用于防止雪崩击穿的两级开关驱动器的制作方法

文档序号:21080289发布日期:2020-06-12 16:27阅读:235来源:国知局
用于防止雪崩击穿的两级开关驱动器的制作方法

本申请涉及一种开关模式功率转换器,其中功率开关被具有两个强度级的驱动器控制,其中驱动器限制了功率开关被接通的比率以防止跨同步整流(sr)开关的电压达到雪崩击穿水平。



背景技术:

诸如智能电话、平板计算机和笔记本计算机的移动消费设备在功能性和流行性方面持续地增长。此类设备通常是电池供电的,并且需要用于从主电源给设备电池充电的充电器。电池充电器优选地小且便宜。电池充电器部分地由于其小尺寸而必须是高效的,以使在其内部产生的热量不会导致外壳温度过高。尽管单个充电器消耗的功率相对较少,但连接到电网上的此类充电器数量巨大,可能会给电网带来很大负载。因此,监管机构对电池充电器在活跃和待机操作模式期间的功率效率提出了严格要求,以限制此类充电器浪费的能量。为了满足这些规格和效率目标,现代的电池充电器越来越多地使用隔离开关模式功率转换器。以前的功率转换器在整流之前依赖大型转换器直接降低交流(ac)主电压,尤其是与其相比,这种转换器所使用的高切换速度使得转换器内部的变压器相对小而轻。

许多现代的电池充电器依赖反激式转换器拓扑及其变型,用于将已从ac主电压整流的直流(dc)高电压转换成低电压,该低电压用于对电池充电。功率开关将高dc电压转换成施加在变压器初级侧的高频ac电压。在变压器次级侧上所感应的ac电压必须被整流以,提供转换器的负载、例如正被充电的电池所需的dc电压。此类整流依赖于电流阻断器,诸如二极管和/或同步整流(sr)开关。与二极管相比,sr开关具有低功率损耗和低相关联热,因此在大多数应用中,包括典型的电池充电器,sr开关被优选用于整流。

除了在功率转换器处于有效使用中、例如电池充电时提供有效的功率转换之外,开关功率转换器优选地在没有负载附接在其上时消耗最少的功率。例如,即使在被充电设备已经被移除之后和/或电池被充满电之后,消费者也经常保持电池充电器连接至主电源。为了使功率损耗在这种待机周期期间最小化,功率转换器经常采用突发模式的操作。在突发模式操作期间,针对相对较长的时间区间,暂停功率开关的切换。在空闲区间期间,一旦输出电压已经减少至最小允许的待机模式电压水平,则启动切换并且输出电压被抬高至在突发区间期间所期望的最大待机模式电压。注意,即使在待机模式期间,泄漏电流将电荷从输出电容器排出,因此需要通过例如突发模式操作对电容器进行偶尔的再充电。

突发模式操作潜在地产生如下问题:跨次级侧整流设备(诸如sr开关)的电压达到比正常操作期间更高的水平。在待机/突发模式操作期间,因为负载(例如电池)不消耗(或可忽略)电流,所以与在正常操作模式期间相比,变压器次级侧上的每个电压脉冲急剧上升的电压沿产生的电压振铃更大,该电压跨sr开关。上层电压偏移可以超过sr开关的最大允许电压。在突发模式操作期间,会重复超出这种最大电压,并且会损坏整流设备。

期望一些电路和方法,以在突发模式操作期间在开关模式功率转换器中,限制跨整流设备电路出现的最大电压。此类电路和方法应当要求最少的额外电路部件,并且应当是节能的。



技术实现要素:

根据开关驱动器的一个方面,该开关驱动器被配置为控制开关模式功率转换器中的功率开关,以防跨功率转换器的同步整流(sr)开关的过度电压水平。开关驱动器包括下拉驱动器开关、两个上拉驱动器开关、模式指示输入、开关控制输入以及高侧控制电路。下拉驱动器开关灌入来自功率开关的控制端子的电流。上拉驱动器开关使电流流出至控制端子。上拉开关中的第一个具有第一接通状态电阻,并且上拉开关中的第二个具有第二接通状态电阻,其中第二接通状态电阻基本上高于第一接通状态电阻。模式指示输入指示功率转换器是否正在突发模式中操作。开关控制输入控制如下部件的电导性:下拉驱动器开关、第二(高电阻)上拉驱动器开关、以及(结合模式指示输入)第一上拉驱动器开关。当在模式指示输入处指示出突发模式操作时,高侧控制电路将第一(低电阻)上拉驱动器开关禁用。

根据一种在开关模式功率转换器内部执行的方法,该方法用于控制功率转换器的功率开关,以防跨功率转换器的同步整流(sr)开关的过度电压水平。功率转换器包括如上文所述配置的开关驱动器,特别是包括第一上拉驱动器开关和第二上拉驱动器开关。该方法包括检测功率转换器的负载正在消耗低功率阈值以下的功率,例如负载正在待机模式中。响应于这种检测,进入操作的突发模式,并且禁用第一(低电阻)上拉驱动器开关。

