本文的公开涉及通过微波对食品等被加热物进行微波加热的微波炉等微波加热装置。
背景技术:
在作为代表性微波加热装置的微波炉中,将作为代表性微波生成部的磁控管所生成的微波供给到金属制的加热室的内部,对载置于加热室内的被加热物进行微波加热。
近年来,能够将加热室内的整个平坦的底面用作载置台的微波炉已被投入实际使用。在这样的微波炉中,为了在载置台整体的范围内对被加热物进行均匀加热,在载置台的下方设置旋转天线(例如,参照专利文献1)。专利文献1所公开的旋转天线具有与波导管磁场耦合的波导管构造,波导管对来自磁控管的微波进行传播。
图12是示出专利文献1所公开的微波炉100的结构的正面剖视图。如图12所示,在微波炉100中,磁控管101所生成的微波在波导管102内传播并到达耦合轴109。
旋转天线103具有从上方的俯视时的扇形状,通过耦合轴109而与波导管102连结,被电机105驱动而旋转。耦合轴109将在波导管102内传播来的微波耦合到波导管构造的旋转天线103,并作为旋转天线103的旋转中心而发挥功能。
旋转天线103具有放射微波的放射口107和低阻抗部106。从放射口107放射的微波被供给到加热室104内,对载置在加热室104的载置台108上的被加热物(未图示)进行微波加热。
使旋转天线103在载置台108的下方旋转,以实现加热室104内的加热分布的均匀化。
除了对加热室内的整体进行均匀加热的功能(均匀加热)以外,例如,在冷冻的食品和室温的食品载置于加热室内的情况下,为了同时完成对这些食品的加热,还需要局部且集中地对载置有冷冻食品的区域放射微波的功能(局部加热)。
为了实现局部加热,提出了如下的微波炉:根据红外线传感器所检测到的加热室内的温度分布,控制旋转天线的停止位置(例如,参照专利文献2)。
图13是示出专利文献2所公开的微波炉200的结构的正面剖视图。如图13所示,在微波炉200中,磁控管201所生成的微波经由波导管202而到达波导管构造的旋转天线203。
旋转天线203在从上方的俯视时具有:形成于其一边并放射微波的放射口207;以及形成于其他三边的低阻抗部206。从放射口207放射的微波经由供电室209供给到加热室204内,对载置于加热室204内的被加热物进行微波加热。
专利文献2所公开的微波炉具有红外线传感器210来检测加热室204内的温度分布。控制部211根据红外线传感器210所检测到的温度分布来控制旋转天线203的旋转、位置以及放射口207的朝向。
专利文献2所公开的旋转天线203构成为借助电机205而在形成于加热室204的载置台208的下方的供电室209的内部旋转并在圆弧状的轨道上移动。根据微波炉200,旋转天线203的放射口207旋转并移动,能够对红外线传感器210所检测到的被加热物的低温部分进行集中加热。
现有技术文献
专利文献
专利文献1:日本特公昭63-53678号公报
专利文献2:日本特许第2894250号公报
技术实现要素:
在专利文献1所公开的微波炉100中,旋转天线103构成为以配置于载置台108的下方的耦合轴109为中心旋转。微波从旋转天线103的前端的放射口107放射。
通过该结构,无法对载置于载置台108的中央区域的被加热物直接照射微波,不一定能够进行均匀加热。
根据专利文献2所公开的微波炉200,能够对被加热物进行均匀加热和局部加热。但是,本结构由于需要用于使旋转天线203在载置台208的下方旋转并移动的机构,因此,存在构造复杂、装置大型化的问题。
本文的公开解决上述以往的问题点,目的在于提供一种能够对载置于加热室内的载置面、尤其是载置于加热室内的载置面的中央区域的被加热物进行均匀加热的更小型的微波加热装置。
本文公开的一个方式的微波加热装置具有:加热室,其收纳被加热物;微波生成部,其生成微波;以及波导管构造天线,其具有前方开口和限定出波导管构造部的顶面、侧壁面,将微波从前方开口放射到加热室。波导管构造部具有与顶面接合并使微波耦合到波导管构造部的内部空间的耦合部。
波导管构造部具有在顶面形成的至少一个微波吸出开口,从微波吸出开口向加热室内放射圆偏振波。耦合部与波导管构造部的接合部分构成为,沿着管轴方向的长度比沿着与管轴方向垂直的方向的长度短。
根据本方式,能够构成可对载置于加热室内的载置面、尤其是载置于加热室内的载置面的中央区域的被加热物进行均匀加热的更小型的微波加热装置。
附图说明
图1是示出本文公开的实施方式的微波加热装置的概略结构的剖视图。
图2a是示出本实施方式的微波加热装置中的供电室的立体图。
图2b是示出本实施方式的微波加热装置中的供电室的俯视图。
图3是示出本实施方式的微波加热装置中的旋转天线的分解立体图。
图4是示出通常的方形波导管的立体图。
