本发明涉及一种单片集成半导体开关、尤其是功率断路开关,具有第一和第二单片集成的场效应晶体管,其中,第一场效应晶体管的源极或发射极与第二场效应晶体管的源极或发射极短接,第一场效应晶体管的漏极或集极与第一电压接头连接,并且第二场效应晶体管的漏极或集极与半导体开关的第二电压接头连接。
半导体开关作为功率断路开关例如使用于限界和关断电网中的过电流。在电网内部出现短路时负载电流仅由电网的阻抗限界。产生过电流,由该过电流引起所连接负载的显著热负荷。为了避免由此对所述负载产生的损害,对过电流的快速限界和关断是必需的,同时也应避免电弧点燃。
背景技术:
在能量传输技术中,所述问题至今典型地通过使用机械式功率断路开关解决。该功率断路开关用于接通和断开运行电流以及用于在故障情况下关断短路电流。在正常运行中,该功率断路开关必须既引导所有运行电流而且又承受在此产生的热和动态载荷。在短路情况下,功率断路开关必须尽可能突然并且可靠地关断电流通路,由此不损坏或破坏随后的运行器件。在此,断开点必须在相邻导体之间形成防击穿的隔离段。
在机械式功率断路开关中,连接件在故障情况下通过机械杠杆相互断开。在此,在接触区域中的电流密度如此大,使得形成熔丝连接(schmelzbrücke)。由此在接点之间产生的电弧首先使电路保持闭合。在交流电流中电弧在电压交零时熄灭。但是为了在电压重新上升时电弧不会重新点燃,则必须对电弧段进行去离子化。这通过借助于灭火剂如sf6的电弧冷却或通过真空实现。开关过程可以持续多个周期。在关断过程期间电流快速增加并且根据关断持续时间总是继续接近冲击电流的幅度。幅度的大小与网结构和在其中可用的短路功率有关。在此,从检测到电流通路完全断开的总时间可以持续远超过100ms。在该时期内过电流流经随后的运行器件,该运行器件为此必须也针对该过电流确定尺寸。为了减少过电流负载,功率开关必须更快地关断。但是过快的开关过程在机械式断路开关中增大电弧强度,由此需要附加的用于熄灭的能量并且使接触磨损推进。因此困难的是,通过机械式开关实现短的开关时间。
用于解决上述问题的另一可能性为使用基于半导体的功率断路开关。该开关能够在几微秒内关断。此外,该开关不形成电弧,使得不需要附加的灭火剂。由于缺少可运动部件,该开关是低磨损和易维护的并且由于其紧凑结构也是节省位置的。基本上这种功率断路开关由多个并联的或串联的单个构件尤其是晶闸管、栅极可关断晶闸管(gto)和隔离栅双极晶体管(igbt)组成。因为功率断路开关在该应用中主要在打开状态下运行,在第一近似中保持不考虑开关损耗和截止性能。因此,lgbt由于其与晶闸管相比显著较高的导通损耗而不适合。晶闸管由于其小的导通损耗显得更适合并且可得到直到8kv的截止电压。点燃通过小的栅电流或通过光脉冲实现。为了灭火必须不超过确定的保持电流。这在交流电流中通过超过交零自动进行。但是必须保持一定的游离时间,在该游离时间中剩余的载流子从空间载荷区中清除出去。这可以持续直到100μs。在该时间内必须限制电压的再增大,因为否则晶闸管自动地再点燃。但是游离时间通过正向电流的增大或者在温度升高时延长。此外要注意的是,晶闸管由于交零需要持续的点燃信号。与此相反地,栅极可关断晶闸管(gto)通过后面的控制电流关断。但是这不能仅通过半导体的内部结构实现,而是需要附加的rcd电路,以便在关断时限制电压的再增大。在这种功率开关中的问题是,在截止运行中不产生电流隔离。即使在截止运行中还总是有在毫安范围内的小的反向电流流动。