根据隔离功率转换器的实施例,隔离功率转换器包括输入、输出、变压器、功率级、sr开关以及控制器。输入用于耦合至输入电源,而输出用于耦合至功率转换器的负载。变压器包括初级绕组和次级绕组。功率级被配置为可将耦合功率从输入切换到初级绕组。功率级包括功率开关和用于控制功率开关的开关驱动器。开关驱动器如上文所述被配置为,尤其是包括第一上拉驱动器开关和第二上拉驱动器开关,其中响应于功率转换器进入操作的突发模式(待机),第一上拉驱动器开关被禁用。sr开关被配置为对通过次级绕组提供的功率整流,以便dc功率被提供给输出,并且sr开关具有跨其端子的sr电压。sr开关具有与sr电压相关联的雪崩击穿电压水平。控制器被配置为通过生成开关控制信号以驱动功率级,来控制将功率传递至输出。如上文所述,响应于检测到低功率状态,控制器还生成突发模式指示,该指示用于禁用第一上拉驱动器开关。基于负载的感测电流和/或感测电压来检测低功率状态。

本领域技术人员在阅读以下的详细说明并基于查看附图,将认识到额外的特征和优点。

附图说明

附图的元件并不一定相对彼此成比例。相同的附图标记标识对应的类似部件。各种所示实施例的特征可组合,除非它们彼此排斥。在附图中描绘出实施例,并且以下在说明书中详细说明。

图1示出隔离开关模式功率转换器的示意图。

图2示出两级开关驱动器的示意图,该开关驱动器例如使用在图1的隔离功率转换器中。

图3示出:针对不同功率转换器电路在突发模式操作期间,对应于跨次级侧同步整流(sr)开关的电压波形,所述开关诸如在图1的隔离功率转换器中的sr开关。

图4示出:针对不同功率转换器电路在突发模式操作期间,对应于能量耗费的波形。

图5示出控制初级侧功率开关的方法,使得通过使用两级开关驱动器防止跨次级侧sr开关的过度电压水平。

具体实施方式

本文所述的实施例提供的技术用于切换开关模式功率转换器之中的功率开关。主要在隔离功率转换器的背景中描述这些技术,其中功率开关设置在功率转换器的初级侧上,并且同步整流(sr)开关设置在功率转换器的次级侧上。这些技术使用两级开关驱动器,以便功率开关可以以不同的比率被转换到其电导模式。该开关驱动器包括:低电阻驱动器开关;和高电阻上拉驱动器开关,用于使电流流出至功率开关的控制端子(例如,栅极gate)。在功率转换器的正常操作模式期间,两个上拉驱动器都被使用,以便功率开关的控制端子可以被尽可能快地充电。这引起快速开关转换并且低开关损耗,因为功率开关在其功率消耗最高的三极管区域中花费的时间很少。快速切换引起跨变压器初级绕组的电压脉冲的上升沿陡峭,该变压器位于功率转换器之中。在变压器次级绕组上的合成脉冲也具有陡峭的上升沿。正如还在下文中详细解释的,在功率转换器的突发模式期间只使用高电阻上拉驱动器开关。这减少了电压脉冲的上升沿的斜率,以及在功率转换器的次级侧上相关联的问题。

通过次级绕组提供的交流(ac)电压必须被整流,以便将直流(dc)电压提供给功率转换器的负载。通过电流阻断器、诸如二极管或同步整流(sr)开关提供此类整流。sr开关提供低于二极管的电压降,并且具有较低的相关联的功率损耗。因此,在功率效率非常重要的应用中,sr开关是优选的。本文的实施例主要在针对整流使用sr开关的功率转换器的背景中被描述,但是对于针对整流使用二极管的功率转换器,所描述的两级开关驱动器具有相似的优点。

跨次级绕组感应的电压脉冲引起对应于跨sr开关的电导端子的电压脉冲,导电端子例如是金属氧化物半导体场效应晶体管(mosfet)的漏极和源极。每个电压脉冲的上升沿引起施加在sr开关上的电压中的振铃。在功率转换器的正常操作模式期间,通过负载灌入的电流限制了此类电压振铃的极端情况。然而,在待机操作模式期间,负载不灌入任何可感知的电流,意味着如果不使用缓解技术,跨sr开关的电压则振荡至高于在正常操作模式期间的水平。sr开关(或二极管)仅可以安全地处置低于某些阈值的电压水平。一旦跨sr开关的电压达到此水平,sr开关进入雪崩击穿区域。通过开关的雪崩击穿电压,跨sr开关的电压被约束(钳制),并且一旦sr电压达到此击穿电压,穿过sr开关的电流则显著增加。

sr开关可以容忍有限数量的雪崩击穿。然而,在突发模式(待机)中操作的隔离功率转换器可以导致其sr开关反复地被雪崩击穿。sr开关、诸如mosfet的规范典型地提供雪崩击穿阈值,并警告防止超过此阈值。在雪崩击穿中的sr开关导致损坏sr开关的过度电流以及相关的过高温度。此外,mosfet的反复雪崩击穿会导致mosfet内的电荷被捕获,从而改变内场分布,并且最终导致mosfet无法阻断电压。无论具体机制如何,雪崩击穿、尤其是反复的雪崩击穿会改变mosfet的切换特性,从而损坏和/或毁坏mosfet。因此,必须避免反复的雪崩击穿。