图5a是示出具有放射线偏振波的长方形槽形状的开口的波导管的h面的俯视图。
图5b是示出具有放射圆偏振波的交叉槽形状的开口的波导管的h面的俯视图。
图5c是示出波导管与被加热物之间的位置关系的主视图。
图6a是示出图5a所示的波导管的情况下的实验结果的特性图。
图6b是示出图5b所示的波导管的情况下的实验结果的特性图。
图7是示出“有负载”的情况下的实验结果的特性图。
图8a是示意性地示出本实施方式中的吸出效果的剖视图。
图8b是示意性地示出本实施方式中的吸出效果的剖视图。
图9a是示出实验中使用的旋转天线的一例的平面形状的示意图。
图9b是示出实验中使用的旋转天线的一例的平面形状的示意图。
图9c是示出实验中使用的旋转天线的一例的平面形状的示意图。
图10a是示出实验中使用的旋转天线的一例的平面形状的示意图。
图10b是示出实验中使用的旋转天线的一例的平面形状的示意图。
图11是示出本实施方式的波导管构造部的俯视图。
图12是示出专利文献1所公开的微波炉的正面剖视图。
图13是示出专利文献2所公开的微波炉的正面剖视图。
具体实施方式
本文公开的第1方式的微波加热装置具有:加热室,其收纳被加热物;微波生成部,其生成微波;以及波导管构造天线,其具有前方开口和限定出波导管构造部的顶面、侧壁面,将微波从前方开口放射到加热室。波导管构造部具有与顶面接合并使微波耦合到波导管构造部的内部空间的耦合部。
波导管构造部具有在顶面形成的至少一个微波吸出开口,从微波吸出开口向加热室内放射圆偏振波。耦合部与波导管构造部的接合部分构成为,沿着管轴方向的长度比沿着与管轴方向垂直的方向的长度短。
根据本方式,能够构成可对载置于加热室内的载置面、尤其是载置于加热室内的载置面的中央区域的被加热物进行均匀加热的更小型的微波加热装置。
除了第1方式以外,第2方式的微波加热装置还具有使波导管构造天线旋转的驱动部。耦合部具有耦合轴和凸缘。耦合轴与驱动部连结,包含波导管构造天线的旋转中心。凸缘绕耦合轴设置,构成接合部分。凸缘的沿着管轴方向的长度比沿着与管轴方向垂直的方向的长度短。
根据本方式,能够更均匀地对载置于载置面的中央区域的被加热物进行加热。
除了第1方式以外,第3方式的微波加热装置还具有使波导管构造天线旋转的驱动部。耦合部具有耦合轴,所述耦合轴与驱动部连结,包含波导管构造天线的旋转中心。接合部分中的耦合部的截面的沿着管轴方向的长度比沿着与管轴方向垂直的方向的长度短。
根据本方式,能够更均匀地对载置于载置面的中央区域的被加热物进行加热。
除了第1方式至第3方式中的任意一个方式以外,根据第4方式的微波加热装置,微波吸出开口具有两个缝隙交叉的交叉槽形状,微波吸出开口设置于与管轴偏离的位置处。根据本方式,能够更可靠地从微波吸出开口放射圆偏振波。
除了第1方式至第4方式中的任意一个方式以外,根据第5方式的微波加热装置,波导管构造部具有关于管轴对称的至少两个微波吸出开口,耦合部的附近的区域中的两个微波吸出开口的距离比远离耦合部的区域中的两个微波吸出开口的距离长。
根据本方式,能够通过从微波吸出开口放射的圆偏振波更均匀地对加热室内进行加热。
除了第1方式至第5方式中的任意一个方式以外,根据第6方式的微波加热装置,波导管构造部的顶面具有设置于接合部分的凹部。根据本方式,能够更均匀地对载置于载置面的中央区域的被加热物进行加热。
以下,参照附图对本文公开的微波加热装置的优选的实施方式进行说明。
在以下的实施方式中,使用微波炉作为本文公开的微波加热装置的一例,但不限于此,包含利用了微波加热的加热装置、生活垃圾处理机或者半导体制造装置等。本文的公开不限于以下的实施方式所示的具体的结构,包含基于同样的技术思想的结构。
另外,在以下的附图中,有时对同一或者同等的部位标注同一标号,省略重复的说明。
图1是示出作为本文公开的实施方式的微波加热装置的微波炉的概略结构的正面剖视图。在以下的说明中,微波炉的左右方向是指图1中的左右方向,前后方向是指图1中的进深方向。
如图1所示,本实施方式的微波炉1具有加热室2a、供电室2b、磁控管3、波导管4、旋转天线5以及载置台6。载置台6具有用于载置食品等被加热物(未图示)的平坦的上表面。加热室2a是载置台6的上侧空间,供电室2b是载置台6的下侧空间。
载置台6覆盖设置有旋转天线5的供电室2b,划分出加热室2a与供电室2b并且构成加热室2a的底面。由于载置台6的上表面(载置面6a)是平坦的,因此,容易拿出和放入被加热物,容易擦掉附着于载置面6a的污物等。
由于载置台6使用玻璃、陶瓷等容易透过微波的材料,因此,从旋转天线5放射的微波透过载置台6而供给到加热室2a。
