多孔石墨烯支撑聚苯胺异质结构基微型超级电容器纳米器件及其制备方法
【技术领域】
[0001]本发明涉及多孔石墨烯支撑聚苯胺异质结构基微型超级电容器纳米器件及其制备方法。
【背景技术】
[0002]伴随着人口的急剧增长和社会经济的快速发展,资源和能源同渐枯竭,生态环境同益恶化,为满足消费者的使用需求和环保要求,人们对动力电源系统提出了以下要求:性能优良、寿命长、价格低廉、应用范围广泛等。此外,随着人类科学技术的不断进步,对地球环境的保护也受到公众的同益关注,因此,人类社会正在抓紧对新能源的开发,储能设备的新应用领域也在不断扩大。
[0003]超级电容器,是20世纪七八十年代发展起来的一种介于电池和传统电容器之间的新型储能器件,具有法拉级的超大电容量,比同体积的电解电容器容量大2000-6000倍,功率密度比电池高10-100倍,同时具有更长的循环寿命,被认为是一种高效、实用的新型清洁能源,目前作为备用电源,广泛应用于照相机、录像机、移动电话、计算机等电子器件产品中。它兼有物理电容器和电池的特性,能提供比物理电容器更高的能量密度,比电池具有更高的功率密度和更长的循环寿命,并且这种电容器己在工业领域实现产业化和实际应用。如在考虑到环保需要而设计开发的电动汽车和复合电动汽车的动力系统中,若单独使用电池将无法满足动力系统的要求,然而将高功率密度电化学电容器与高能量密度电池并联组成的混合电源系统既满足了高功率密度的需要,又满足了高能量回收的需要。高能量密度、高功率密度的电化学电容器正在成为人们研宄的热点。
[0004]由于储能机理的不同,人们将超级电容器分为:(1)基于高比表面积电极材料与溶液问界面双电层原理的双电层电容器;(2)基于电化学欠电位沉积或氧化还原法拉第过程的赝电容器(Pseud, capacitor) 121。赝电容与双电层电容的形成机理不同,但并不相互排斥。双电层电容的产生主要基于电极/电解液界面上载流子分离所产生的双电层电容,如碳电极电容器;赝电容器电容的产生是基于电活性离子在贵金属电极表面发生欠电位沉积,或在贵金属氧化物电极表面发生氧化还原反应而产生的吸附电容。大比表面积准电容电极的充放电过程会形成双电层电容,双电层电容电极(如多孔炭)的充放电过程往往伴随有赝电容氧化还原过程发生,实际的电化学电容通常是两者共存的宏观体现,要确认的只是何者占主要的问题。
[0005]现有研宄中,无论是双电层电容还是赝电容,提高电容器容量的有效方法都是提高电极材料的比表面积。双电层电容器通常采用高比表面积的活性炭;赝电容器通常采用纳米粒度的金属氧化物。但是,电极材料内只有能够与电解质接触的微孔表面才能产生电容,现有的双电层电容器和赝电容器的不足在于,多孔电极表面积的主要部分是微孔,由于电解质溶液表面张力的作用,使电解质溶液很难进入到多孔电极的微孔内,导致电极材料表面积利用率低,甚至产生有的碳电极材料比表面积很大,但制成电容器后电容却不大的现象。
【发明内容】
[0006]本发明提出一种多孔石墨烯支撑聚苯胺异质结构基微型超级电容器纳米器件及其制备方法,采用两种材料复合的协同作用,多孔石墨烯的多孔可以实现层间立体传导载流子,通过提高和增加载流子在电极内的传导和储存,进一步提高超级电容器的容量。
[0007]为了实现上述目的,本发明的技术方案是:一种多孔石墨烯支撑聚苯胺异质结构基微型超级电容器纳米器件,其为在基底材料上做对称的叉指电极结构,叉指的宽度为100-200nm,且各叉指之间的距离为50_100nm,再滴加电解液;所述的叉指电极结构中金作集流体为电极材料第一层,多孔石墨烯附载在金上作为电极材料第二层,聚苯胺包覆在多孔石墨稀上作为电极材料表层,金的厚度为10-20nm,多孔石墨稀的厚度为20_40nm,聚苯胺的厚度为20-40nmo
[0008]按上述方案,所述的基底材料为聚对苯二甲酸乙二醇酯、硅基片、玻璃基片或聚萘二甲酸乙二醇酯。
[0009]按上述方案,所述的电解液为H2S04、H3PO4或LiCl。