一种避免雪崩击穿sr开关的技术是将缓冲电路与sr开关并联连接,缓冲电路诸如电阻-电容器-二极管(rcd)缓冲器。rcd缓冲器使用串联连接的电阻器和电容器,以将陷于变压器的泄漏电感中的能量消散。通过将与此能量相关联的电流重新定向为远离sr开关流动,减小了施加电压脉冲时跨sr开关发生的最大电压水平,即限制了电压振铃荡的程度。电流给电容器充电,因此存储与被远离sr开关定向的电流相关联的能量。储存在电容器上的电荷经由流过二极管的电流返回至电路。在典型的拓扑中,储存在电容器上的能量返回至次级侧的电感器,其可以是次级绕组的电感,因此该能量没有丢失。

即使通过rcd缓冲器储存的能量大部分返回至电路,rcd缓冲器仍然引发一些功率损耗。尤其是当sr电压被限制(即,电流正流过电阻器并且对电容器充电)时,跨rcd电阻器的电压降导致功率损耗,并且当来自rcd电容器的能量返回至电路时,跨rcd二极管的电压降导致功率损耗。当隔离功率转换器正在其突发模式中被操作时,这些功率损耗相当小。然而,在正常操作模式期间也可以引发rcd缓冲器的功率损耗,并且因此降级了隔离功率转换器的整体功率效率。为此,以及由于rcd缓冲器需要额外的电路部件,rcd缓冲器针对避免雪崩击穿并不提供理想的方案。

这里的电路不是使用rcd缓冲器来限制跨sr开关的电压,而是减少跨sr开关的电压脉冲的上升沿斜率。此类减少的斜率减少了电压振铃的高频部分,并引起跨sr开关的最大电压,该最大电压远低于原本产生的最大电压。当负载不灌入可感知的电流时,例如当隔离功率转换器在突发模式中被操作时,仅在待机(低功率)模式期间需要减少的斜率。

通过使初级侧上对应的电压斜率的上升沿减缓,生成用于次级侧电压脉冲的减少的上升斜率。反过来,这通过减缓初级侧功率开关从其关断状态到其接通状态的转换来实现。以mosfet功率开关为示例,其栅极被更缓慢地充电,以便mosfet在其三极管区域花费更多时间,而不是迅速地从其“关断”(非传导)状态转换到其饱和(完全接通)状态。当功率转换器在其操作的突发模式中时,驱动mosfet的栅极的该开关驱动器在减少-电流模式中操作,以便实现栅极的缓慢充电。两级开关驱动器包括两个上拉驱动器开关。只有高电阻上拉驱动器开关在操作的突发模式期间被启动。在正常操作模式期间,两个上拉驱动器开关都被启动,以使功率开关可以尽快从其切断状态转换到其饱和状态。

以下将主要通过下列部件和方法的特定示例来描述实施例:隔离开关模式功率转换器、开关驱动器以及用于在隔离开关模式功率转换器中控制功率开关的方法。这些示例具有共同的特征是,它们使用具有两个电流流出级的开关驱动器,其中电流流出级基于突发模式指示。开关驱动器技术也可以应用于非隔离功率转换器。

应被理解的是,下文的示例并不用于限制。为了避免混淆本发明的独特方面,未详细描述本领域中公知的电路和技术。除非是互相排斥的,否则来自示例实施例的特征和方面可以被组合或重新布置。

以下提供的描述使用反激式转换器拓扑,并且使用变压器次级绕组的接地侧上的sr开关。应当理解,本发明可以被使用在本文所述的反激式转换器拓扑的变型中,以及使用在其他隔离开关模式功率转换器拓扑的变型中。例如,初级侧可以使用半桥、全桥、或llc功率级。在次级侧上,sr开关可以连接在次级绕组的另外的端子和功率转换器的输出端子之间。也可以使用其它整流拓扑,包括例如:中心抽头次级绕组,其在每个外支脚上具有sr开关;倍流器;或全波整流器桥。除了使用sr开关,基于二极管的拓扑可以替代性地被使用。基于二极管的整流通常以增加功率损耗为代价,但是与基于sr开关的整流一样,其具有不需要开关控制的优点。二极管经常具有雪崩击穿模式,其应当以如上文针对mosfet所描述的相同方式被避免。