磁控管3是生成微波的微波生成部的一例。波导管4是设置于供电室2b的下方并将磁控管3所生成的微波传输到耦合部7的传播部的一例。旋转天线5设置于供电室2b的内部空间,将通过波导管4和耦合部传输的微波从前方开口13放射到供电室2b内。
旋转天线5是具有波导管构造部8和耦合部7的波导管构造天线,该波导管构造部8具有供微波在其内部空间传播的箱形的波导管构造,该耦合部7使波导管4内的微波耦合到波导管构造部8的内部空间。耦合部7具有与作为驱动部的电机15连结的耦合轴7a、以及将波导管构造部8与耦合部7接合的凸缘7b。
电机15根据来自控制部17的控制信号而被驱动,使旋转天线5以耦合部7的耦合轴7a为中心旋转,并停止在期望的方向。由此,变更来自旋转天线5的微波的放射方向。耦合部7使用镀铝钢板等金属,与耦合部7连结的电机15的连结部分例如使用氟树脂。
耦合部7的耦合轴7a贯通将波导管4与供电室2b连通的开口,耦合轴7a与贯通的开口之间具有规定(例如,5mm以上)的间隙。通过耦合轴7a将波导管4与旋转天线5的波导管构造部8的内部空间耦合,将微波从波导管4高效地传播到波导管构造部8。
在加热室2a的侧面上部设置有红外线传感器16。红外线传感器16是将加热室2a内的温度、即载置于载置台6的被加热物的表面温度作为被加热物的状态而检测的状态检测部的一例。红外线传感器16检测假想地划分为多个的加热室2a的各区域的温度,并将这些检测信号发送到控制部17。
控制部17根据红外线传感器16的检测信号进行磁控管3的振荡控制以及电机15的驱动控制。
本实施方式具有红外线传感器16作为状态检测部的一例,但状态检测部不限于此。例如,可以将检测被加热物的重量的重量传感器、拍摄被加热物的图像的图像传感器等用作状态检测部。在未设置状态检测部的结构中,控制部17可以根据预先存储的程序和使用者的选择,进行磁控管3的振荡控制以及电机15的驱动控制。
图2a是示出取下载置台6的状况下的供电室2b的立体图。图2b是示出与图2a相同状况的供电室2b的俯视图。
如图2a以及图2b所示,在配置于加热室2a的下方的、通过载置台6而与加热室2a划分开的供电室2b设置有旋转天线5。旋转天线5中的耦合轴7a的旋转中心g位于供电室2b的前后方向以及左右方向的中心、即载置台6的前后方向以及左右方向的中心的下方。
供电室2b具有由其底面11和载置台6的下表面构成的内部空间。供电室2b的内部空间包含耦合部7的旋转中心g,具有关于供电室2b的左右方向的中心线j(参照图2b)对称的形状。在供电室2b的内部空间的侧壁面形成有向内侧突出的凸部18。凸部18包含设置于左侧的侧壁面的凸部18a以及设置于右侧的侧壁面的凸部18b。
在凸部18b的下方设置有磁控管3。从磁控管3的天线3a放射的微波在设置于供电室2b的下方的波导管4内传播,通过耦合部7传输到波导管构造部8。
供电室2b的侧壁面2c具有用于将从旋转天线5沿水平方向放射的微波反射到上方的加热室2a的倾斜。
图3是示出旋转天线5的具体例的分解立体图。如图3所示,波导管构造部8具有限定出其内部空间的顶面9以及侧壁面10a、10b、10c。
顶面9包含三个直线状的缘部、一个圆弧状的缘部以及供耦合部7接合的凹部9a,与载置台6相对配置(参照图1)。侧壁面10a、10b、10c分别从顶面9的三个直线状的缘部向下方弯折而形成。
在圆弧状的缘部未设有侧壁面,在其下方形成有开口。该开口作为对在波导管构造部8的内部空间内传播的微波进行放射的前方开口13而发挥功能。即,侧壁面10b与前方开口13相对设置,侧壁面10a、10c互相相对设置。
在侧壁面10a的下缘部设置有处于波导管构造部8的外侧且在与侧壁面10a垂直的方向上延伸的低阻抗部12。低阻抗部12与供电室2b的底面11隔开微小的间隙地平行地形成。通过低阻抗部12抑制了在与侧壁面10a垂直的方向上泄漏的微波。
为了确保与供电室2b的底面11之间的一定的间隙,可以在低阻抗部12的下表面形成用于安装绝缘树脂制间隔件(未图示)的保持部19。
在低阻抗部12上,多个缝隙12a设置为以恒定间隔而周期性地从侧壁面10a沿着垂直方向延伸。通过多个缝隙12a抑制了与侧壁面10a平行的方向的微波的泄漏。缝隙12a之间的间隔根据在波导管构造部8内传播的波长而适当确定。
关于侧壁面10b以及侧壁面10c,也同样地,在下缘部分别设置具有多个缝隙12a的低阻抗部12。
本实施方式的旋转天线5具有形成为圆弧状的前方开口13,但本文的公开不限于该形状,可以具有直线状或者曲线状的前方开口13。
如图3所示,顶面9包含多个微波吸出开口14、即第1开口14a和具有比第1开口14a小的开口的第2开口14b。在波导管构造部8的内部空间内传播来的微波从前方开口13和多个微波吸出开口14放射。