由m.callaviket等人的“thehybridhvdcbreaker.abbgridsystem”,technicalpaper,2012年11月中公知一种用于直流电流传输的混合式功率开关。在此,涉及一种由旁路和由功率半导体构造的电功率断路开关构成的并联电路,该电功率断路开关构成主开关。在正常运行中,电流流经旁路。该旁路由快速开关的机械功率开关和换向器组成。在故障情况下,换向器引起功率阻抗的增大,使得通向主电流通路的电流换向。换向器通过串联连接的igbt实现,该igbt借助于改变栅电压增大功率阻抗。在短的时间滞延之后机械式开关打开。电流仅由主开关中断。总关断过程持续不到5ms。但是整个结构非常费事和昂贵。
前面阐述的解决方案的基本问题是功率断路开关的复杂结构。该结构需要大规模的操控电子器件,该操控电子器件最终导致总系统的可靠性的限制。
由b.rosensaft等人的“circuitbreakerandsafecontrolledpowerswitch”,proc.ofthe19thinternationalsymposiumonpowersemiconductordevices&ics,韩国2007,169-172页公知一种具有n型结型场效应晶体管(n-jfet)和p型结型场效应晶体管(p-jfet)的单片集成的功率断路开关,该功率断路开关根据所谓的“双晶闸管”的原理构造。在该电路连接中,两个jfet的源极相互短接,p-jfet的栅极与阳极接头短接并且n-jfet的栅极与阴极接头短接。类似于晶闸管,该晶闸管在顶点燃
但是在这种功率构件中,最大阴极电压由n-jfet的栅极的截止强度限界,并且最大阳极电压由p-jfet的栅极的截止强度限界。由此如此构造的功率开关仅适用于小的运行电压,尤其在单片集成的情况下。在此,jfet的栅极电势仅通过半导体区操控,使得不可能由外部进行栅极的操控。对于较高的运行电压在rosensaft等人的所述公开文件中也示出这种功率断路开关的变型,该变型主要基于具有单片集成的n型通道金属氧化物半导体场效应晶体管(mosfet)的基于金属氧化物半导体(mos)的igbt的工艺技术。
技术实现要素:
本发明的任务在于,给出一种半导体开关,该半导体开关也可以作为功率或负载断路开关在高运行电压中使用并且能够在过电流的情况下实现快速自动关断。
所述任务通过根据权利要求1所述的单片集成的半导体开关解决,半导体开关的有利构型是从属权利要求的主题或者从下面的说明以及实施例中提取出。
所提出的单片集成的半导体开关由两个半导体构件构造,至少用于所述半导体构件中的一个半导体构件的控制原理相当于结型场效应晶体管(jfet)的控制原理。该半导体开关为双晶闸管。在此,第一场效应晶体管的源极或发射极与第二场效应晶体管的源极或发射极短接。在此,第一场效应晶体管的源区或发射区和第二场效应晶体管的源区或发射区优选相互邻接。第一场效应晶体管的漏极或集极与半导体开关的第一电接头连接,第二场效应晶体管的漏极或集极与半导体开关的第二电接头连接。两个电接头为阳极接头和阴极接头。在所提出的半导体开关的第一构型中,两个场效应晶体管的栅极或基极与第一电接头短接。第二场效应晶体管的阱区与两个场效应晶体管的两个源极或发射极短接。第一场效应晶体管的阱区与第二电接头短接。场效应晶体管的通道区分别位于栅极和阱区之间。在所提出的半导体开关的第二替代方案中,只有第一场效应晶体管的栅极或基极与第一电接头短接。第二场效应晶体管的栅极或基极可以与外部栅极操控装置连接或者说接通。
在两个构型替代方案中,场效应晶体管中的至少一个场效应晶体管是jfet并且另一个场效应晶体管是jfet或bifet(双极性场效应晶体管)。因此第一场效应晶体管可以是p-jfet并且第二场效应晶体管可以是n-jfet或n-bifet,其中,第一电接头为阴极接头并且第二电接头为阳极接头。第一场效应晶体管也可以是n-jfet。在这种情况下作为第二场效应晶体管使用p-jfet或p-bifet,其中,第一电接头为阳极接头并且第二电接头为阴极接头。
