用于反向故障发生后通过耦合电抗器在换流支路产生反向电流使机械开关过零开断。正向触发模块31分别与正向充电换流模块121并联连接;正向触发模块31用于正向故障时导通正向充电换流模块121;反向触发模块32分别与反向充电换流模块123并联连接;反向触发模块32用于反向故障时导通反向充电换流模块。吸能限压模块2为氧化锌避雷器,用于吸收故障电流被切断后电力系统中感性元件存储的能量来实现对机械开关11的限压保护。
[0066]本实用新型第六实施例提供的带耦合电抗器的混合高压直流断路器多个机械开关共用一个换流支路,在电压不是很高的情况下用此方式可以降低换流支路的数量,使电路结构更为简单。此外,充电换流模块的应用为断路器提供了双向开断的功能。
[0067]图8示出了本实用新型第七实施例提供的带耦合电抗器的混合高压直流断路器的原理框图;为了便于说明,仅示出了与本实用新型实施例相关的部分,详述如下:
[0068]带耦合电抗器的混合高压直流断路器包括η个串联连接的断路器模块I,与每个断路器模块I并联的吸能限压模块2,正向触发模块31和反向触发模块32;η为不小于I的整数;其中,每个断路器模块I包括机械开关11以及与机械开关11并联连接的换流支路12;换流支路12包括依次串联连接的正向充电换流模块121、换流电容122和反向充电换流模块123;正向充电换流模块121用于正向故障发生后通过耦合电抗器在换流支路产生反向电流使机械开关过零开断,反向充电换流模块123用于反向故障发生后通过耦合电抗器在换流支路产生反向电流使机械开关过零开断。正向触发模块31分别与η个断路器模块I中的正向充电换流模块121并联连接;正向触发模块31用于正向故障时导通正向充电换流模块121;反向触发模块32分别与η个断路器模块I中的反向充电换流模块123的触发控制端连并联接;反向触发模块32用于反向故障时导通反向充电换流模块。吸能限压模块2为氧化锌避雷器,用于吸收故障电流被切断后电力系统中感性元件存储的能量来实现对机械开关11的限压保护。
[0069]本实用新型第七实施例提供的带耦合电抗器的混合高压直流断路器通过多模块连接可以开断更大的电流。同时,通过耦合电抗器实现多个同向充电换流模块一次侧共用一个触发开关,由两个触发开关同时触发多个充电换流模块,大大减少了多模块断路器中触发开关的个数,节约了成本,也使控制更为简单。此外,充电换流模块的应用为断路器提供了双向开断的功能。
[0070]图9为本实用新型第八实施例提供的带耦合电抗器的混合高压直流断路器的原理框图;为了便于说明,仅示出了与本实用新型实施例相关的部分,详述如下:
[0071]带耦合电抗器的混合高压直流断路器包括:η个串联连接的机械开关11及η个与之并联的吸能限压模块、与η个机械开关11并联的换流支路12、正向触发模块31和反向触发模块32; 11为不小于I的整数;其中,换流支路12包括依次串联连接的正向充电换流模块121、换流电容122和反向充电换流模块123;正向充电换流模块121用于正向故障发生后通过耦合电抗器在换流支路产生反向电流使机械开关过零开断,反向充电换流模块123用于反向故障发生后通过耦合电抗器在换流支路产生反向电流使机械开关过零开断。正向触发模块31分别与正向充电换流模块121的触发控制端并联连接;正向触发模块31用于正向故障时导通正向充电换流模块121;反向触发模块32分别与反向充电换流模块123并联连接;反向触发模块32用于反向故障时导通反向充电换流模块。吸能限压模块2为氧化锌避雷器,用于吸收故障电流被切断后电力系统中感性元件存储的能量来实现对机械开关11的限压保护。
[0072]本实用新型第八实施例提供的带耦合电抗器的混合高压直流断路器多个机械开关共用一个换流支路,在电压不是很高的情况下用此方式可以降低换流支路的数量,使电路结构更为简单。此外,充电换流模块的应用为断路器提供了双向开断的功能。
[0073]图10示出了本实用新型实施例提供的带耦合电抗器的混合高压直流断路器的换流支路及触发开关拓扑结构;为了便于说明,仅示出了与本实用新型实施例相关的部分,详述如下:
[0074]正向充电换流模块121、换流电容122和反向充电换流模块123串联;正向充电换流模块121包括二次侧与换流电容122串联的耦合电抗器、与耦合电抗器二次侧串联的触发开关和反向预充电的耦合电容、与耦合电容并联的续流电路,正向触发模块31与正向充电换流模块121的耦合电抗器一次侧并联;反向充电换流模块123包括二次侧与换流电容串联的耦合电抗器、与耦合电抗器二次侧串联的触发开关和正向预充电的耦合电容、与耦合电容并联的续流电路,反向触发模块32与反向充电模块的耦合电抗器一次侧并联;续流电路为串联的电阻和二极管,用于限制耦合电容两端的电压方向。