形成于耦合部7的凸缘7b例如通过铆接、点焊、螺纹紧固或者焊接等与波导管构造部8的顶面9的下表面接合,旋转天线5与耦合部7被固定。
在本实施方式中,由于旋转天线5具有后述的波导管构造部8,因此,能够对载置于载置台6的被加热物进行均匀加热。特别地,在位于旋转天线5的旋转中心g(参照图2a、图2b)的上方的载置面6a的中央区域,能够高效且均匀地进行加热。以下,对本实施方式中的波导管构造进行详细说明。
[波导管构造]
首先,为了理解波导管构造部8的特征,使用图4对通常的波导管300进行说明。如图4所示,最简单且常见的波导管300是具有长方形的截面303和沿着波导管300的管轴v的进深的方形波导管,该长方形的截面303具有宽度a和高度b。管轴v穿过截面303的中心,是沿着微波的传输方向z延伸的波导管300的中心线。
当设自由空间中的微波的波长为λ0时,可知当从λ0>a>λ0/2以及b<λ0/2的范围内选择宽度a以及高度b时,微波以te10模式在波导管300内传播。
te10模式是指在波导管300内的微波传输方向z上存在磁场成分而不存在电场成分的、h波(te波;电气的横波传输(transverseelectricwave:横电波))的传输模式。
自由空间中的微波的波长λ0通过式(1)来求出。
λ0=c/f…(1)
在式(1)中,光的速度c为大约2.998×108[m/s],振荡频率f在微波炉的情况下为2.4~2.5[ghz](ism波段)。由于振荡频率f根据磁控管的偏差和负载条件而变动,因此,自由空间中的波长λ0在最小120[mm](2.5ghz时)至最大125[mm](2.4ghz时)之间变动。
当是在微波炉中使用的波导管300的情况下,考虑自由空间中的波长λ0的范围等,大多在波导管300的宽度a为80~100mm、高度b为15~40mm的范围内进行设计。
一般情况下,在图4所示的波导管300中,作为其上表面以及下表面的宽幅面301是指磁场在其中平行地涡旋的面,称作h面,作为左右侧面的窄幅面302是指平行于电场的面,称作e面。为了简便,在以下所示的俯视图中,有时将管轴v投影于h面上而得的h面上的直线称为管轴v。
如果将来自磁控管的微波的波长规定为波长λ0,将在波导管内传播时的微波的波长规定为管内波长λg,则λg通过式(2)来求出。
因此,管内波长λg根据波导管300的宽度a而变化,但与高度b无关。在te10模式中,在波导管300的宽度方向w的两端(e面)、即窄幅面302上,电场为0,在宽度方向w的中央,电场最大。
在本实施方式中,将与图4所示的波导管300同样的原理应用于图1以及图3所示的旋转天线5。在旋转天线5中,顶面9和供电室2b的底面11是h面,侧壁面10a、10c是e面。
侧壁面10b是用于使旋转天线5内的微波全部向前方开口13的方向反射的反射端。在本实施方式中,具体而言,波导管300的宽度a是106.5mm。
在顶面9形成多个微波吸出开口14。微波吸出开口14包含两个第1开口14a和两个第2开口14b。两个第1开口14a关于旋转天线5的波导管构造部8的管轴v对称。同样地,两个第2开口14b关于管轴v对称。第1开口14a以及第2开口14b形成为不跨越管轴v。
通过将第1开口14a以及第2开口14b配置于与波导管构造部8的管轴v(准确而言是将管轴v投影到顶面9上而得的顶面9上的直线)偏离的位置处的构造,能够从微波吸出开口14更可靠地放射圆偏振波。通过放射圆偏振波的微波,能够对载置面6a的中央区域进行均匀加热。
另外,根据将第1开口14a以及第2开口14b设置于管轴v的左右的哪一个区域来确定电场的旋转方向、即右旋偏振波(cw:clockwise)或者左旋偏振波(ccw:counterclockwise)。
在本实施方式中,微波吸出开口14分别设置为不跨越管轴v。但是,本文的公开不限于此,即使在这些开口的一部分跨越管轴v的结构中,也能够放射圆偏振波。在该情况下,产生了变形的圆偏振波。
[圆偏振波]
接下来,对圆偏振波进行说明。圆偏振波是广泛用于移动通信和卫星通信领域中的技术。作为身边的使用例,例如可列举etc(electronictollcollectionsystem)、即不停车收费系统。
圆偏振波是电场的偏振面相对于行进方向而根据时间旋转的微波,具有电场的方向根据时间而持续变化、电场强度的大小不变化的特征。
如果将该圆偏振波应用于微波加热装置,则与以往的利用线偏振波的微波加热相比,尤其可期待在圆偏振波的周向上对被加热物进行均匀加热。另外,右旋偏振波以及左旋偏振波都能够得到同样的效果。
圆偏振波原本主要用于通信领域,由于以向开放空间的放射作为对象,因此,通常研究的是没有反射波的、所谓的行波。另一方面,在本实施方式中,在作为封闭空间的加热室2a内产生反射波,产生的反射波可能与行波合成而产生驻波。