通过单片集成可以节省位置地实现所提出的半导体开关,该半导体开关在下面由于其优选应用被称为功率断路开关。经过该功率断路开关的流通电流可以在超过确定的阳极电压或超过确定的阳极电流时自动地关断。附加的操控和监控电子器件在此不是必需的。阳极电压和阳极电流的极限值可以通过场效应晶体管的参数确定。在实现第二场效应晶体管的分开的或外部操控的栅极时也可以在运行中影响极限值。所提出的解决方案基于以下认知:可以针对阳极电压保护阴极侧的场效应晶体管的n+栅极,其方式是,阳极电压不是与n+栅极连接而是与衬底接点连接,并且n+栅极处于阴极电势上。由此相对于最后所述的现有技术,为了栅极-阳极电势的可控性不需要在栅极电势和在其上引导的源极之间的隔离层。而电压仅在pn结上消减。在该现有技术中,栅极的使用是不可能的,因为在那里在阴极或阳极相对于各个其他晶体管的栅极之间的电势分隔不存在。
因此,以所提出的功率断路开关不再通过可施加到栅极的最大电压、而是通过漂移区的参数确定。通过漂移区的厚度和掺杂的相应选择可以实现具有直到10kv(硅)或200kv(碳化硅)的截止强度的单片集成的功率断路开关。
通过在以bifet替代jfet的构型中使用p掺杂的集区,在接通状态中将附加的载流子注入到漂移区中。由此也可以在非常高的截止强度的情况下实现低静态损失。
此外,通过使用碳化硅产生以下可能性:实现用于在高反向电压下运行的半导体构件或基于该半导体构件的功率断路开关,从而也考虑使用在中间电压水平(10kv或20kv)中和
所提出的具有再生关断行为的、单片集成的半导体开关或功率断路开关尤其可以用于电网和设施的保险。例如用于在建筑物中的能量输送、用于由电驱动装置从直流电压中间电路进行能量供给或者用于类似应用的直流电压设施的保险。这显然不是详尽的列举。所提出的半导体开关尤其不仅作为功率断路开关使用,而且也用于其他开关应用。
附图说明
下面参照实施例结合附图再次详细阐述所提出的单片集成的功率断路开关。在这里示出:
图1以等效电路图示出根据本发明的功率断路开关的第一示例;
图2以等效电路图示出根据本发明的功率断路开关的第二示例;
图3以等效电路图示出根据本发明的功率断路开关的第三示例;
图4以等效电路图示出根据本发明的功率断路开关的第四示例;
图5以等效电路图示出根据本发明的功率断路开关的第五示例;
图6根据本发明的功率断路开关的示例结构的示意性横截面;
图7根据本发明的功率断路开关作为在过电流时的保护装置在电网应用中使用的示例;和
图8根据本发明的在混合式布置中的功率断路开关作为在过电流时的保护装置在网应用中使用的示例。
具体实施方式
图1示出所提出的由两个jfet组成的集成功率断路开关的示例的等效电路图。第一jfet具有p掺杂的通道区并且由此相当于p-jfet。相反地,第二jfet具有n掺杂的通道区并且由此相当于n-jfet。这两个jfet的源极s以及n-jfet的阱区短接。此外,n-jfet的栅极g、p-jfet的栅极g以及p-jfet的漏极d通过阴极k短接。而p-jfet的阱区与阳极a短接。因此,p-jfet的运行状态通过阳极上的电势确定。而n-jfet的运行状态通过在p-jfet的漏极d和源极s之间的p掺杂的通道区上的电势差确定。在正常运行状态中,将正电压施加到阳极a上并且将负电压施加到阴极k上。在该运行状态中,电流从阴极经过p-jfet的p掺杂的通道区和n-jfet的n掺杂的通道区流向阳极。根据阳极电压,p-jfet的p掺杂的通道区耗尽并且在n-jfet的源极和栅极之间的电势差增加。从确定的阳极电压起,n-jfet的n掺杂的通道区的耗尽引起该电势差并且经过单片集成的功率开关的流通电流被关断。本发明所基于的认知为:可以针对阳极电压保护阴极侧晶体管的n+栅极,其方式是,阳极电压不是与n+栅极连接而是与衬底接点连接,并且n+栅极处于阴极电势上。