图1图示了利用了两级开关驱动器160的隔离开关模式功率转换器100,两级开关驱动器在突发模式操作期间限制了跨同步整流(sr)开关q2的电压vds_q2。功率转换器100包括ac输入102、dc输入104、输出106、整流器120、功率因子校正(pfc)电路130、变压器140、功率级150、以及控制器190。

ac输入102用于连接至ac电源110,其提供ac电压vac_in。(ac电源110不是隔离功率转换器100的一部分)。整流器120将ac电压vac_in整流,在其输出处提供dc电压。可选功率因子校正(pfc)电路和保护电路可以提供多种功能包括:通过抬高由整流器120提供的dc电压,来将功率转换器的功率因子校正;提供防电压尖峰或其他输入异常的保护;以及过滤输入电压。在一些应用中,整流器120和pfc130可以被调换顺序,或可以被集成到组合电路之中。pfc13将输出适于耦合至变压器140的dc电压vdc_in。图示的功率转换器100提供了ac至dc转换,但dc至dc变型可以通过如下措施实现:省略整流器120和pfc130,并且将dc输入104耦合至dc电源、例如提供dc功率的电池或其他功率转换器。

变压器140包括具有n1匝的初级绕组142、具有n2匝的次级绕组144、以及芯部146。变压器根据匝数比n1:n2来提供电压递降(或电压递升)。

隔离功率转换器100的次级侧包括输出电容器co、sr开关q2、和输出106。输出电容器co过滤由次级绕组144和sr开关q2提供的电压脉冲,因此在输出106处提供相对稳定的电压vout。输出106用于连接至负载170,该负载实际上并不是功率转换器100的部分。sr开关q2可切换地将次级绕组144的一侧连接到接地,从而对在输出处提供的电压vout整流。在图1中图示的sr开关q2是增强模式的金属氧化物半导体场效应晶体管(mosfet),但也可以使用其他类型的开关。例如,结晶型场效应晶体管(jfet)、双极结晶体管(bjt)、绝缘栅双极型晶体管(igbt)、高电子迁移率晶体管(hemt)、氮化镓(gan)mosfet、或其它类型的功率晶体管在一些应用中可以是优选的。要注意的是,大多数晶体管类型具有最大允许电压,诸如雪崩击穿电压。

控制器190及其构成部分可以使用模拟硬件部件(诸如晶体管、放大器、二极管、和电阻器)的组合、以及主要包括数字部件的处理器电路来实现。处理器电路可以包括一个或多个数字信号处理器(dsp)、通用处理器、和专用集成电路(asic)。控制器190还可以包括存储器以及一个或多个计时器,存储器例如诸如闪存的非易失性存储器,其包括用于由处理器电路使用的指令或数据。控制器190输入传感器信号,诸如对应于输出电压vout和感测到的输出电流iout_sense的信号。

控制器190负责控制功率转换器100,以便给负载170提供必要的功率。控制器190感测输出电压vout和iout_sense电流,并且使用这些测量值来生成用于控制初级侧功率级150和次级侧sr开关q2的控制信号ctl_q1和ctl_q2。基于感测到的穿过sr开关q2的电流、诸如源漏极(drain-to-source)电压vds_q2的感测到的次级侧电压、或来自脉宽调制(pwm)生成器192的定时,在控制器190之中的整流器控制器生成控制信号ctl_q2。为了便于说明,此类整流器控制器并未直接示出,并且因为此类整流技术在本领域中是公知的,所以在本文中不提供关于整流控制的进一步细节。经由驱动器180将控制信号ctl_q2提供至sr开关q2的栅极,以便控制sr开关q2的传导。

控制器190包括pwm生成器192和低功率检测器194。pwm生成器192通常包括用于调节输出电压vout的线性反馈控制器、诸如比例积分微分(pid)控制器。在功率转换器100的正常操作模式期间,pwm生成器192感测输出电压vout,并且比较此电压和参照(目标)电压vtarget,以确定用于生成用于功率级150的控制信号ctl_q1的控制参数。例如,pwm生成器192可能生成具有固定切换频率和可变占空比的控制信号ctl_q1,在这种状况中所确定的控制参数是占空比。可替代地,pwm生成器192可能生成具有固定脉宽和可变频率的控制信号,在这种状况中,该控制参数是切换频率。这些技术和其他技术在反馈控制领域中是公知的,对于理解本文所述的功率开关控制的独特方面并不是至关重要的。因此,关于反馈控制技术的进一步细节未被提供。

低功率检测器194确定功率转换器100是否应当在正常模式或突发模式中操作。通过比较感测到的电流iout_sense与低功率电流阈值,低功率检测器194可以检测负载170是不活跃的。输出电流iout_sense可以使用分流电阻器、电流互感器、与次级绕组144相关联的电感的dc电阻(dcr)、或其他电流感测技术来被感测。因为此类电流感测技术在本领域中是公知的,所以在本文中将不对它们进一步详细描述。