然而,由于食品吸收微波,因此除了反射波会变弱之外,在从微波吸出开口14放射微波的瞬间,驻波的平衡会被破坏,可认为在再次产生驻波为止的期间内产生了行波。因此,根据本实施方式,能够利用上述圆偏振波的特长,能够进行加热室2a内的均匀加热。
这里,对开放空间中的通信领域、和封闭空间中的介电加热的领域的差异点进行说明。
在通信领域中,为了可靠地收发信息,使用右旋偏振波或左旋偏振波中的某一方,在接收侧,使用具有与其相应的指向性的接收天线。
另一方面,在微波加热的领域中,替代具有指向性的接收天线,由食品等不具有指向性的被加热物接收微波,因此,重要的是微波对被加热物整体进行照射。因此,在微波加热的领域中,是右旋偏振波还是左旋偏振波不重要,即使在右旋偏振波与左旋偏振波混合的状态下,也没问题。
[微波的吸出效果]
这里,对作为本实施方式的特征的、微波从旋转天线的吸出效果进行说明。在本实施方式中,微波的吸出效果是指在食品等被加热物处于附近的情况下,从微波吸出开口14吸出波导管构造内的微波。
图5a是具有设有用于产生线偏振波的开口的h面的波导管400的俯视图。图5b是具有设有用于产生圆偏振波的开口的h面的波导管500的俯视图。图5c是示出波导管400或者500与被加热物22之间的位置关系的主视图。
如图5a所示,开口401是设置为与波导管400的管轴v交叉的长方形缝隙。开口401放射线偏振波的微波。如图5b所示,两个开口501分别是由以直角交叉的两个长方形缝隙构成的交叉槽(crossslot)形状的开口。两个开口501关于波导管500的管轴v对称。
这些开口都关于波导管的管轴v对称,宽度为10mm,长度为lmm。在这些结构中,使用cae对未配置被加热物22的“无负载”的情况、和配置有被加热物22的“有负载”的情况进行了分析。
在“有负载”的情况下,如图5c所示,在恒定的被加热物22的高度30mm、2种被加热物22的底面积(100mm方形、200mm方形)、3种被加热物22的材质(冷冻牛肉、冷藏牛肉、水)的条件下,以从波导管400、500到被加热物22的底面的距离d为参数进行了测量。
为了将“无负载”的情况下的来自开口的放射功率作为基准,在图6a和图6b中示出“无负载”的情况下的、开口的长度与放射功率之间的关系。
图6a表示图5a所示的开口401的情况下的特性,图6b表示图5b所示的开口501的情况下的特性。在图6a以及图6b中,横轴是开口的长度l[mm],纵轴是设在波导管内传播的功率为1.0w时的、从开口401、501分别放射的微波的功率[w]。
为了与“有负载”的情况进行比较,选择在“无负载”的情况下放射功率为0.1w时的长度l,即,在图6a所示的曲线图中,选择长度l为45.5mm的情况,在图6b所示的曲线图中,选择长度l为46.5mm的情况。
图7包含六个曲线图,这六个曲线图表示在长度l为上述长度(45.5mm、46.5mm)并且在“有负载”的情况下,对具有2种底面积(100mm方形、200mm方形)的3种食品(冷冻牛肉、冷藏牛肉、水)进行了分析的结果。
在图7所包含的各曲线图中,横轴是从被加热物22至波导管的距离d[mm],纵轴是设“无负载”时的放射功率为1.0时的相对的放射功率。即,表示与“无负载”的情况相比,在“有负载”的情况下,被加热物22将何种程度的微波从波导管400、500吸出。
在图7所示的各曲线图中,虚线表示直线形状(i字形状)的开口401的情况下的特性(图中用“i”表示),实线表示两个交叉槽形状(x字形状)的开口501的情况下的特性(图中用“2x”表示)。
在六个曲线图的任意一个中,均是开口501比开口401的放射功率大,尤其是在距离d为20mm以下的、与实际的微波炉的情况同等的距离下,能够识别出存在2倍左右的差。因此,可知无论被加热物22的种类、底面积如何,产生圆偏振波的开口都比产生线偏振波的开口的微波的吸出效果强。
详细研究的话,关于被加热物22的种类,尤其在距离d为10mm以下时,介电常数和介电损耗较小的冷冻牛肉的吸出效果较强,而介电常数和介电损耗较大的水的吸出效果较弱。
在冷藏牛肉或者水的情况下,当距离d增大时,尤其是线偏振波的放射功率下降至1以下。原因被认为是放射功率被来自被加热物22的反射功率抵消。关于被加热物22的底面积,在100mm方形和200mm方形时,放射功率基本相同,因此,认为对微波的吸出效果的影响小。
发明人通过使用了各种各样的开口形状的实验,对能够放射圆偏振波的开口的条件进行了研究。结果得到了以下的结论。产生圆偏振波的优选的条件包含了:将开口配置为与波导管的管轴v偏离、以及开口形状为交叉槽形状的开口。最有效地放射圆偏振波的微波、即吸出效果强的是具有交叉槽形状的开口。