在所提出的功率断路开关的另一示例性构型中,前述实施例的n-jfet由n-bifet替代,如在图2的等效电路图中示出的那样。由此不改变电路连接和工作原理。
实现所提出的功率断路开关的另一可能性在图3的等效电路图中示出。在该示例中图2的实施例的p-jfet由n-jfet替代并且n-bifet由p-bifet替代。为此阳极和阴极必须相应地互换。
最后图4还以等效电路图示出在所提出的功率断路开关中使用的场效应晶体管的另一变型可能性。相对于前述附图中的实施例,这里p-bifet通过p-jfet替代。剩余的电路连接与在前述实施例中是分别一致的,如从图1到4中可看出。
此外,所提出的功率断路开关也在如在图5中以等效电路图示例性示出的电路连接中实现。与图2的构型的区别在于,在这里n-bifet的栅极g不与p-jfet的栅极g和阴极k短接。相反地,该构型能够实现n-bifet的栅极g通过外部栅极操控装置的接通。由此可能的是,通过施加栅电压有目的地影响功率断路开关的转折电压和转折电流。这种影响通过最后提到的现有技术的功率断路开关是不可能实现的,因为在那里jfet的栅极电势仅通过半导体区操控。在图5中示出的该变型能够也与图1、3和4的构型类似地实施。
图6示出用于实现在图5中以等效电路图示出的功率断路开关的示例。该功率断路开关通过横向p-jfet和垂直n-bifet的单片集成实现。因此,该单片集成的功率断路开关由p掺杂的集区11、n掺杂的场截止区12、n掺杂的漂移区13、p掺杂的阱区14、n-bifet的n掺杂的发射区15、n-bifet的n掺杂的通道区16、n-bifet的p掺杂的栅区17、横向p-jfet的p掺杂的通道区18以及横向p-jfet的p掺杂的源区19和漏区20组成,如在图6中示出。n-bifet的发射区15和阱区14以及p-jfet的源区19通过电阻层21相互连接。该电阻层21通过隔离层22与阴极k的金属化部10隔离。在p-jfet的漏极和n掺杂的栅区23之间的电阻连接通过阴极k的金属化部10实现。此外,漂移区13是p-jfet的阱区。
通过由n掺杂的集区替换p掺杂的集区11,能够以示出的结构实现n-jfet和p-jfet的单片集成。作为半导体衬底优选使用硅或碳化硅,特别优选使用碳化硅的4h多型体。在图2中示出的电路可以通过这种结构实现,其方式是,在p-jfet的漏极和n掺杂的栅区23上面的金属化部一直延长至n-bifet的p掺杂的栅区17,使得该金属化部在这些区之间建立电阻连接。
在图7和8中示出根据本发明的功率断路开关作为保护电路在能量网中的示例性应用。在此,向网中的接入以及开/关按键的实施相当于在相应网(电压水平)中的通常的现有技术,在这里仅象征性地实施为按键tein/taus。图7示出所提出的功率断路开关1作为在电网应用(直流或交流电压)中过电流(例如负载短路)时的保护装置。负载2在该图中同样示意性地示出。
在图8中示出的具有所提出的功率断路开关1的配置考虑了机械负载断路开关在电能传输段中的必要性。这有可能是法律规定的并且确保了网与负载2的机械断开。对此,图8示出由在该示例中具有继电器4的、自保持的机械或电磁保护装置3和所提出的功率断路开关1组成的混合式负载断路开关。在该图中又同样示意性示出负载2。子图a示出具有具有断开的关按键taus的情况,子图b示出具有闭合的关按键taus的情况。
附图标记列表
1功率断路开关
2负载
3机械/电磁保护装置
4继电器
10金属化部
11p掺杂的集区
12n掺杂的场截止区
13n掺杂的漂移区
14p掺杂的阱区
15n掺杂的发射区
16n掺杂的通道区(bifet)
17p掺杂的栅区
18p掺杂的通道区(jfet)
19p掺杂的源区
20p掺杂的漏区
21电阻层
22隔离层
23n掺杂的栅区
a阳极
d漏极
g栅极
k阴极
s源极
tein按键
taus按键