本发明属于压电驱动技术领域,尤其是涉及一种单自由度压电转台及其激励方法。
背景技术:
压电驱动技术是指利用压电材料的逆压电效应将电能转化为机械能,通过特定致动原理实现压电装置的运动输出的一种精密驱动技术,该技术具有运动精度高、抗电磁干扰、响应速度快、断电自锁等优点。近年来,随着生物医学、光学工程、精密加工领域的快速发展,它们对精密旋转运动平台提出了迫切需求。鉴于利用压电驱动技术的精密旋转运动平台具有高位移分辨力、大行程、结构简单、断电自锁、无电磁干扰等显著优势,其在精密驱动和定位领域具备广阔的应用前景,为此,国内外众多学者针对精密压电旋转运动平台开展了广泛研究。
根据工作原理的不同,当前的压电旋转运动平台主要包括共振式和非共振式两类。共振式压电旋转运动平台利用超声频率的激励电压信号激励定子产生超声振动,进而通过摩擦耦合驱动动子实现旋转运动输出;其具备大行程、高速度、大力矩运动输出能力,但是此类压电旋转运动平台工作在高频状态,其运行时伴随着严重的摩擦磨损和发热问题,且运动精度较低,通常只能达到微米量级。非共振式的压电旋转运动平台主要是利用动子和定子之间动、静摩擦的交替变化实现运动输出,其工作频率较低;虽然此类压电旋转平台输出速度和力矩低于共振式的压电旋转运动平台,但是其实现了更高的运动分辨力和定位精度;由于此类压电旋转平台工作在低频范围,弱化了摩擦磨损问题,避免了高速高频运行产生的发热问题;总之,非共振式的压电旋转运动平台更适用于运动精度要求高、稳定性较好、间歇性运行的应用需求,逐渐成为目前研究的热点。对于上述压电旋转运动平台而言,动子的支承方式以及动子与定子之间的摩擦力是决定其运动输出特性的两个关键因素;为了支承动子并限制其冗余运动自由度,现有压电旋转运动平台通常需要设计支承结构实现动子的支承;为了保证动子与定子之间形成工作所需的摩擦力,往往需要配置复杂的预紧机构,以此调节动子和定子之间的预紧力,进一步调整二者之间的摩擦力,从而保证定子能够稳定地驱动动子实现运动输出;但是预紧机构通常是固定的机械装置,难以在运行中调节预紧力,进而控制摩擦力的大小。
技术实现要素:
有鉴于此,本发明旨在提出一种单自由度压电转台及其激励方法,解决现有单自由度压电驱动装置支承和限位结构复杂、难以实现运行中摩擦力的调控等问题。
为达到上述目的,本发明的技术方案是这样实现的:
一种单自由度压电转台,包括一个环形基座、n个二维压电致动器、一个圆盘动子、2n个轴向固定螺钉、n个轴向压紧块、n个径向紧定螺钉,其中n为大于或等于6的偶数;n个二维压电致动器分为上、下两层均布在环形基座的圆周上,上下两层各包括n/2个二维压电致动器;所述n个二维压电致动器的结构相同;所述每个二维压电致动器包括矩形基座、压电元件和驱动足,矩形基座、压电元件和驱动足依次固定联接;分别沿所述环形基座上、下两个端面的圆周方向各均匀分布n个矩形缺口和n个环形缺口,且环形基座每个端面上的矩形缺口和环形缺口均一一对应设置,其中环形缺口为从环形基座的相应端面去除部分环形体后形成,矩形缺口位于环形缺口的底面上,在每个环形缺口的底面上设有2个轴向螺纹孔;在环形基座外圆柱面上且过每个矩形缺口中心的径向方向上,设有一个径向紧定螺纹孔;上端面的所述环形缺口、矩形缺口、轴向螺纹孔和径向紧定螺纹孔与下端面的所述环形缺口、矩形缺口、轴向螺纹孔和径向紧定螺纹孔以环形基座的轴向对称面为中心呈镜像关系布置;所述环形缺口与轴向压紧块的结构相适应,且轴向压紧块嵌入环形缺口中,通过轴向固定螺钉与环形基座固定联接;二维压电致动器的矩形基座与环形基座上的矩形缺口形状特征相同,矩形基座嵌入矩形缺口中;径向紧定螺钉通过径向紧定螺纹孔与环形基座相连,且与二维压电致动器的矩形基座相接触,通过调整径向紧定螺钉的位置,实现二维压电致动器沿环形基座的径向分布位置的微调;所述圆盘动子外沿设置上锥形环面和下锥形环面,上层n/2个二维压电致动器的驱动足与圆盘动子的上锥形环面相接触,而下层n/2个二维压电致动器的驱动足与圆盘动子的下锥形环面相接触。