图8a以及图8b是示意性地示出本实施方式中的吸出效果的剖视图。旋转天线5的前方开口13在图8a以及图8b的双方中,朝向图中的左方。被加热物22在图8a中配置于耦合部7的上方,在图8b中载置于载置面6a的左角。即,在图8a以及图8b所示的两个状态下,从耦合部7到被加热物22的距离不同。
在图8a所示的状态下,被加热物22接近微波吸出开口14、尤其接近第1开口14a,认为产生了从第1开口14a的吸出效果。其结果,从耦合部7朝向前方开口13行进的微波的大部分从第1开口14a成为圆偏振波的微波而放射到被加热物22,对被加热物22进行加热。
另一方面,在图8b所示的状态下,由于被加热物22远离微波吸出开口14,因此,认为不怎么产生从微波吸出开口14的吸出效果。其结果,从耦合部7朝向前方开口13行进的微波的大部分保持线偏振波的微波而从前方开口13放射到被加热物22,对被加热物22进行加热。
如上所述,认为通过本实施方式的微波吸出开口14引起了如下的特殊现象:在与微波吸出开口14接近地配置食品时,放射功率增大,在与微波吸出开口14远离的位置处配置食品时,放射功率减小。
[基于波导管构造部的均匀加热]
以下,对基于本实施方式的波导管构造部的均匀加热进行说明。发明人使用具有各种形状的波导管构造的旋转天线进行实验,发现了最适于均匀加热的波导管构造。
图9a、图9b、图9c是分别示出实验所使用的旋转天线的三个例子的平面形状的示意图。
如图9a所示,波导管构造部600具有两个第1开口614a和两个第2开口614b。第1开口614a具有交叉槽形状,各长方形缝隙以相对于波导管构造部600的管轴v呈45度的角度的方式设置于耦合部7的附近。第2开口614b比第1开口614a小,设置为与耦合部7远离。
如图9b所示,波导管构造部700与波导管构造部600不同,具有一个第1开口714a,该第1开口714a具有与第1开口614a同样的交叉槽形状。
如图9c所示,波导管构造部800与波导管构造部600不同,包含具有t字形状的两个第1开口814a。即,第1开口814a与第1开口614a不同,在两个长方形缝隙的一方不具有从交叉部分朝耦合部7的方向延伸的部分。
图9a~图9c所示的波导管构造部中共同的是设置有多个交叉槽形状的微波吸出开口、以及同样大小的第1开口设置于同样的位置和同样大小的第2开口设置于同样的位置。特别地,第2开口614b、第2开口714b以及第2开口814b相同。
使用具有图9a~图9c所示的波导管构造的旋转天线,在相同加热条件下使用载置于载置面6a的中央区域的冷冻御好烧进行实验,通过cae进行验证。御好烧是将包含各种各样的材料在内的生面团煎制而得的烙饼状的料理。
可知在图9a所示的波导管构造部600的情况下,从这些开口输出的圆偏振波发生干涉,引起了如下现象:位于耦合部7上方的载置面6a的中央区域的被加热物的部分的温度与其周围的部分相比异常地不上升(以下,称为耦合部7附近的温度下降)。
在图9b所示的波导管构造部700的情况下,抑制了耦合部7附近的温度下降。在图9c所示的波导管构造部800的情况下,也同样地抑制了耦合部7附近的温度下降。
如上所述,能够确认通过在耦合部7的附近不设置开口、或者在耦合部7的附近仅设置一个开口的波导管构造,能够抑制耦合部7附近的温度下降,进行加热室2a内的均匀加热。
而且,发明人对微波吸出开口的形状进行实验,发现了能够实现加热分布的进一步均匀化的波导管构造。
利用图9c所示的波导管构造部800的第1开口814a,由于放射与通过交叉槽形状的开口形成的圆形的圆偏振波不同的、所谓的变形的圆偏振波,因此,从加热室2a中的均匀加热的观点考虑,未能得到优选的结果。
因此,为了抑制两个圆偏振波之间的干涉并且形成尽可能接近圆的形状的圆偏振波,对具有图10a、图10b所示的形状的第1开口914a进行了研究。
以下,使用附图对具有第1开口914a的波导管构造部进行详细叙述。
图10a、图10b是分别示出设置有上述第1开口914a的波导管构造部900a、波导管构造部900b的平面形状的示意图。
如图10a、图10b所示,波导管构造部900a、900b都具有相同的第1开口914a以及第2开口914b。
第1开口914a在两个长方形缝隙的一方具有如下交叉槽形状:从交叉部分朝耦合部7的方向延伸的部分的长度比从交叉部分朝耦合部7的相反方向延伸的部分短。研究的结果是确认出:利用第1开口914a,除了能够抑制两个圆偏振波之间的干涉而进行均匀加热以外,上述吸出效果也比图9c所示的第1开口814a强。
第1开口914a中的、从交叉部分朝耦合部7的方向延伸部分的长度根据规格而适当设定,使得不产生两个圆偏振波之间的干涉。