也可以使用除直接感测次级侧电流iout_sense以外的其他技术。例如,流过初级绕组142和功率开关q1的初级侧电流可以被感测,并且被使用于感测:负载170是不活跃的。在一些应用中,初级侧电流的感测可以是优选的,这些应用包括:例如当控制器位于功率转换器190的初级侧上而不是次级侧上时,和/或当电流模式控制用于功率开关q1时。初级侧电流的感测可以使用相似前文所述用于测量输出电流iout_sense的技术,例如测量将功率晶体管q2的源极连接到地的分流电阻器两端的电压、测量功率晶体管q2的源漏极电压等。为了便于说明,未在图1中示出经由测量初级侧电流来感测输出电流iout_sense。

经由突发模式指示器brst,低功率检测器194指示:响应于检测负载170是不活跃的、例如在低功率状态中,功率转换器100应当进入操作的突发模式。此类不活跃性可以例如通过检测输出电流iout_sense在低功率电流阈值以下来确定,或相似地,通过检测初级侧电流在对应的初级侧低功率电流阈值以下来确定。在突发模式操作中时,pwm生成器192针对长时间间隔停止生成用于功率级150的控制信号ctl_q1。并非精确地调节输出电压以匹配目标电压vtarget,而是在突发模式期间pwm生成器192通常使用宽松的输出电压限制。例如,pwm生成器192禁止产生控制信号ctl_q1,直到输出电压降至突发模式下限vlow_stby为止,该突发模式下限低于正常模式目标电压vtarget。针对目标电压vtarget=20v,待机电压可以允许降至vlow_stby=19.5v。随后,pwm生成器192允许生成开关控制信号ctl_q1,直到输出电压vout达到目标电压vtarget=20v或上限电压vhigh_stby,该上限电压稍微高于目标电压vtarget=20v、例如是20.5v。净效果是,在突发模式期间,pwm生成器192在控制信号ctl_q1上提供由较长的不活跃间隔分隔开的脉冲的突发。

尽管以上描述是在具有功率级150的反激式转换器100的背景下进行的,其中功率级具有电源开关,应当理解的是,具有其他拓扑的隔离功率转换器可以具有附加的功率开关,并且pwm生成器192将生成对应于此类附加功率开关的控制信号。

控制器190可以位于功率转换器100的初级侧或次级侧上。为了保持初级至次级边界的完整性,从控制器190输入或输出的信号可能需要被传递经过隔离器,为了便于说明而未示出这些隔离器。例如,位于次级侧上的控制器190将要求输出信号ctl_q1、brst经过隔离器,这些输出信号被提供给(初级侧)功率级150。反过来,初级侧控制器将要求至控制器190的其他输入和输出信号被传递经过隔离器。

功率级150包括功率开关q1和两级开关驱动器160。功率开关q1可切换地将初级绕组142的一个端子、对应于图示的节点vsw连接至地,以便跨初级绕组142生成电压脉冲。图示的功率开关q1是具有栅极、漏极和源极端子的mosfet。在一些应用中,其他开关类型可以优选地是结晶型场效应晶体管(jfet)、双极结晶体管(bjt)、绝缘栅双极型晶体管(igbt)、氮化镓(gan)mosfet或高电子迁移率晶体管(hemt)。根据输入到功率级150的突发模式指示brst,功率开关q1的栅极通过两级开关驱动器160以不同的比率被充电。当指示突发模式操作时,开关驱动器160禁用其拉电流中的至少一些,以便更缓慢地对功率开关q1的栅极充电。

图2进一步详细地图示了针对功率级250的特定的实施例,包括两级开关驱动器250。通过经由驱动器开关的推挽布置使电流流出或灌入至栅极,开关驱动器260将栅极信号gs_q1提供给功率开关q1的栅极(g)。开关驱动器260包括上拉驱动器开关mpa、mpb和下拉驱动器开关mn1。前置驱动器264、266、268针对每个驱动器开关mpa、mpb、mn1提供栅极信号gha、ghb、gl。下拉驱动器开关mn1是n通道mosfet,意味着该开关被设置为在高电压被提供至其栅极时导通。上拉驱动器开关mpa、mpb为p通道mosfet,意味着它们被设置为在低电压(例如0v)被提供至其相应的栅极时导通。第一上拉驱动器开关mpa具有低接通状态电阻rds_on,而第二上拉驱动器开关mpb具有高接通状态电阻。

第一上拉驱动器开关mpa通过从高侧控制电路262输出的栅极信号gha控制。当指示突发模式操作时,高侧控制电路262有效地将第一上拉驱动器开关mpa禁用。高侧控制电路262包括或门263和第一高侧前置驱动器264。在正常操作期间,突发模式指示brst为低,并且或门263将控制信号ctl_q2传递至第一高侧前置驱动器264。在此状态中,根据控制信号ctl_q2,第一上拉驱动器开关和第二上拉驱动器开关被同时切换。更特别地,用于控制信号ctl_q2的高电压(vdd)被传递至上拉驱动器开关mpa和mpb的栅极端子,以便其栅源极(gate-to-source)电压vgs_mpa,vgs_mpb为零,并且开关被关断。相反地,用于控制信号ctl_q2的低电压(0v)被传递至上拉驱动器开关mpa和mpb的栅极端子,以便其栅源极电压vgs_mpa,vgs_mpb为(-vdd),并且开关被接通。