进一步的,通过均匀布置在环形基座上的n个二维压电致动器支承圆盘动子,通过n个二维压电致动器与圆盘动子之间的接触,限制圆盘动子除去绕自身轴线旋转运动之外的所有运动自由度。
进一步的,利用一路电压信号,通过控制n个二维弯曲致动器沿圆盘动子轴线方向的弯曲运动,控制二维压电致动器与圆盘动子之间的正压力大小,进一步控制二维压电致动器与圆盘动子之间摩擦力。
进一步的,每个二维压电致动器产生独立的、沿着两个正交方向的弯曲运动。
进一步的,在环形基座上加工有螺纹孔、沉头孔或通孔,用于将单自由度压电转台与其它零部件固定连接。
一种单自由度压电转台的激励方法,该方法用于激励n个二维压电致动器实现同时沿圆盘动子外沿圆周切线方向的弯曲运动,驱动圆盘动子实现单自由度旋转运动;即,驱动圆盘动子实现绕z轴逆时针或顺时针方向旋转运动;
其中,驱动圆盘动子绕z轴逆时针方向旋转运动的具体过程如下:
步骤一、在n个二维压电致动器的压电元件上施加缓慢下降的激励电压信号,n个二维压电致动器在沿着绕z轴逆时针的切线方向上产生缓慢弯曲变形至负极限位置,n个二维压电致动器的驱动足在沿着绕z轴逆时针的切线方向上产生缓慢微小位移,通过静摩擦力驱动圆盘动子绕z轴逆时针方向产生微小角位移;
步骤二、在n个二维压电致动器的压电元件上施加快速上升的激励电压信号,n个二维压电致动器在沿着绕z轴顺时针的切线方向上产生快速弯曲变形至正极限位置,n个二维压电致动器的驱动足在沿着绕z轴顺时针的切线方向上产生快速微小位移,圆盘动子由于惯性保持静止;
步骤三、重复步骤一至步骤二,实现圆盘动子绕z轴逆时针方向的连续旋转运动;
驱动圆盘动子绕z轴顺时针方向旋转运动的具体过程如下:
步骤一、在n个二维压电致动器的压电元件上施加缓慢上升的激励电压信号,n个二维压电致动器在沿着绕z轴顺时针的切线方向上产生缓慢弯曲变形至正极限位置,n个二维压电致动器的驱动足在沿着绕z轴顺时针的切线方向上产生缓慢微小位移,通过静摩擦力驱动圆盘动子绕z轴顺时针方向产生微小角位移;
步骤二、在n个二维压电致动器的压电元件上施加快速下降的激励电压信号,n个二维压电致动器在沿着绕z轴逆时针的切线方向上产生快速弯曲变形至负极限位置,n个二维压电致动器的驱动足在沿着绕z轴逆时针的切线方向上产生快速微小位移,圆盘动子由于惯性保持静止;
步骤三、重复步骤一至步骤二,实现圆盘动子绕z轴顺时针方向的连续旋转运动。
进一步的,实现该方法所需的激励电压信号为周期性的、非对称的锯齿状或梯形波形,激励电压信号每个周期中上升和下降过程可以是线性的,也可以是非线性的,但上升和下降过程所持续的时长不相等。
相对于现有技术,本发明所述的一种单自由度压电转台及其激励方法具有以下优势:
