数控双灯驱动器的制造方法
【技术领域】
[0001]本发明涉及一种数控双灯驱动器,属于电子技术领域。
【背景技术】
[0002]近年来,随着国家对节能减排和实现绿色环保照明技术的日益重视,并得益于现代电力半导体技术和器件工艺的长足进步,新型照明灯具得到了迅速的发展。从城市道路、桥梁、广场等公共照明方面来看,效率低寿命短的白炽灯已被淘汰,代之以高压钠灯、金卤灯等效率高、寿命长的气体放电灯;并进而向效率更高且寿命更长的LED灯具发展。
[0003]目前,市场占有率最大的公共照明灯具仍属高压钠灯,其发光效率高,发光功率大,光色柔和,光谱透射率强,不产生刺眼的炫光,对自身散热的要求相对较宽松,因此面对新一代LED灯具的挑战,仍具有其独特的性能优势和继续存在的价值。
[0004]高压钠灯、金卤灯等灯具有负阻特性因而必须采用镇流部件配合才能正常工作。老式的铁芯电感镇流器由于直接使用于市电工频,体积笨重庞大,耗用大量的电工钢片、漆包铜线等材料,自身热损耗大,而且在不进行补偿的情况下,灯具功率因数很低,因此目前逐渐被各类电子镇流器所取代。
[0005]在道路照明及与其类似的场合,常常需要对灯具进行组合应用,例如在一根灯杆上,分别安装两个或两个以上的灯具,根据照明方向、灯具功率和照度分配的需求进行最合理的搭配。但是,目前的气体放电灯驱动器(即电子镇流器)基本上仍停留在一台驱动器只能配用和驱动一套灯具的惯用方式,这时,就需要为每一个灯具分别配置和安装相应的电子镇流器,每一个电子镇流器都必需有独立的机壳、进线滤波及防过压保护、整流滤波、有源功率因数补偿、驱动脉冲发生器、功率管驱动级、半桥功率输出级、自动功率控制等单元电路,若采用类似空调器“一拖二”的方式,上述这些单元电路都是可以共用的,不仅可以大大节省成本,节约大量有色金属的消耗,而且还能显著缩小体积,减小占用空间,有利于安装布线工程的施工和日常的维护。
[0006]但是,这种方式的实施主要有以下几个技术难点:
1、气体放电灯的起辉需要数千伏的高压,两套以上的灯具共用一台气体放电灯驱动器,易造成起辉电压互相牵制,产生高压不足或高压过高等难以控制的问题,轻则启动困难,重则缩短灯具寿命甚至损坏驱动器自身。
[0007]2、两只独立灯具的工作必须具备完善的协调机制:当一只灯具发生问题时,必须使另一只灯具不受牵连,仍然能顺利触发起辉,直至转入正常的工作状态。
[0008]3、当一只灯具出现故障时,处理不当将会出现原来两只灯具的总功率集中转嫁到剩余完好的一只灯具身上,造成严重过载而迅速报废,必须有完善的硬件平台结构与高度智能化的系统功率调配功能。
[0009]4、必须了解每一只双灯驱动器的实际工作情况并及时发现和诊断出故障灯的位置、故障类型、系统重组是否得以顺利实施等情况,使故障范围最小化以最大程度的保障照明效能。
[0010]本发明的目的就是要针对性的解决以上技术难点,提出一种先进的解决方案,提供一个实现数控双灯驱动器的实用结构,并给出完善的调整控制方法。
【发明内容】
[0011]目的:为了克服现有技术中存在的不足,本发明提供一种数控双灯驱动器。
[0012]技术方案:为解决上述技术问题,本发明采用的技术方案为:
一种数控双灯驱动器,包括电源输入滤波器、AC-DC转换器、有源功率因数校正器、功率半桥电路、高频调制波形发生器;电源输入滤波器、AC-DC转换器、有源功率因数校正器、功率转换电路依次顺序连接,高频调制波形发生器与功率半桥电路连接;其特征在于:还包括微处理器、电流误差放大器、可调频振荡器和相应于所驱动两盏灯具的双灯独立驱动回路、两套灯接入执行机构、两套灯电流监测回路,可同时驱动两个独立的灯具,并对每个灯具的运行情况分别予以监测与控制;
其中,所述微处理器,用于对灯电流进行实时监测;并根据照明需求的预置参数以及灯具的实际运行情况,控制各个灯具的启停时间、功率变动规律、控制两个灯功率的大小,或分别对灯进行开关切换;并诊断故障情况;
所述双灯独立驱动回路接在向灯具供给驱动电流的功率半桥电路输出点和两个独立的灯具输出端子之间;用于分别对两盏灯具进行切换、驱动和监控;
所述灯接入执行机构接于微处理器和双灯独立驱动回路之间,根据微处理器发出的指令分别操控每盏灯具的接入与分断;
所述灯电流监测回路接于双灯独立驱动回路和微处理器之间,用于向微处理器提供各个灯具运行电流状态是否正常的信息;
所述电流误差放大器接于双灯独立驱动回路和可调频振荡器之间,用于放大来自双灯独立驱动回路的灯电流采样信号以实现旨在稳定电流的闭环控制;同时,所述电流误差放大器还接于微处理器和可调频振荡器之间,可直接由微处理器来控制灯电流的大小,实现闭环控制之外的数控模式;