波导管构造部900a具有整体平坦的顶面。另一方面,波导管构造部900b在凸缘7b与顶面接合的接合部分形成有向下方凹陷的凹形状的接合区域(作为阶差区域的凹部909a)(例如参照图3)。因此,在波导管构造部900b的顶面,接合区域与载置台之间的距离比其他部分大。
同样地,使用具有上述波导管构造的旋转天线,在相同加热条件下使用载置于载置面6a的中央区域的冷冻御好烧进行实验,并通过cae进行验证。
其结果,由于第1开口914a实质上具有交叉槽形状,因此,波导管构造部900a能够抑制两个圆偏振波之间的干涉并且产生近似于圆的形状的圆偏振波。
此外,通过第1开口914a,增强了吸出效果,抑制了耦合部7附近的温度下降。此外还可知,通过形成于波导管构造部900b的顶面的凹形状的接合区域,能够抑制耦合部7附近的温度下降。
[本实施方式的波导管构造部]
以下,对基于从上述那样的各种实验得到的见解的、本实施方式的旋转天线的具体的结构例进行说明。根据上述见解,能够根据微波加热装置的规格等利用各种变形例。
图11是示出具有本实施方式的波导管构造部8的旋转天线的俯视图。
如图11所示,波导管构造部8具有设置于顶面9的多个微波吸出开口14。多个微波吸出开口14包含第1开口14a、以及具有比第1开口14a小的开口的第2开口14b。第1开口14a以及第2开口14b实质上具有交叉槽形状。
通过将第1开口14a的中心点p1以及第2开口14b的中心点p2配置于与波导管构造部8的管轴v偏离的位置处的构造,微波吸出开口14能够放射圆偏振波。这里,第1开口14a的中心点p1以及第2开口14b的中心点p2分别是形成第1开口14a以及第2开口14b的两个缝隙的交叉区域的中心点。
在本实施方式中,第1开口14a以及第2开口14b配置为不跨越波导管构造部8的管轴v。第1开口14a、第2开口14b的各长方形缝隙的长度方向相对于管轴v实质上具有45℃的倾斜。
如图11所示,第1开口14a形成为接近顶面9的凹部9a。凹部9a是从顶面9朝与从第1开口14a放射的微波的行进方向相反的方向(下方)突出设置的阶差区域(参照图3)。两个第1开口14a关于管轴v对称。
第2开口14b比第1开口14a远离耦合部7,形成于前方开口13的附近。与第1开口14a同样地,两个第2开口14b关于管轴v对称。
第1开口14a具有如下特征:在两个槽中,沿着从中心点p1朝向管轴v的方向延伸的部分的长度比沿着从中心点p1朝向侧壁面10a的方向延伸的部分的长度短。
如图3所示,设置于耦合部7的凸缘7b具有沿着微波的传输方向z的长度比沿着波导管构造部8的宽度方向w的长度短的形状。即,耦合部7沿着微波的传输方向z的长度比沿着与传输方向z垂直的方向的长度短。利用凸缘7b,能够使从中心点p1朝向耦合部7延伸的缝隙的前端形成于更接近耦合部7的位置处。
在本实施方式中,由于凸缘7b与凹部9a的反面侧接合,因此,凹部9a构成为比例如tox铆接的突出、焊接痕迹、螺钉、螺母的头部等由于凸缘7b的接合而在凹部9a的正面侧产生的突起的高度深。根据本实施方式,不会产生突起与载置台6的下表面接触等问题。
图11所示的波导管构造部8具有设置于耦合部7的上方的顶面9的凹部9a,具有与图10b所示的波导管构造部900b同样的结构。根据图11所示的波导管构造部8,与波导管构造部900b同样地,能够抑制耦合部7附近的温度下降。作为其理由,认为有如下两个理由。
第一个是,当在第1开口14a的上方载置有被加热物的情况下,作为从第1开口14a放射的圆偏振波的微波的一部分由被加热物反射。反射后的微波在形成于凹部9a的上表面与载置台6的下表面之间的空间内反复反射,其结果,更强地对被加热物进行加热。
第二个是,在本实施方式中,形成有凹部9a的部分的波导管构造部8的内部空间比其他部分窄。从耦合轴7a传播到波导管构造部8内的微波的大部分在从凹部9a附近的狭窄空间朝向远离凹部9a的宽广空间行进时,通过吸出效果而从第1开口14a放射,较强地对载置于载置面6a的中央区域的被加热物进行加热。
以下,对本实施方式中的第1开口14a的形状进行详细叙述。
如图11所示,第1开口14a包含缝隙20a、20b,它们具有在中心点p1交叉的交叉槽形状。第1开口14a的各缝隙的长轴相对于管轴v具有45度的角度。
缝隙20a从中心点p1的右下延伸至左上,具有从中心点p1至右下的前端的第1长度a、和从中心点p1至左上的前端的第3长度c。缝隙20a的右下的前端朝向耦合部7而接近凹部9a。
缝隙20b从中心点p1的左下延伸至右上,具有从中心点p1至左下的前端的第2长度b、和从中心点p1至右上的前端的第4长度d。即,第1长度a是从中心点p1到缝隙20a、20b的前端的长度中的、到最接近耦合部7的前端的长度。