在突发模式操作期间,突发模式指示brst为高,并且无论控制信号ctl_q2的状态如何,或门263的输出总保持为高。第一上拉驱动器开关mpa保持关断,因为在此状态中其栅源极电压vgs_mpa=0v。第二上拉驱动器开关mpb被控制信号ctl_q2控制,并且不依赖于突发模式指示brst。

当控制信号ctl_q2为高(逻辑“1”)时,低侧驱动器开关mn1被接通,并且当该信号为低(0v)时关断。当接通时,低侧驱动器开关mn1从功率开关q1的栅极灌入电流,从而将功率开关q1关断。

第一上拉驱动器开关mpa具有低接通状态电阻,例如rmpa_ds_on=5ω);然而第二上拉驱动器开关mpb具有相对的高接通状态电阻,例如rmpa_ds_on=600ω。上拉驱动器级的电流流出能力由其接通状态电阻来确定。在突发模式期间,仅第二(高电阻)上拉驱动器开关被启动,意味着相对于正常操作,电流流出能力被大大减少。利用将较低的拉电流提供给功率开关q1的栅极,功率开关q1将更慢地接通,并且跨初级绕组142生成的电压脉冲具有低压摆率。

包括上拉驱动器开关mpa和mpb的开关的接通状态电阻通常由其尺寸、例如通道长度和宽度来确定。在一个实施例中,第一和第二上拉驱动器开关mpa和mpb的通道宽度可以被设置为达到接通状态电阻所期望的比率,或相似地达到第二上拉驱动器开关mpb的绝对期望导通状态电阻的比率,该电阻引起跨次级侧sr开关、例如图1中q2的所期望的电压压摆率。在另一个实施例中,上拉驱动器开关mpa和mpb可以是相同设备的一些部分,但是它们具有隔离的控制端子。例如,mosfet可以具有并联连接的多个源极和漏极区域,其中栅极指被提供以控制每个源极/漏极区域。多个栅极指可以被绑定在一起,以有效地生成大型mosfet,其接通状态电阻比该mosfet的单个源极/漏极部分更低。栅极指可以被划分为分配给第一上拉驱动器开关mpa的一组和分配给第二上拉驱动器开关mpb的另一组。例如,具有120个栅极指的mosfet的特性在于:每个漏极/源极对可以具有600ω的有效导通状态电阻。一个此类的指可以被分配以控制一个漏极/源极对,该漏极/源极对组成第二(高电阻)上拉驱动器开关mpb。剩下的119个指可以被分配以控制剩下的漏极/源极对,这些漏极/源极对组成了第一(低电阻)上拉驱动器开关mpa。栅极指在第一和第二上拉驱动器开关mpa和mpb之间的分配可以在制造期间经由金属掩模实现,或另外能够是可编程的,例如使用数字代码以在第一和第二上拉驱动器开关之间分配msofet区段。用于第一和

第二上拉驱动器开关mpa和mpb的前置驱动器264和266必须根据第一和第二上拉驱动器开关mpa和mpb来被设定尺寸,例如所分配的区段数量。此外,全部上拉驱动器强度的特征在于并联的上拉驱动器开关mpa,mpb的接通电阻的组合,该上拉驱动器强度的大小必须被设定,以提供由功率开关q1在功率转换器100的正常操作期间所要求的拉电流。

图3针对不同功率转换器电路,图示了对应于跨sr开关q2的源漏极电压vds_q2的波形300。通过使用初级侧功率开关、诸如图1中的q1跨初级侧绕组施加的电压脉冲,发起这些波形300,其中电压脉冲感应次级侧电压脉冲,引起所示的源漏极电压波形300。这些波形在低功率(待机)模式期间生成,在此期间存在相应功率转换器消耗的可忽略的电流。

第一波形310对应于第一功率转换器,其中电压脉冲陡峭的上升沿并未得到缓解。电压尝试振铃到高电压,但sr开关将电压钳制312在约165v的雪崩击穿电压处。在雪崩击穿周期期间,sr开关传导过度电流水平,并且sr开关潜在地被损坏,尤其是当雪崩击穿重复发生时。

第二波形320对应于第二功率转换器,其中缓冲电路、例如前文所述的rcd缓冲器限制了跨sr开关的最大电压。第二波形的峰值仅达到约158v,这意味着避免了sr开关的雪崩击穿。

