1.本发明涉及电网监管技术领域,特别涉及一种微电网能量监控管理系统及方法。
背景技术:2.微电网(micro
‑
grid)也译为微网,是指由分布式能量、储能装置、能量转换装置、负荷、监控和保护装置等组成的小型发配电系统。微电网的提出旨在实现分布式能量的灵活、高效应用,解决数量庞大、形式多样的分布式能量并网问题。开发和延伸微电网能够充分促进分布式能量与可再生能源的大规模接入,实现对负荷多种能源形式的高可靠供给,是实现主动式配电网的一种有效方式,使传统电网向智能电网过渡。
3.但当前微电网的能量监控管理技术还不够成熟,现有的微电网机关技术还处于研究过程,因此真正面向领域的应用非常少,且目前的微电网主要为交流输出,需要使用直流电的电器(例如,直流变频空调、led灯、消费电子类产品以及各种电池充电器等)就需要带有整流桥电路和功率因素校正电路或者是配备额外的能量适配器,以将微电网提供的交流电转换为直流使用,这就存在应用较为局限,且应用成本较高的缺陷,不利于提高电能的利用率。
技术实现要素:4.针对上述问题,本发明提出一种微电网能量监控管理系统及方法,以解决现有技术中存在的技术问题,能够通过对分布式供电的微电网线路进行负荷监管、以及电能协调解决当前应用具有的局限性,并且大大降低了应用成本,提高了电能的利用率。
5.为实现上述目的,本发明提供了如下方案:本发明提供一种微电网能量监控管理系统,包括:能量分布单元、应急储备单元、负荷监控单元、协调单元、报警单元、显示单元;
6.所述应急储备单元、负荷监控单元、报警单元、显示单元依次相连;所述负荷监控单元还分别与所述能量分布单元、协调单元相连;所述应急储备单元还与所述协调单元相连;
7.所述能量分布单元用于对分布式供电的微电网线路进行能量管理,并实时采集所述分布式供电的总发电量和发电功率;
8.所述负荷监控单元用于根据所述总发电量和发电功率进行电能负荷监控,并根据所述电能负荷监控的结果输出协调指令;
9.所述协调单元用于根据所述协调指令进行微电网电能负荷协调,控制所述分布式供电的微电网的供能方式;
10.所述应急储备单元用于根据所述协调指令对出现故障的所述分布式供电的微电网线路进行应急供电;
11.所述报警单元用于对出现故障的所述分布式供电的微电网线路进行定位,并对无法恢复供电的所述微电网线路和使用所述应急能量的微电网线路进行报警;
12.所述显示单元用于显示历史微电网线路的能量情况,以及当前微电网线路情况和
故障电网线路的位置。
13.优选地,所述能量分布单元包括能量管理模块和采集模块;所述能量管理模块、采集模块、负荷监控单元依次相连;
14.所述能量管理模块用于对分布式供电的微电网线路进行能量管理;
15.所述采集模块用于实时采集所述分布式供电的总发电量和发电功率。
16.优选地,所述负荷监控单元包括数据处理模块、负荷监控模块;所述采集模块、数据处理模块、负荷监控模块、应急储备单元依次相连;
17.所述数据处理模块用于对所述总发电量和发电功率进行电能负荷监控;
18.所述负荷监控模块用于根据所述电能监控的结果输出协调指令。
19.优选地,所述应急储备单元包括储能模块和应急模块;所述储能模块、应急模块、协调单元依次相连;所述应急模块还与所述负荷监控模块相连;
20.所述储能模块用于储备备用电能能源;
21.所述应急模块用于根据所述协调指令对出现故障的所述分布式供电的微电网线路进行应急供电。
22.优选地,所述协调单元包括接收模块和协调模块;所述负荷监控模块、接收模块、协调模块依次相连;
23.所述接收模块用于接收所述协调指令;
24.所述协调模块用于控制所述分布式供电的微电网的供能方式。
25.优选地,所述报警单元包括定位模块、报警模块、通信模块;所述定位模块、报警模块均与所述通信模块相连;所述通信模块与所述显示模块相连;
26.所述定位装置用于对出现故障的所述分布式供电的微电网线路进行定位;
27.所述报警装置用于对无法恢复供电的所述微电网线路和使用所述应急能量的微电网线路进行报警;
28.所述通信模块用于将所述定位和报警信息传输至所述显示单元中。
29.优选地,所述定位装置包括若干个gps装置;所述报警装置包括若干个蜂鸣器;
30.每个所述蜂鸣器与一个所述gps装置、分布式能量相连;每个所述gps装置均与所述通信模块相连。