可实现圆盘动子的单自由度旋转运动输出;其中,圆盘动子具有大行程、高分辨力运动输出能力;二维压电致动器在单自由度压电旋转台中的双层配置,以及圆盘动子特殊的外沿结构设计,一方面实现了圆盘动子的自支承和限位,无需增加其它辅助装置,另一方面实现了运行时二维压电致动器与圆盘动子之间正压力的调节,进而实现了对二者之间摩擦力的调控;本发明公开的单自由度压电旋转台克服了传统压电转台预紧结构复杂、摩擦力难以调控的缺点;通过电信号实现了对二维压电致动器和圆盘动子之间摩擦力的电调控,有望提高其机械输出性能,拓展其在超精密旋转驱动和定位中的应用。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是n等于6时单自由度压电转台的三维示意图;
图2是n等于6时单自由度压电转台的单个二维压电致动器紧定结构爆炸视图;
图3是单个二维压电致动器分别沿a1和a2两个正交方向作正向和逆向弯曲运动的示意图;其中,分图(a)表示单个二维压电致动器沿a2方向正向弯曲运动,分图(b)表示单个二维压电致动器沿a2方向负向弯曲运动,分图(c)表示单个二维压电致动器沿a1方向正向弯曲运动,分图(d)表示单个二维压电致动器沿a1方向负向弯曲运动;
图4是二维压电致动器同时从正极限位置向负极限位置缓慢弯曲运动的单自由度压电转台运动示意图;
图5是二维压电致动器同时从负极限位置向正极限位置快速弯曲运动的单自由度压电转台运动示意图;
图6是二维压电致动器同时从负极限位置向正极限位置缓慢弯曲运动的单自由度压电转台运动示意图;
图7是二维压电致动器同时从正极限位置向负极限位置快速弯曲运动的单自由度压电转台运动示意图;
图8是单自由度压电旋转台激励电压信号示意图;其中,vmax为正向电压幅值的极大值,-vmax为负向电压幅值的极大值,t为周期,t为一个周期中电压信号缓慢变化的时长,t超过半周期t/2;分图(a)表示在一个周期t中先施加幅值从正极大值下降到负极大值的激励电压信号,分图(b)表示在一个周期t中先施加幅值从负极大值上升到正极大值的激励电压信号;
图9是实现单自由度压电旋转台预紧力调节的示意图,其中虚线箭头表示相应二维压电致动器的弯曲运动方向。
上述附图中,坐标系xyz为笛卡尔空间直角坐标系,且z轴与圆盘动子的轴线重合,x和y轴分别表示在圆盘动子轴向对称平面上的两个正交方向。
具体实施方式
下面结合附图对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
下面将结合附图对本发明的实施例作进一步详细描述。
具体实施方式一:结合说明书附图1和附图2对本实施方式作进一步详细说明。本实施方式提供了一种单自由度压电转台的具体实施方案,一种单自由度压电转台,包括一个环形基座1、n个二维压电致动器2、一个圆盘动子3、2n个轴向固定螺钉4、n个轴向压紧块5、n个径向紧定螺钉6,其中n为大于或等于6的偶数;n个二维压电致动器2分为上、下两层均布在环形基座1的圆周上,上下两层各包括n/2个二维压电致动器2;所述n个二维压电致动器2的结构相同;所述每个二维压电致动器2包括矩形基座2-1、压电元件2-2和驱动足2-3,矩形基座2-1、压电元件2-2和驱动足2-3依次固定联接;分别沿所述环形基座1上、下两个端面的圆周方向各均匀分布n个矩形缺口1-1和n个环形缺口1-2,且环形基座1每个端面上的矩形缺口1-1和环形缺口1-2均一一对应设置,其中环形缺口1-2为从环形基座1的相应端面去除部分环形体后形成,矩形缺口1-1位于环形缺口1-2的底面上,在每个环形缺口1-2的底面上设有2个轴向螺纹孔1-3;在环形基座1外圆柱面上且过每个矩形缺口1-1中心的径向方向上,设有一个径向紧定螺纹孔1-4;上端面的所述环形缺口1-2、矩形