本发明一种光伏发电集群参与电力系统动态电压控制的方法,属于电力系统运行和控制技术领域。
背景技术:
随着人类社会的高速发展,对于能源的需求也呈现爆发式增长。但传统能源的过度消耗以及其对于环境的破坏迫使人们寻求例如太阳能这种清洁可再生的新能源作为替代形式。光伏发电近年来发展迅猛,全球光伏发电装机容量增长迅速,我国由于供需资源的地理不平衡,大规模光伏并网并不是实现就地消纳,而是从低负荷地区输送向远方负荷较重的发达地区。光伏集群可以是一个光伏电站,也可以是在配网中电气距离相近的含多个分布式光伏发电的局部配电网络及其分布式光伏发电单元。因为太阳能天然的随机性与波动性,光伏集群并网引起的无功电压问题日益突出,大规模光伏集群必须具备无功调压能力,必要时参与电力系统的无功调节。
目前,光伏集群主要采用无功补偿装置与逆变器共同协作完成集群整体对于系统的无功输出调整。但现有的逆变器控制策略大多为定功率、定功率因素、下垂控制这种较为死板的控制方式,并未充分考虑集群内部各发电单元的协作,实时电压跟踪能力也较差,方法还不够灵活,并不能完全调动每个光伏发电单元的无功调节能力,不适合实际使用中动态调压的快速与稳定要求。因此需要有一种整体协调集群内部各发电单元无功出力并能快速跟踪电压的光伏集群动态调压方法。
技术实现要素:
本发明的目的是提出一种光伏发电集群参与电力系统动态电压控制的方法,以克服已有技术的不足之处,利用分解协调架构与通信技术,基于广域pi调节方法,满足光伏集群整体参与系统动态电压调节的目标,使其实现电压的实时无差调节,且可按照不同光伏发电单元的调节能力在发电单元之间合理分配功率,保证发电单元的安全运行,改善光伏集群动态调压性能。
本发明提出的光伏发电集群参与电力系统动态电压控制的方法,包括以下步骤:
(1)设定光伏发电集群并网点状态采样周期tu为0.5秒,设定光伏发电集群的对外等值辨识周期tp为10秒,记采样周期tu中的任意时刻为的tu,记对外等值辨识周期tp中的任意时刻为tp,初始化时,分别设tu、tp为零;
(2)采集光伏发电集群并网点的电压uc、有功功率pc与无功功率qc,在每个采样周期中对上述状态变量进行一次采样,记第t个采样周期中采样得到的光伏发电集群并网点的电压为uct,有功功率为pct,无功功率为qct,初始化时,设t=1;
(3)对tp进行判断,若tp≥tp,则进行步骤(4),若tp<tp,则进行步骤(6);
(4)采用戴维南等值方法,进行光伏发电集群对外等值辨识,得到光伏发电集群外部等值电路的电阻r、电抗x和外部等值电势e,具体过程如下:
(4-1)建立光伏发电集群并网点电压与光伏发电集群外部等值电势的关系如下:
其中,r为光伏发电集群外部等值电路的电阻,x光伏发电集群外部等值电路的电抗,e为光伏发电集群外部等值电路的外部等值电势;
根据上述光伏发电集群并网点电压与光伏发电集群外部等值电势的关系,得到一个光伏发电集群并网点电压与光伏发电集群并网点有功功率和无功功率的映射关系如下:uc=y(uc,pc,qc)
(4-2)采用最小二乘法,得到光伏发电集群进行对外等值辨识的目标函数如下:
其中,t为分析的采样点数,取值范围为6-10。
求解上述目标函数,得到光伏发电集群外部等值电路的电阻r、电抗x和外部等值电势e;
(5)将tp重新设置为零;
(6)对tu进行判断,若tu<tu,则重复进行本步骤,直到tu≥tu,进行步骤(7);
(7)按照如下步骤,实现光伏发电集群参与电力系统的动态电压控制:
(7-1)设定一个光伏发电集群并网点的参考电压ur,将采集到的光伏发电集群并网点的电压uct与设定的参考电压ur进行比较,得到差值δu=ur-uct;
(7-2)根据上述差值δu,利用下式进行比例积分计算,得到光伏发电集群并网点无功功率增量的参考值δqr:
δqr=kp·δu+ki·∫δudt
其中,kp为比例系数,取值为10,ki为积分系数,取值为0.5;
(7-3)建立一个动态电压控制的优化模型,求解得到光伏发电集群中各光伏发电单元的无功功率改变量,过程如下:
(7-3-1)建立各光伏发电单元电压控制的目标函数如下:
其中,uri是光伏发电集群中的第i个光伏发电单元端电压的预设值,取值为
其中,
(7-3-2)建立光伏发电集群光伏发电单元的约束条件:
a、光伏发电集群无功功率的平衡约束:
其中,δqi为第i个光伏发电单元的无功功率改变量,
b、光伏发电集群潮流约束:
光伏发电集群内部的潮流约束:
其中,rij为第i个光伏发电单元与第j个光伏发电单元之间的支路ij的电阻,xij为第i个光伏发电单元与第j个光伏发电单元之间的支路ij的电抗,
光伏发电集群外部的潮流约束:
c、光伏发电集群中各支路的容量约束和各发电单元的电压约束:
其中,
(7-3-3)采用内点法,求解上述步骤(7-3-1)和(7-3-2)中的优化模型,得到各光伏发电单元的无功功率
(8)将tu重新设置为零,返回步骤(2),实现光伏发电集群参与电力系统的动态电压控制。