第3长度c与第4长度d相同,它们实质上相当于在波导管构造部8内传播的微波的实质上的波长的1/4。第2长度b比第3长度c以及第4长度d短,第1长度a在它们当中最短。
此外,缝隙20a与管轴v的距离x比缝隙20b与管轴v的距离y长。即,在顶面9中,两个第1开口14a之间的凹部9a附近的区域比远离凹部9a的区域宽。
在两个第1开口14a之间的区域不平坦的情况下,在波导管构造部8内产生了混乱的电磁场,对形成圆偏振波带来了不好的影响,因此,优选在两个第1开口14a之间设置更宽广的平坦的区域。根据本实施方式,通过设置于两个第1开口14a之间的更宽广的平坦的区域,能够形成混乱少的圆偏振波,得到强的吸出效果。
在本实施方式中,两个第1开口14a之间的距离为在波导管构造部8内传播的微波的波长的1/8以上。根据发明人的实验,当两个第1开口14a具有与耦合轴7a的轴径(18mm)实质上一致的距离时,得到了优选的结果。
另一方面,第2开口14b具有如下的交叉槽形状:两个具有相同长度的缝隙在各自的中心垂直。第2开口14b的各缝隙的长轴相对于管轴v具有45度的角度。在本实施方式中,第2开口14b的各缝隙的长轴的长度是与第1开口14a的第3长度c以及第4长度d相等的长度。
本实施方式的耦合部7具有上述形状的凸缘7b,但凸缘7b的形状不限于此,能够根据规格等而适当变更。
例如,如果使凸缘7b的沿着管轴v的方向的部分更短,则能够使第1开口14a更接近耦合部7而设置。使用与第1开口14a之间具有缺口的凸缘7b等,利用凸缘7b的形状,也能够使第1开口14a更接近耦合部7而设置。
如果对凸缘7b的形状进行设计,则无需减小接合部分的面积,就能够使耦合部7与波导管构造部8的接合强化,能够抑制产品的偏差。
即使在耦合轴7a具有例如半圆、椭圆、长方形的截面的情况下,或者将具有这样的截面形状的耦合轴7a与波导管构造部8直接接合的情况下,也能够得到与本实施方式同样的效果。利用不设置凸缘7b的结构,能够进一步扩大用于形成第1开口14a的空间。
根据本实施方式,得到了较强的吸出效果,由此,能够抑制耦合部7附近的温度下降,并进行载置面6a的中央区域的均匀加热。
在本实施方式中,微波吸出开口具有交叉槽形状,但本文公开的微波吸出开口不限于此。即使微波吸出开口是交叉槽状以外的形状,只要是能够产生圆偏振波的形状即可。
实验的结果是推断出了,用于从波导管构造部产生圆偏振波的必要条件是在与管轴偏离的位置处组合配置大致细长的两个开口。
构成微波吸出开口14的缝隙不限于长方形。例如,在带有圆角的开口或椭圆形的开口的情况下,也能够产生圆偏振波。
为了抑制电场的集中,更优选带有圆角的开口。在本实施方式中,如图3、图9a~图9c、图10a、图10b、图11所示,第1开口14a以及第2开口14b所包含的缝隙在前端以及交叉部分具有圆角。即,在微波吸出开口14所包含的两个缝隙中,交叉部分附近的宽度比端部附近的宽度宽。
在本实施方式中,凹部9a形成于顶面9的耦合部7的上方,但本文公开的波导管构造部8不限于此。
例如,可以考虑从开口放射的微波的传播状况等而在微波吸出开口14与波导管构造部8的旋转中心之间设置凹部9a。可以在与微波吸出开口14相比更靠近波导管构造部8的旋转中心的一侧的顶面9,设置向波导管构造部8的内部空间突出的凸部。
即,波导管构造部8具有如下的阶差区域即可,该阶差区域设置于与微波吸出开口14相比更靠近耦合部7的一侧的顶面9的一部分上,高度比顶面9的其他部分低。
产业上的可利用性
本文的公开除了微波炉以外,还能够在干燥装置、陶艺用加热装置、生活垃圾处理机、半导体制造装置等各种工业用途的微波加热装置中使用。
标号说明
1、100、200:微波炉;2a、104、204:加热室;2b、209:供电室;2c、10a、10b、10c:侧壁面;3、101、201:磁控管;3a:天线;4、102、202、400、500:波导管;5、103、203:旋转天线;6、108、208:载置台;6a:载置面;7:耦合部;7a、109:耦合轴;7b:凸缘;8、600、700、800、900a、900b:波导管构造部;9:顶面;9a、909a:凹部;11:底面;12、106、206:低阻抗部;12a、20a、20b:缝隙;13:前方开口;14:微波吸出开口;14a、614a、714a、814a、914a:第1开口;14b、614b、714b、814b、914b:第2开口;15、105、205:电机;16、210:红外线传感器;17、211:控制部;18、18a、18b:凸部;19:保持部;22:被加热物;107、207:放射口;300:波导管;301:宽幅面;302:窄幅面;303:截面;401、501:开口。