[0010]所述的多孔石墨烯支撑聚苯胺异质结构基微型超级电容器纳米器件的制备方法,包括如下步骤:
[0011]I)清洁基底;
[0012]2)在步骤I)的基础上,通过匀胶机在基底材料上涂布光刻胶;
[0013]3)在步骤2)的基础上,通过光刻蚀技术在匀过胶的基底材料上制备出叉指电极的电极沟槽;
[0014]4)在步骤3)的基础上,通过物理气相沉积制备出所有的以金作集流体的电极材料的第一层;
[0015]5)在步骤4)的基础上,将多孔石墨烯滴涂并覆盖所有的电极材料的第一层之上;
[0016]6)在步骤5)的基础上,将覆盖有多孔石墨烯的电极材料的基底于去胶液中浸泡,去除光刻胶;
[0017]7)在步骤6)的基础上,利用电化学测试系统对覆盖有多孔石墨烯的电极材料的基底采用循环伏安法电沉积聚苯胺;
[0018]8)在步骤7)的基础上,在所得的纳米器件的叉指电极上滴加电解液并利用探针台进行性能测试。
[0019]本发明的有益效果是:对于改善电容器能量密度低的问题,现在常见的思路有两方面,一是:通过改变材料的尺寸结构,增大材料与电解质的接触面积。如材料尺寸纳米化,或者是制备出多孔的结构;二是:通过与其他材料的复合,从化学组成上改善其储能性能,如MnO2与石墨烯的复合。本发明将两种思路复合,即通过石墨烯引入增强电子传导和多孔结构构筑来增加载流子的传导,使得电解液中的离子能够更容易的进到赝电容电极材料的内部,在高电子电导的保证下,能够让微型储能器件储存更多电量,从而进一步提高了超级电容器的容量和能量密度。
【附图说明】
[0020]图1是实施例1的构筑多孔石墨烯支撑聚苯胺异质结构基微型超级电容器纳米器件的流程图;
[0021]图2是实施例1的多孔石墨烯支撑聚苯胺异质结构基微型超级电容器纳米器件的光学显微图;
[0022]图3是实施例1的金/多孔石墨烯/聚苯胺复合的循环伏安图;
[0023]图4是实施例1的多孔石墨烯支撑聚苯胺异质结构基微型超级电容器纳米器件中电极上的物质表征图包括XPS图谱和Reman图谱;
[0024]图5是实施例1的多孔石墨烯支撑聚苯胺异质结构基微型超级电容器纳米器件的多孔石墨烯/聚苯胺分级结构电极的工作机理。
具体实施方案
[0025]为了更好的理解本发明,下面结合实例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
[0026]实施例1:
[0027]如图1所示,多孔石墨烯支撑聚苯胺异质结构基微型超级电容器纳米器件的制备方法,它包括如下步骤:
[0028]I)选择硅基片,将硅基片切成适当的尺寸,然后用异丙醇(IPA)超声清洗硅片约3min,用氮气吹干;
[0029]2)使用旋涂仪在基片上旋涂一层9000A,旋涂的转速为4000r/min,旋涂时间为40s,匀胶之后使用电热板烘烤,100C,15min ;
[0030]3)使用光刻机在旋涂好的硅片上刻蚀叉指电极图样,曝光时间28s ;
[0031]4)显影:将光刻蚀过的基片先放在RD6显影液中浸泡90s,再放入去离子水中浸泡30s,再放入第二份去离子水中浸泡30s,氮气吹干;
[0032]5)金属热蒸发(PVD):使用热蒸发镀膜仪蒸镀金属,制得叉指电极的电极材料的第一层,叉指宽度150nm,叉指间距50nm,Ti/Au(3nm/17nm);
[0033]6)多孔石墨烯的涂覆:将多孔石墨烯涂滴到叉指电极的电极材料的第一层上,第一次滴5 μ L,用氮气吹干,之后每次滴2 μ L,用氮气吹干,重复此步骤10次;
[0034]7)光刻胶剥离:将覆盖有多孔石墨烯的电极材料的基底放在SU8去胶液中静置3h,使9000A全部剥离,然后再用SU8的去胶液超声清洗5分钟,将叉指电极的电极材料之间的光刻胶以及多孔石墨烯全部去除干净;
[0035]8)聚苯胺的沉积:用银浆将基片的两电极引线连接起来,并使用电化学工作站进行循环伏安扫描,扫描