟镓硫微纳二级阵列由在衬底上生长的规则排列的微米级半导体球冠、和球冠表面的半导体纳米片构成。单晶结构的铜铟镓硫纳米片的厚度为10 nm,球冠直径为 1um。所制得的铜铟镓硫微纳二级阵列的比表面积相对于具有相同厚度的铜铟镓硫薄膜增大较多,使得其对光线的吸收面积变大,对光的平均吸收率达到了97%,且对光的入射角度不敏感;相比于具有相同厚度的铜铟镓硫薄膜,其对光的吸收率增加了近19%。当入射光由与样品表面垂直,变到与样品表面呈45
°
时,其吸收率仅降低了5.5%;在光伏领域应用时,该结构能够有效降低光生载流子的复合率。
24.实施例2一种铜铟镓硫微纳二级阵列,其制备方法包括以下步骤:(1)在经过1 mol/l的naoh溶液、1 mol/l的盐酸依次清洗后,再用无水乙醇和去离子水依次超声清洗过的硅片衬底上磁控溅射一层cu膜,cu膜的厚度为50 nm,将沉积铜膜的硅片放入不锈钢反应釜底部,将硫代乙酰胺溶于乙二醇中(硫代乙酰胺浓度为0.01mol/l)获得第一前驱液,倒入反应釜中,第一前驱液体积与反应釜容积的比例为2:5;(2)将反应釜密封后,300℃加热5h,将衬底取出,清洗、干燥后,衬底表面生长有球冠状起伏结构的硫化亚铜薄膜;(3)将步骤(2)所得生长有硫化亚铜薄膜的硅片放入另一反应釜底部,将质量比为1:7:6的硫代乙酰胺、氯化铟、氯化镓溶于乙二醇中获得第二前驱液,倒入反应釜中,第二前驱液体积与反应釜容积的比例为2:5;(4)将反应釜密封后,80℃加热50h,将衬底取出,清洗、干燥后,得到铜铟镓硫微纳二级阵列。
25.所制得的铜铟镓硫微纳二级阵列由在衬底上生长的规则排列的微米级半导体球冠、和球冠表面的半导体纳米片构成。单晶结构的铜铟镓硫纳米片的厚度为20 nm,球冠直径为 0.5um。其示意图如图1所示。
26.所制得的铜铟镓硫微纳二级阵列的比表面积相对于具有同样厚度的铜铟镓硫薄膜增大较多,使得其对光线的吸收面积变大,对光的平均吸收率达到了96.8%,且对光的入射角度不敏感;相比于具有同样厚度的铜铟镓硫薄膜,其对光的吸收率增加了近19%。当入射光由与样品表面垂直,变到与样品表面呈45
°
时,其吸收率仅降低了6%;在光伏领域应用时,该结构能够有效降低光生载流子的复合率。
27.实施例3一种铜铟镓硫微纳二级阵列,其制备方法包括以下步骤:(1)在新剖开的云母片衬底上电子束蒸发一层铜膜(电子束蒸发采用本领域常规技术即可,非本技术的创新之所在,故此不再赘述),铜膜的厚度为10um,将沉积铜膜的云母
片放入不锈钢反应釜底部,将硫代乙酰胺溶于乙二醇中(硫代乙酰胺浓度为1mol/l)获得第一前驱液,倒入反应釜,第一前驱液体积与反应釜容积的比例为1:2;(2)将反应釜密封后,200℃加热20h,将衬底取出,清洗、干燥后,衬底表面生长有球冠状起伏结构的硫化亚铜薄膜;(3)将步骤(2)所得生长有硫化亚铜薄膜的云母片放入另一反应釜底部,将质量比为0.8:7:6的硫代乙酰胺、氯化铟、氯化镓溶于乙二醇中获得第二前驱液,倒入反应釜中,第二前驱液体积与反应釜容积的比例为1:2;(4)将反应釜密封后,180℃加热24h,将衬底取出,清洗、干燥后,得到铜铟镓硫微纳二级阵列。
28.所制得的铜铟镓硫微纳二级阵列由在衬底上生长的规则排列的微米级半导体球冠、和球冠表面的半导体纳米片构成。单晶结构的铜铟镓硫纳米片的厚度为0.1 nm,球冠直径为10 um。其示意图如图1所示。
29.所制得的铜铟镓硫微纳二级阵列的比表面积相对于具有同样厚度的铜铟镓硫薄膜增大较多,使得其对光线的吸收面积变大,对光的平均吸收率达到了98%,且对光的入射角度不敏感;相比于具有同样厚度的铜铟镓硫薄膜,其对光的吸收率增加了近20%。当入射光由与样品表面垂直,变到与样品表面呈45
°
时,其吸收率仅降低了5%;在光伏领域应用时,该结构能够有效降低光生载流子的复合率。