第三波形330对应于第三功率转换器,其中包括如在图2中图示的两级开关驱动器。sr开关的源漏极电压比第一波形310或第二波形320中的任一个更慢地上升。sr开关的雪崩击穿得以避免了,而无需rcd电路及其部件。此外,跨sr开关的大约125v的最大电压显著低于不具备保护或具有rcd缓冲器的功率转换器。

图4图示了波形400,其对应于相对于图3描述中的功率转换器电路从输入电源耗费的能量。第一能量波形410对应于第一功率转换器耗费的能量,其中电压脉冲的上升沿并未得到缓解。第二能量波形420对应于第二功率转换器的能量耗费,其中使用缓冲器电路被以避免sr开关中的雪崩击穿。需要注意的是,由于缓冲器耗费能量,因此对于该功率转换器耗费了更多的能量。第三波形430对应于针对第三功率转换器的能量耗费,其中两级开关驱动器、诸如图2的开关驱动器260用于切换初级侧功率级。可以看出,使用两级开关驱动器的第三功率转换器所产生的能量耗费远低于其他图示的备选方案。

图5图示了方法500,该方法用于控制在隔离功率转换器之中的初级侧功率开关,以防跨sr开关的次级侧的过度电压。方法500可以在隔离功率转换器500、诸如在图1中所图示的隔离功率转换器之中实现。方法500开始于感测510由功率转换器的负载消耗的功率pload,并且将该功率pload与低功率阈值plp_thresh进行比较520。(在基本上相同的技术中,负载电流、例如图1中的iout_sense可以被感测,并且与低功率电流阈值ilp_thresh进行比较)。一旦消耗功率pload降到低功率阈值plp_thresh以下,则功率转换器进入530操作的突发模式,并且禁用第一(低电阻)上拉驱动器开关。如通过感测550消耗功率pload所指示的,突发模式操作持续直至由负载消耗的功率pload超过低功率阈值plp_thresh。一旦负载开始消耗的功率在阈值plp_thresh以上560,退出突发模式操作570,并且继续正常操作。第一(低电阻)上拉驱动器开关被启动580。

两级开关驱动器和功率开关的控制在上述隔离开关模式功率转换器的背景中被描述。这些技术和电路也可以应用到不提供隔离的功率转换器拓扑中。例如,非隔离升降压功率转换器使用电感器暂时储存能量,而不是使用变压器传递跨隔离势垒的能量。在通常的升降压转换器中,功率开关可切换地将输入电源连接至能量储存电感器,从而生成跨电感器的ac电压。ac电压被整流,例如使用sr开关被整流,并且得到的dc电压被提供至功率转换器的负载。如在以上描述的隔离功率转换器中,在负载不活跃且电流消耗不显著的周期期间,在此类升降压转换器中的sr开关可以承受过度的电压,包括雪崩击穿电压极限。前文描述的并且图2中图示的两级开关驱动器可以相似地被使用在此类非隔离升降压功率转换器中。更特别地,两级开关驱动器可以驱动功率开关,该开关将输入电源耦合至能量储存电感器。如前文所述的,在当负载正消耗低功率的周期期间,并且尤其是当此类状态引起突发模式操作的周期期间,两级驱动器被定位在只有其高电阻上拉驱动器被启动的状态。这可以通过给两级驱动器提供突发模式指示、例如图2中的brst信号来实现。通过在突发模式操作期间仅使用高电阻上拉驱动器,提供给能量储存电感器的电压脉冲具有较低的上升沿,并且因此跨sr开关的任何电压振铃的程度都被减少。

根据开关驱动器的实施例,开关驱动器被配置为控制位于开关模式功率转换器中的功率开关,以防跨功率转换器的同步整流(sr)开关的过度电压水平。开关驱动器包括下拉驱动器开关、两个上拉驱动器开关、模式指示输入、开关控制输入、以及高侧控制电路。下拉驱动器开关灌入来自功率开关的控制端子的电流。上拉驱动器开关使电流流出至控制端子。上拉开关中的第一个具有第一接通状态电阻,并且上拉开关中的第二个具有第二接通状态电阻,其中第二接通状态电阻基本上高于第一接通状态电阻。模式指示输入指示功率转换器是否正在突发模式中操作。开关控制输入控制下列部件的传导性:下拉驱动器开关、第二(高电阻)上拉驱动器开关、结合模式指示输入还有第一上拉驱动器开关。当在模式指示输入处指示突发模式操作时,高侧控制电路禁用第一(低电阻)上拉驱动器开关。

根据开关驱动器的任何实施例,下拉驱动器开关是n通道金属氧化物半导体场效应晶体管(mosfet),并且第一和第二上拉驱动器开关是p通道mosfet。

根据开关驱动器的任何实施例,高侧控制电路包括高侧前置驱动器和兼或门(inclusiveorgate)。高侧前置驱动器耦合至第一上拉驱动器开关并且控制其传导性。兼或门输入模式指示和开关控制信号,并且将高侧开关控制信号输出至高侧前置驱动器。