缺口1-1、轴向螺纹孔1-3和径向紧定螺纹孔1-4与下端面的所述环形缺口1-2、矩形缺口1-1、轴向螺纹孔1-3和径向紧定螺纹孔1-4以环形基座1的轴向对称面为中心呈镜像关系布置;所述环形缺口1-2与轴向压紧块5的结构相适应,且轴向压紧块5嵌入环形缺口1-2中,通过轴向固定螺钉4与环形基座1固定联接;二维压电致动器2的矩形基座2-1与环形基座1上的矩形缺口1-1形状特征相同,矩形基座2-1嵌入矩形缺口1-1中;径向紧定螺钉6通过径向紧定螺纹孔1-4与环形基座1相连,且与二维压电致动器2的矩形基座2-1相接触,通过调整径向紧定螺钉6的位置,实现二维压电致动器2沿环形基座1的径向分布位置的微调;所述圆盘动子3外沿设置上锥形环面3-1和下锥形环面3-2,上层n/2个二维压电致动器2的驱动足2-3与圆盘动子3的上锥形环面3-1相接触,而下层n/2个二维压电致动器2的驱动足2-3与圆盘动子3的下锥形环面3-2相接触;环形基座1的上下端面上可加工出螺纹孔、沉头孔或通孔,用于将单自由度压电转台与其它零部件相连。
具体实施方式二:结合说明书附图3对本实施方式作进一步详细的说明。本实施方式提供了单个二维压电致动器2实现沿a1和a2两个正交方向弯曲运动的具体实施方案。单个二维压电致动器2可实现的二维弯曲运动如图3所示,通过在压电元件2-2上施加一路激励电压信号,可实现沿a2轴方向的正向和负向弯曲运动:当激励电压信号幅值为正值时,二维压电致动器2产生沿a2轴正向的弯曲运动,如图3(a)所示;当激励电压信号幅值为负值时,二维压电致动器2产生沿a2轴负向的弯曲运动,如图3(b)所示。通过在压电元件2-2上分别施加另一路激励电压信号,可实现沿a1轴方向的正向和负向弯曲运动,当激励电压信号幅值为正值时,二维压电致动器2产生沿a1轴正向的弯曲运动,如图3(c)所示;当激励电压信号幅值为负值时,二维压电致动器2产生沿a1轴负向的弯曲运动,如图3(d)所示。以上所述a1和a2轴方向仅表示二维压电致动器2所实现的两个正交弯曲运动方向。
具体实施方式三:结合说明书附图4到图8对本实施方式作进一步详细的说明。本实施方式提供了单自由度压电转台的激励方法的具体实施方案,以圆盘动子3的中心为坐标原点建立笛卡尔直角坐标系xyz,且该坐标系z轴与圆盘动子3的轴线共线,则该激励方法可以激励单自由度压电转台的圆盘动子3实现绕z轴逆时针或z轴顺时针的旋转运动输出;以下说明是二维压电致动器2的数量n等于六的情况。
驱动圆盘动子3绕z轴逆时针方向旋转运动输出的具体过程如下:
步骤一、在六个二维压电致动器2的压电元件2-2上施加一路缓慢下降的激励电压信号,对应于图8(a)一个激励电压信号周期t中的t时段;六个二维压电致动器2在沿着绕z轴逆时针的切线方向上产生缓慢弯曲变形至负极限位置,六个二维压电致动器2的驱动足2-3在沿着绕z轴逆时针的切线方向上产生缓慢微小位移,通过静摩擦力驱动圆盘动子3绕z轴逆时针方向产生微小角位移,如图4所示;
步骤二、在六个二维压电致动器2的压电元件2-2上施加一路快速上升的激励电压信号,对应于图8(a)一个激励电压信号周期t中的t-t时段;六个二维压电致动器2在沿着绕z轴顺时针的切线方向上产生快速弯曲变形至正极限位置,六个二维压电致动器2的驱动足2-3在沿着绕z轴顺时针的切线方向上产生快速微小位移,圆盘动子3由于惯性保持静止,如图5所示;
以上所述步骤一和步骤二中t时段持续时长大于激励电压信号半个激励周期t/2;