本发明提出的光伏发电集群参与电力系统动态电压控制的方法,通过广域pi控制,设计了光伏发电单元光伏集群整体参与动态调压的分解协调控制方法,通过pi控制,光伏集群能够实现电压的无差实时跟踪,动态性能优越。一方面,引入线性化技术来松弛潮流约束使得光伏集群协调层只需要进行简单的量测和计算,大大降低了其数据处理的负担,且充分考虑光伏发电单元运行约束,能够合理分配各个光伏发电单元无功出力,保证光伏集群安全稳定运行。另一方面,本方法充分利用光伏发电单元逆变器解耦控制特性,光伏发电单元通过与协调层通信获取参考无功出力参考值实现自动调节,从而使得整个光伏集群实现广域pi反馈控制。另外,光伏集群协调层还能充分利用采集数据实现对外等值辨识并定时更新,掌握外系统变化情况。
本发明方法的优点是:
1、本发明方法建立了光伏集群整体参与动态调压的广域pi控制框架,光伏集群能够实现对系统参考电压的快速跟踪与无差调节。
2、本发明方法通过线性化技术极大降低了优化问题求解难度,使得无功功率分配过程简单迅速高效。相比传统的潮流计算方法,该方法在尽量保证准确性的基础上松弛了潮流约束,使得问题求解变得非常容易。
3、本发明方法能够完成光伏集群对外等值辨识并定时更新,以保证光伏集群能及时掌握外系统状况,实现方法简单高效。
附图说明
图1是本发明提出的光伏发电集群参与电力系统动态电压控制的方法的流程框图。
图2是本发明方法中光伏发电集群与光伏发电单元的控制关系图。
具体实施方式
本发明提出的光伏发电集群参与电力系统动态电压控制的方法,其流程框图如图1所示,包括对外等值辨识流程以及基于广域pi控制的动态调压流程,两个流程均按照一定周期循环执行,由光伏集群协调控制器完成。其中动态调压流程还将通过广播通信的方式将集群协调层的信息定时发送给光伏发电单元控制器同时也接收光伏发电单元的节点测量信息,该方法具体包括以下步骤:
(1)设定光伏发电集群并网点状态采样周期tu为0.5秒,设定光伏发电集群的对外等值辨识周期tp为10秒,记采样周期tu中的任意时刻为的tu,记对外等值辨识周期tp中的任意时刻为tp,初始化时,分别设tu、tp为零;
(2)采集光伏发电集群并网点的电压uc、有功功率pc与无功功率qc,在每个采样周期中对上述状态变量进行一次采样,记第t个采样周期中采样得到的光伏发电集群并网点的电压为
(3)对tp进行判断,若tp≥tp,则进行步骤(4),若tp<tp,则进行步骤(6);
(4)采用戴维南等值方法,进行光伏发电集群对外等值辨识,得到光伏发电集群外部等值电路的电阻r、电抗x和外部等值电势e,具体过程如下:
(4-1)建立光伏发电集群并网点电压与光伏发电集群外部等值电势的关系如下:
其中,r为光伏发电集群外部等值电路的电阻,x光伏发电集群外部等值电路的电抗,e为光伏发电集群外部等值电路的外部等值电势;
根据上述光伏发电集群并网点电压与光伏发电集群外部等值电势的关系,得到一个光伏发电集群并网点电压与光伏发电集群并网点有功功率和无功功率的映射关系如下:uc=y(uc,pc,qc)
(4-2)采用最小二乘法,得到光伏发电集群进行对外等值辨识的目标函数如下:
其中,t为分析的采样点数,取值范围为6-10。
求解上述目标函数,得到光伏发电集群外部等值电路的电阻r、电抗x和外部等值电势e;
(5)将tp重新设置为零;
(6)对tu进行判断,若tu<tu,则重复进行本步骤,直到tu≥tu,进行步骤(7);
(7)按照如下步骤,实现光伏发电集群参与电力系统的动态电压控制:
(7-1)设定一个光伏发电集群并网点的参考电压ur,将采集到的光伏发电集群并网点的电压
(7-2)根据上述差值δu,利用下式进行比例积分计算,得到光伏发电集群并网点无功功率增量的参考值δqr:
δqr=kp·δu+ki·∫δudt
其中,kp为比例系数,取值为10,ki为积分系数,取值为0.5,可视实际光伏集群情况进行调节;
(7-3)建立一个动态电压控制的优化模型,求解得到光伏发电集群中各光伏发电单元的无功功率改变量,过程如下:
(7-3-1)为保证较为均匀分配各光伏发电单元承担无功出力,同时使得各光伏发电单元端电压变化较为平均,建立各光伏发电单元电压控制的目标函数如下:
其中,uri是光伏发电集群中的第i个光伏发电单元端电压的预设值,取值为
其中,
(7-3-2)建立光伏发电集群光伏发电单元的约束条件:
a、光伏发电集群无功功率的平衡约束:
其中,δqi为第i个光伏发电单元的无功功率改变量,
b、光伏发电集群潮流约束:
光伏发电集群内部的潮流约束:
其中,rij为第i个光伏发电单元与第j个光伏发电单元之间的支路ij的电阻,xij为第i个光伏发电单元与第j个光伏发电单元之间的支路ij的电抗,
光伏发电集群外部的潮流约束:
c、光伏发电集群中各支路的容量约束和各发电单元的电压约束:
其中,
(7-3-3)采用内点法,求解上述步骤(7-3-1)和(7-3-2)中的优化模型,得到各光伏发电单元的无功功率
(8)将tu重新设置为零,返回步骤(2),实现光伏发电集群参与电力系统的动态电压控制。