根据开关驱动器的任何实施例,第二上拉驱动器开关的尺寸被设置以流出一电流水平,该电流水平限制跨sr开关的电压为低于sr开关的电压上限,该电压上限对应于sr开关的雪崩击穿电压。

根据开关驱动器的任何实施例,第一上拉驱动器开关在接通时流出的电流水平至少是第二上拉驱动器开关接通时由第二上拉驱动器开关流出的电流水平的100倍。

根据开关驱动器的任何实施例,在第一上拉驱动器开关和第二上拉驱动器开关之间的尺寸比可通过可配置数字代码编程。

根据开关驱动器的任何实施例,在第一上拉驱动器开关和第二上拉驱动器开关之间的尺寸比在上拉驱动器开关的制造期间通过金属选择设置。

根据在开关模式功率转换器中执行的方法,该方法用于控制在开关模式功率转换器中的功率开关,以防跨功率转换器的同步整流(sr)开关的过度电压水平。功率转换器包括开关驱动器,其如上文所述地配置,尤其包括第一上拉驱动器开关和第二上拉驱动器开关。该方法包括检测功率转换器的负载正在消耗低功率阈值以下的功率,例如该负载正在待机模式中。响应于此类检测,进入操作的突发模式并且禁用第一上拉驱动器开关。

根据该方法的任何实施例,sr开关具有相关联的雪崩击穿电压,该雪崩击穿电压对应于跨sr开关的第一端子和第二端子的电压极限,并且第二上拉驱动器开关的接通状态电阻被配置为支持经过第二上拉驱动器开关的电流水平,以便功率开关接通所依据的比率确保跨sr开关的第一端子和第二端子的电压保持在sr开关的雪崩击穿电压之下。

根据该方法的任何实施例,该方法还包括响应于检测到功率转换器的负载正在消耗比低功率水平多的功率,退出操作的突发模式并且启动第一上拉驱动器开关。

根据隔离功率转换器的实施例,隔离功率转换器包括输入、输出、变压器、功率级、sr开关以及控制器。输入用于耦合至输入电源,而输出用于耦合至功率转换器的负载。变压器包括初级绕组和次级绕组。功率级被配置为将功率从输入切换到初级绕组。功率级包括功率开关和用于控制功率开关的开关驱动器。开关驱动器被如上所述地配置,并且尤其是包括第一上拉驱动器开关和第二上拉驱动器开关,其中响应于功率转换器进入操作的突发模式(待机),禁用第一上拉驱动器开关。sr开关被配置为整流由次级绕组提供的功率,并且sr开关具有跨其端子的sr电压。sr开关具有与sr电压相关联的雪崩击穿电压水平。控制器被配置为通过生成开关控制信号来控制传递至输出的功率以驱动功率级。响应于检测到低功率状态,控制器还生成突发模式指示,其用于禁用第一上拉驱动器开关。低功率状态基于负载的感测电流或感测电压来被检测。

根据隔离功率转换器的任何实施例,下拉驱动器开关是n通道金属氧化物半导体场效应晶体管(mosfet),并且第一和第二上拉驱动器开关是p通道mosfet。

根据隔离功率转换器的任何实施例,高侧控制电路包括高侧前置驱动器和兼或门。高侧前置驱动器耦合至第一上拉驱动器开关并且控制其传导性。兼或门输入模式指示和开关控制信号,并且将高侧开关控制信号输出给高侧前置驱动器。

根据隔离功率转换器的任何实施例,第二上拉驱动器开关的尺寸被设置以流出一电流水平,该电流水平限制跨次级侧的sr开关的电压低于sr开关的电压上限,该电压上限对应于sr开关的雪崩击穿电压。

根据隔离功率转换器的任何实施例,第一上拉驱动器开关在接通时流出的电流水平至少是第二上拉驱动器开关接通时由第二上拉驱动器开关流出的电流水平的100倍。

根据隔离功率转换器的任何实施例,在第一上拉驱动器开关和第二上拉驱动器开关之间的尺寸比可通过可配置数字代码编程。

根据隔离功率转换器的任何实施例,在第一上拉驱动器开关和第二上拉驱动器开关之间的尺寸比在上拉驱动器开关的制造期间通过金属选择设置。

根据隔离功率转换器的任何实施例,隔离功率转换器具有反激式转换器拓扑。

如本文所使用的,术语“具有”、“包含”、“包括”等为开放式术语、其指示所述元件或特征的存在,但不排除附加的元件或特征。除非上下文另有确说明,否则冠词“一”、“一个”和“该”旨在包括复数以及单数。

应当理解,除非另有特别说明,否则本文所述各种实施例的特征可彼此组合。

尽管本文已经图示和描述了具体实施例,然而本领域普通技术人员应当理解,在不脱离本发明范围的情况下,各种替代和/或等效实施方式可替代所示出和描述的具体实施例。本申请旨在涵盖本文所讨论具体实施例的任何修改或变化。因此,本发明旨在仅由权利要求及其等同物限制。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1