步骤三、重复步骤一至步骤二,即重复施加图8(a)所示的多个周期的激励电压信号至六个二维压电致动器,实现圆盘动子3绕z轴逆时针方向的连续旋转运动输出;
驱动圆盘动子3绕z轴顺时针方向旋转运动输出的具体过程如下:
步骤一、在六个二维压电致动器2的压电元件2-2上施加一路缓慢上升的激励电压信号,对应于图8(b)一个激励电压信号周期t中的t时段;六个二维压电致动器2在沿着绕z轴顺时针的切线方向上产生缓慢弯曲变形至正极限位置,六个二维压电致动器2的驱动足2-3在沿着绕z轴顺时针的切线方向上产生缓慢微小位移,通过静摩擦力驱动圆盘动子3绕z轴顺时针方向产生微小角位移,如图6所示;
步骤二、在六个二维压电致动器2的压电元件2-2上施加一路快速下降的激励电压信号,对应于图8(a)一个激励电压信号周期t中的t-t时段;六个二维压电致动器2在沿着绕z轴逆时针的切线方向上产生快速弯曲变形至负极限位置,六个二维压电致动器2的驱动足2-3在沿着绕z轴逆时针的切线方向上产生快速微小位移,圆盘动子3由于惯性保持静止,如图7所示;
以上所述步骤一和步骤二中t时段持续时长大于激励电压信号半个激励周期t/2;
步骤三、重复步骤一至步骤二,即重复施加图8(b)所示的多个周期的激励电压信号至六个二维压电致动器,实现圆盘动子3绕z轴顺时针方向的连续旋转运动输出。
具体实施方式四:结合说明书附图9对本实施方式作进一步详细的说明。本实施方式提供了利用电压信号调整单自由度压电转台的预紧力,进而调控摩擦力的具体实施方案;以下说明是二维压电致动器2的数量n等于六的情况。单自由度压电转台的预紧力是指单自由度压电转台的六个二维压电致动器2与圆盘动子3之间的正压力;正压力决定了二维压电致动器2与圆盘动子3之间的滑动摩擦力大小,二维压电致动器2与圆盘动子3之间的滑动摩擦力与二者之间的正压力成正比例关系;将幅值为正值和负值的电压信号分别施加在单自由度压电转台的上层三个二维压电致动器2和下层三个二维压电致动器2,上层三个二维压电致动器2沿z轴负向产生弯曲运动,而下层三个二维压电致动器2沿z轴正向产生弯曲运动,所述二维压电致动器2沿z的弯曲运动方向如图9中虚线箭头所示;由于二维压电致动器2属于弹性体,上层和下层二维压电致动器2分别产生沿z轴负向和z轴正向的微幅弯曲运动时,二维压电致动器2的驱动足2-3始终与圆盘动子3的上锥形环面3-1和下锥形环面3-2保持接触;通过增加和降低所用电压信号的幅值大小,实现六个二维压电致动器2与圆盘动子3之间的正压力的调大和调小;由于六个二维压电致动器2与圆盘动子3之间摩擦力与正压力成正比,从而利用电压信号实现摩擦力的大小调控。
本发明提出一种单自由度的压电转台,通过设计多个二维压电致动器的配置关系以及圆盘动子的结构,一方面实现了支承和驱动部件的统一,避免了使用其它的支承和限位机构;另一方面可实现压电旋转台摩擦力在运行中的电调节;克服了传统压电转台结构复杂,以及运行中预紧力不可控,从而导致动子与定子之间摩擦力难以调控的缺点;提出了该单自由度压电转台的一种激励方法,以周期性激励信号激励其多个二维压电致动器产生弯曲运动,在驱动足上形成沿特定方向的微小位移,并利用摩擦力驱动动子持续旋转运动。总而言之,本发明的一种单自由度压电转台实现了动子自支承和限位、运行中摩擦力的电调控,同时具备大行程、无发热、运动分辨力高等特点,这些特点将有力地支持其在超精密驱动、定位工程中的应用。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。