30.实施例4一种铜铟镓硫微纳二级阵列,其制备方法包括以下步骤:(1)在经过无水乙醇和去离子水依次超声清洗过的不锈钢片衬底上磁控溅射一层铜膜,铜膜的厚度为2um,将沉积铜膜的不锈钢片放入不锈钢反应釜底部,将硫代乙酰胺溶于乙二醇中(硫代乙酰胺浓度为0.063mol/l)获得第一前驱液,倒入反应釜,第一前驱液体积与反应釜容积的比例为1:2;(2)将反应釜密封后,200℃加热20h,将衬底取出,清洗、干燥后,衬底表面生长有球冠状起伏结构的硫化亚铜薄膜;(3)将步骤(2)所得生长有硫化亚铜薄膜的不锈钢片放入另一反应釜底部,将质量比为0.8:7:6的硫代乙酰胺、氯化铟、氯化镓溶于乙二醇中获得第二前驱液,倒入反应釜中,第二前驱液体积与反应釜容积的比例为1:2;(4)将反应釜密封后,180℃加热24h,将衬底取出,清洗、干燥后,得到铜铟镓硫微纳二级阵列。
31.所制得的铜铟镓硫微纳二级阵列由在衬底上生长的规则排列的微米级半导体球冠、和球冠表面的半导体纳米片构成。单晶结构的铜铟镓硫纳米片的厚度为30nm,球冠直径为3um。其示意图如图1所示。
32.图2给出了实施例4中具有球冠状起伏结构硫化亚铜薄膜的扫描电镜图。图2中可以看出硫化亚铜颗粒呈球冠状排列,该球冠状结构将有助于后续铜铟镓硫微纳二级阵列结构的形成。
33.图3给出了实施例4中铜铟镓硫微纳二级阵列的扫描电镜图。图3中可以看出微纳二级阵列规则排列,球冠直径在3 um左右,纳米片的厚度在30 nm左右。
34.所制得的铜铟镓硫微纳二级阵列的比表面积相对于具有同样厚度的铜铟镓硫薄
膜增大较多,使得其对光线的吸收面积变大,对光的平均吸收率达到了97%,且对光的入射角度不敏感;相比于具有同样厚度的铜铟镓硫薄膜,其对光的吸收率增加了近19%。当入射光由与样品表面垂直,变到与样品表面呈45
°
时,其吸收率仅降低了6%;在光伏领域应用时,该结构能够有效降低光生载流子的复合率。
35.实施例5实施例5的铜铟镓硫微纳二级阵列制备方法同实施例4,不同之处在于:步骤(1)的衬底为玻璃,沉积铜膜的方法为磁控溅射;步骤(2)的加热温度为100℃,加热时间为50h;步骤(4)的加热温度为80℃,加热时间为24h。
36.所制得的铜铟镓硫微纳二级阵列由在衬底上生长的规则排列的微米级半导体球冠、和球冠表面的半导体纳米片构成。单晶结构的铜铟镓硫纳米片的厚度为1um,球冠直径为50um。
37.所制得的铜铟镓硫二维纳米结构阵列的比表面积相对于具有同样厚度的铜铟镓硫薄膜增大较多,使得其对光线的吸收面积变大,对光的平均吸收率达到了96.4%,且对光的入射角度更不敏感;相比于具有同样厚度的铜铟镓硫薄膜,其对光的吸收率增加了近18%。当入射光由与样品表面垂直,变到与样品表面呈45
°
时,其吸收率仅降低了6.5% 。
38.实施例6实施例6的铜铟镓硫微纳二级阵列制备方法同实施例4,不同之处在于:步骤(1)的衬底为高分子塑料,沉积铜膜的方法为热蒸发法;步骤(2)的加热温度为80℃,加热时间为50h;步骤(4)的加热温度为150℃,加热时间为36h。
39.所制得的铜铟镓硫微纳二级阵列由在衬底上生长的规则排列的微米级半导体球冠、和球冠表面的半导体纳米片构成。单晶结构的铜铟镓硫纳米片的厚度为0.8um,球冠直径为100um。
40.所制得的铜铟镓硫二维纳米结构阵列的比表面积相对于具有同样厚度的铜铟镓硫薄膜增大较多,使得其对光线的吸收面积变大,对光的平均吸收率达到了96.6%,且对光的入射角度更不敏感;相比于具有同样厚度的铜铟镓硫薄膜,其对光的吸收率增加了近18%。当入射光由与样品表面垂直,变到与样品表面呈45
°
时,其吸收率仅降低了7% 。
41.上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1