31.优选地,所述显示单元包括第一视频输出模块、第二视频输出模块、视频切换模块;所述第一视频输出模块、第二视频输出模块均与所述视频切换模块相连;
32.所述第一视频输出模块用于输出所述历史微电网线路的能量情况;所述第二视频输出模块用于输出所述当前微电网线路情况和故障微电网线路的位置;所述视频切换模块用于切换所述第一视频输出模块、第二视频输出模块。
33.一种微电网能量监控管理方法,包括以下步骤:
34.s1、对分布式供电的微电网线路进行能量管理,并实时采集所述分布式供电的总发电量和发电功率;
35.s2、根据所述总发电量和发电功率进行电能负荷监控,并根据监控结果输出协调指令;
36.s3、根据所述协调指令进行微电网电能负荷协调,控制所述分布式供电的微电网的供能方式,并对出现故障的所述分布式供电的微电网线路进行应急供电;
37.s4、对出现故障的所述分布式供电的微电网线路进行定位,并对无法恢复供电的所述微电网线路和使用所述应急能量的微电网线路进行报警,完成微电网能量监控管理。
38.本发明公开了以下技术效果:
39.本发明不仅能够通过对分布式供电的微电网线路进行负荷监管、以及电能协调解决当前应用具有的局限性,并且大大降低了应用成本,提高了电能的利用率,而且通过对各母线安装定位报警装置,能够大大增加故障维修效率,提高电网能量的安全性能。
附图说明
40.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
41.图1为本发明实施例的系统模块图;
42.图2为本发明实施例的方法流程图。
具体实施方式
43.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
44.为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
45.参照图1所示,本实施例提供一种微电网能量监控管理系统,包括:能量分布单元、应急储备单元、负荷监控单元、协调单元、报警单元、显示单元;应急储备单元、负荷监控单元、报警单元、显示单元依次相连;负荷监控单元还分别与能量分布单元、协调单元相连;应急储备单元还与协调单元相连。
46.能量分布单元用于对分布式供电的微电网线路进行能量管理,并实时采集分布式供电的总发电量和发电功率;负荷监控单元用于根据总发电量和发电功率进行电能负荷监控,并根据电能负荷监控的结果输出协调指令;协调单元用于根据协调指令进行微电网电能负荷协调,控制分布式供电的微电网的供能方式;应急储备单元用于根据协调指令对出现故障的分布式供电的微电网线路进行应急供电;所述报警单元用于对出现故障的分布式供电的微电网线路进行定位,并对无法恢复供电的微电网线路和使用应急能量的微电网线路进行报警;显示单元用于显示历史微电网线路的能量情况,以及当前微电网线路情况和故障电网线路的位置。
47.能量分布单元包括能量管理模块和采集模块;能量管理模块、采集模块、负荷监控单元依次相连;能量管理模块用于对分布式供电的微电网线路进行能量管理;采集模块用于实时采集分布式供电的总发电量和发电功率。分布式供电是通过分布式能量对微电网的母线线路进行供电,而能量管理模块在负载的用电负荷小于微电网母线输出的功率时,对储能模块进行充电;能量管理模块在母线负载的用电负荷大于微电网母线输出的功率时,
控制储能模块放电;能量管理模块在母线负载的用电负荷等于微电网母线输出的功率时,控制所述储电模块不工作。
48.负荷监控单元包括数据处理模块、负荷监控模块;采集模块、数据处理模块、负荷监控模块、应急储备单元依次相连;数据处理模块用于对总发电量和发电功率进行电能负荷监控;负荷监控模块用于根据电能监控的结果输出协调指令。
49.应急储备单元包括储能模块和应急模块;储能模块、应急模块、协调单元依次相连;应急模块还与负荷监控模块相连;储能模块用于储备备用电能能源;应急模块用于根据协调指令对出现故障的分布式供电的微电网线路进行应急供电。
50.协调单元包括接收模块和协调模块;负荷监控模块、接收模块、协调模块依次相连;接收模块用于接收协调指令;协调模块用于控制所述分布式供电的微电网的供能方式。