所述可调频振荡器接于电流误差放大器和功率半桥电路之间,用于把放大后的采样电流变化转换为半桥驱动脉冲频率的变化,以保持灯电流的稳定;同时,所述可调频振荡器还接于微处理器和功率半桥电路之间,一方面用于通过微处理器直接控制灯具启动瞬间的频率提升,产生触发高压以便点燃灯具;另一方面当设备发生故障时,可通过微处理器对可调频振荡器进行封锁,使立即停止输出振荡脉冲,防止元器件的损坏。
[0013]作为优选方案,所述的数控双灯驱动器,其特征在于:所述微处理器采用单片机
Ulo
[0014]具体的,所述的数控双灯驱动器,其特征在于:所述双灯独立驱动回,包括第一支路独立驱动回路和第二支路独立驱动回路;在大功率VMOS管半桥输出点后,经电容C9和电阻R13的并联回路后,耦合到两套不同灯具支路的部分;第一支路独立驱动回路包括继电器RLl、磁芯电感L1、启动谐振触发电容ClO、ClL以及第一支路电流取样电阻R24串联构成的完整通路,第一灯具连接于电容C10、Cll两端所引出的插座J2处;第二支路独立驱动回路包括继电器RL2、磁芯电感L2、启动谐振触发电容C12、C13,以及第二支路电流取样电阻R25与R26的并联体所串联构成的完整通路,第二灯具连接于电容C12、C13两端所引出的插座J3处。
[0015]具体的,所述的数控双灯驱动器,其特征在于:所述灯电流监测回路,包括第一支路的电流取样电阻、第一支路的灯电流比较器、第二支路的电流取样电阻、第二支路的灯电流比较器、以及两个比较器公共的门限电压分压电阻;所述的第一支路的电流取样电阻,为第一支路独立驱动回路中的电阻R24,电阻R24上的电流取样值经电阻R32送到比较器U4B,与门限电压进行比较,并将比较后的输出电平送到单片机Ul ;第二支路的电流取样电阻,就是第二支路独立驱动回路中的电阻R25与R26的并联体;第二支路的电流取样电阻上的电流取样值经电阻R27送到比较器U4A,与门限电压进行比较,并将比较后的输出电平送到单片机Ul。
[0016]具体的,所述的数控双灯驱动器,其特征在于:两套灯接入执行机构,对应于两盏灯具的灯接入执行指令分别由单片机Ul的第7引脚和第8引脚输出;其中第7引脚输出的控制电平信号SWl经电阻R17送到NPN型三极管Q5和PNP型三极管Q4构成的两级放大器进行电流放大,放大后流过Q4的电流经R15、R16的并联体后送去控制第一支路独立驱动回路中的继电器RLl的驱动线圈,当SWl信号电平为“高”时,放大后流过Q4的电流饱和,继电器RLl吸合,第一灯具支路接通;反之当SWl信号电平为“低”时,Q4的电流截止,继电器RLl释放,切断第一灯具支路;同理,第8引脚输出的控制电平信号SW2用于控制第二支路独立驱动回路中的继电器RL2。
[0017]作为优选方案,所述的数控双灯驱动器,其特征在于:所述数控双灯驱动器还包括通信接口电路,所述通信接口电路接于微处理器和外部通信线路之间,用于微处理器收发双向通信引脚与通信线路间的方向控制、电平转换、隔离及匹配;微处理器通过串行通信方式与照明监控中心通信连接。
[0018]作为优选方案,所述的数控双灯驱动器,其特征在于:所述通信接口电路包括光电耦合器OPl、0P2构成的隔离电路,将外部通信线路与单片机Ul电路系统完全分开,同时又保证通信信号可畅通无阻。
[0019]所述的数控双灯驱动器,其特征在于:所述通信接口电路包括专用接口转换芯片U6与工业控制总线RS485线路;与电力线载波通信线路、短距离无线组网通信线路(ZIGBEE技术)、公共无线网络分组交换(GPRS技术)通信线路相适应。
[0020]所述的数控双灯驱动器的控制方法,包括以下步骤:
1)复位和启动:
上电启动后,微处理器复位,延时300ms等待电路各部分进入稳态;紧接着微处理器完成对内部控制资源的初始化和配置;
2)输出继电器控制:
高频电源通过两路继电器开关送达灯具端;微处理器会根据外部控制指令和灯具的故障情况来判断需要打开哪些控制继电器;保证有故障的灯具不会加电以免造成设备损伤;同时也完成了亮灯组合的控制,可以自由选择打开哪一盏灯,关闭哪一盏灯;
3)计算功率控制信号:
根据外部控制信号的要求,(开启I盏灯还是2盏灯,如果是只开I盏灯的话是哪盏灯)计算功率控制信号Vcp,信号电压越大,灯端输出的功率就越大;由于双灯的特点,最终工作的灯具有很多可能性,系统输出的功率也应该匹配相应的灯具;因此信号的大小对于灯具安全稳定工作至关重要;信号由脉宽调制的PWM信号经过滤波和整形得到,PWM脉宽越大,Vcp越大;
4)高压点灯:
在完成系统初始化和功率控制信号计算之后,便进行高压点灯步骤;为产生一个高压完成对钠灯内部放电气体的电离击穿;微处理器MCU通过控制谐振电路的频率在灯端产生高压;在完成高压扫描之后,微处理器MCU检测灯电流和灯端电压来判断灯具是否