[0075]当正向故障发生时,线路电流上升,经过一定延时,机械开关分闸,当分闸至有效开距时,正向触发开关导通,正向充电换流模块中耦合电容开始放电,通过耦合电抗器在换流支路产生反向电流,此反向电流叠加在机械开关支路上使机械开关两端电压过零,机械开关熄弧实现开断。随着电流不断注入换流支路,机械开关端断口电压不断上升,当电压达到吸能限压模块动作电压时,电流转移至吸能限压支路,消耗掉系统中储存的能量。实现故障的完全开断。
[0076]当反向故障发生时,线路电流上升,经过一定延时,机械开关分闸,当分闸至有效开距时,反向触发开关导通,反向充电换流模块中的耦合电容开始放电,通过耦合电抗器在换流支路产生反向电流,此反向电流叠加在机械开关支路上使机械开关两端电压过零,机械开关熄弧实现开断。随着电流不断注入换流支路,机械开关端断口电压不断上升,当电压达到吸能限压模块动作电压时,电流转移至吸能限压支路,消耗掉系统中储存的能量。实现故障的完全开断。
[0077]图11示出了本实用新型第九实施例提供的带耦合电抗器的混合高压直流断路器的原理框图;为了便于说明,仅示出了与本实用新型实施例相关的部分,详述如下:
[0078]带耦合电抗器的混合高压直流断路器包括η个串联连接的断路器模块I、与所有断路器模块I并联连接的吸能限压模块2、正向触发模块31和反向触发模块32;η为不小于I的整数;断路器模块I包括机械开关11以及与机械开关11并联连接的换流支路12;换流支路12包括依次串联连接的正向充电换流模块121和换流电容122以及与正向充电换流模块121并联连接的反向充电换流模块123;正向充电换流模块121用于正向故障发生后通过耦合电抗器在换流支路产生反向电流使机械开关过零开断,反向充电换流模块123用于反向故障发生后通过耦合电抗器在换流支路产生反向电流使机械开关过零开断。正向触发模块31用于正向故障时导通正向充电换流模块;反向触发模块32用于反向故障时导通反向充电换流模块。吸能限压模块2为氧化锌避雷器,用于吸收故障电流被切断后电力系统中感性元件存储的能量来实现对所述机械开关11的限压保护。
[0079]本实用新型第九实施例提供的带耦合电抗器的混合高压直流断路器通过多模块连接可以开断更大的电流。同时,通过耦合电抗器实现多个同向充电换流模块一次侧共用一个触发开关,由两个触发开关同时触发多个充电换流模块,大大减少了多模块断路器中触发开关的个数,节约了成本,也使控制更为简单。此外,充电换流模块的应用为断路器提供了双向开断的功能。
[0080]图12为本实用新型第十实施例提供的带耦合电抗器的混合高压直流断路器的原理框图;为了便于说明,仅示出了与本实用新型实施例相关的部分,详述如下:
[0081]带耦合电抗器的混合高压直流断路器包括η个机械开关11及与之并联的吸能限压模块2、与η个机械开关并联连接的换流支路12、正向触发模块31和反向触发模块32;η为不小于I的整数;换流支路12包括串联连接的正向充电换流模块121和换流电容122以及与正向充电换流模块121并联连接的反向充电换流模块123;正向充电换流模块121用于正向故障发生后通过耦合电抗器在换流支路产生反向电流使机械开关过零开断,反向充电换流模块123用于反向故障发生后通过耦合电抗器在换流支路产生反向电流使机械开关过零开断。正向触发模块31用于正向故障时导通正向充电换流模块;反向触发模块32用于反向故障时导通反向充电换流模块。吸能限压模块2为氧化锌避雷器,用于吸收故障电流被切断后电力系统中感性元件存储的能量来实现对机械开关11的限压保护。
[0082]本实用新型第十实施例提供的带耦合电抗器的混合高压直流断路器多个机械开关共用一个换流支路,在电压不是很高的情况下用此方式可以降低换流支路的数量,使电路结构更为简单。此外,充电换流模块的应用为断路器提供了双向开断的功能。
[0083]图13示出了本实用新型第十一实施例提供的带耦合电抗器的混合高压直流断路器的原理框图;为了便于说明,仅示出了与本实用新型实施例相关的部分,详述如下:
[0084]带耦合电抗器的混合高压直流断路器包括η个串联连接的断路器模块I、与每个断路器模块I并联连接的吸能限压模块2、正向触发模块31和反向触发模块32;η为不小于I的整数;断路器模块I包括机械开关11以及与机械开关11并联连接的换流支路12;换流支路12包括依次串联连接的正向充电换流模块121和换流电容122以及与正向充电换流模块121并联连接的反向充电换流模块123;正向充电换流模块121用于正向故障发生后通过耦合电抗器在换流支路产生反向电流使机械开关过零开断,反向充电换流模块123用于反向故障发生后通过耦合电抗器在换流支路产生反向电流使机械开关过零开断。正向触发模块31用于正向故障时导通正向充电换流模块;反向触发模块32用于反向故障时导通反向充电换流模块。吸能限压模块2为氧化锌避雷器,用于吸收故障电流被切断后电力系统中感性元件存储的能量来实现对所述机械开关11的限压保护