51.报警单元包括定位模块、报警模块、通信模块;定位模块、报警模块均与通信模块相连;通信模块与显示模块相连;定位装置用于对出现故障的分布式供电的微电网线路进行定位;报警装置用于对无法恢复供电的所述微电网线路和使用所述应急能量的微电网线路进行报警;通信模块用于将定位和报警信息传输至显示单元中。定位装置包括若干个gps装置;报警装置包括若干个蜂鸣器;每个蜂鸣器与一个gps装置、分布式能量相连;每个gps装置均与通信模块相连。
52.显示单元包括第一视频输出模块、第二视频输出模块、视频切换模块;第一视频输出模块、第二视频输出模块均与视频切换模块相连;第一视频输出模块用于输出历史微电网线路的能量情况;第二视频输出模块用于输出当前微电网线路情况和故障微电网线路的位置;视频切换模块用于切换第一视频输出模块、第二视频输出模块。
53.参照图2所示,本实施例提供一种微电网能量监控管理方法,包括以下步骤:
54.s1、对分布式供电的微电网线路进行能量管理,并实时采集所述分布式供电的总发电量和发电功率。
55.s2、根据总发电量和发电功率进行电能负荷监控,并根据监控结果输出协调指令。
56.s3、根据所述协调指令进行微电网电能负荷协调,控制所述分布式供电的微电网的供能方式,并对出现故障的分布式供电的微电网线路进行应急供电。
57.其中,供能方式包括:
58.(1)恒定功率交换模式
59.该模式将微电网与市电连接处的馈线功率调整为常量或调度指定值。当接收到与市电功率交换指令时,储能系统结合光伏发电量与负荷的实际用电量,更新输出功率值,并将指令分解至各储能单元,实现微电网与市电的能量交互跟随功率指令的变化。该模式的优点在于,相对市电而言,微电网能够等效为一个可调度的负荷(或能量)。
60.(2)削峰填谷模式
61.考虑到太阳日照特性与负荷的峰荷特性存在一定程度的重合,将光伏发电设置为峰荷能量,储能系统根据负荷的实际用电量,并结合光伏发电量情况,更新输出功率值。当负荷高峰期功率需求超出发电量较大时,储能系统释放能量,实现削峰优化运行;当负荷低谷期功率需求较小而光伏的发电量较高时,储能系统存储能量,实现填谷优化运行。
62.(3)平抑功率波动模式
63.此运行模式的主要目标是平抑可再生能源发电量波动,减少光伏功率波动对微电
网运行造成的不利影响。考虑到光伏的波动性影响,设置储能系统作为跟随能量,调节微电网功率波动。
64.(4)功率直控模式
65.支持手动输入功率调度指令,为储能系统紧急状态干预、临时性人工调度等应用需求提供在线、友好的信息交互。
66.s4、对出现故障的分布式供电的微电网线路进行定位,并对无法恢复供电的微电网线路和使用应急能量的微电网线路进行报警,完成微电网能量监控管理。
67.在并网运行模式下,微电网的交流母线由市电提供稳定的电压与频率,能量与储能等单元均以并网方式运行。当市电停电或发生故障时,微电网快速切换为独立运行模式,由储能单元实现负荷的快速分担、电压及频率调节、保障用户电能质量等功能,即储能单元控制器不仅具备基本的功率控制功能,还应具备按各自容量比例分担负荷、抑制干扰等特性。
68.因此,s4中的微电网能量监控管理主要包括:
69.(1)蓄电池储能工作在电压/频率控制模式,建立并维持系统电压及频率,在能量、负荷等单元功率波动的情况下,自动平衡微电网功率流动,系统轻载时,光伏在发电高峰期所产生的剩余电能由储能系统储存。
70.(2)当光伏发电功率不能满足负荷需求或市电长时间故障时,蓄电池储能容量无法长时间支撑微电网的电力供应,各储能单元可以依据自身容量比例分担负荷,提供部分功率补偿。
71.本发明公开了以下技术效果:
72.本发明不仅能够通过对分布式供电的微电网线路进行负荷监管、以及电能协调解决当前应用具有的局限性,并且大大降低了应用成本,提高了电能的利用率,而且通过对各母线安装定位报警装置,能够大大增加故障维修效率,提高电网能量的安全性能。
73.应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释,此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
74.最后应说明的是:以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围。都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。