本发明涉及蜂窝无线电接入网络。
更具体地,本发明涉及用于提高蜂窝无线电接入网络中的服务质量(qos)的方法和系统,上述蜂窝无线电接入网络诸如为长期演进(lte)网络、通用移动电信系统(umts)无线电接入网络(utran或e-utran)、长期演进高级(lte-a)网络、全球移动通信系统(gsm)网络和宽带码分多址(wcdma)网络。
背景技术:
itu-t建议书m.3010“电信管理网络的原则”在m系列中公开了电信管理网络的配置,该m系列为tmn(电信管理网)和网络维护:国际传输系统、电话电路、电报、传真和租用电路。
美国纽约州纽约市牛津大学出版社于2002年出版的isbn:0-19-511831-6的第891-896页的《数据挖掘与知识发现手册》讨论了根据网络警报序列来预测电信设备故障的不同的方法。
us2007/0222576a1公开了一种用于对通信系统的网络状况进行动态优先化排序的方法。将收到的警报状况进行分类和评级。
wo2012/143059a1公开了一种从通信网络的多个故障中恢复的方法。该方法包括分析接收的警报以识别警报信号的可能的根本原因,并提供指示修复相应故障的难度的根本原因度量。该方法还包括确定由相应故障对通信网络造成的服务影响,并基于警报度量对警报信号进行排序。
蜂窝中断管理的方法和系统已经在us2014/0357259a1、us2010/278038a1、us2008/064361a1、us2014/0295856a1、us2014/0211605a1、us2014/0099942a1、us2013/0244644a1、us20130053024a1和us20120295611a1中公开。
技术实现要素:
本发明的目的是提高蜂窝无线电接入网络的服务质量(qos)。
本发明的目的是通过监视网络的运行以预测故障来实现。对于每个预测的故障,都会创建主动维护计划,并确定替代网络配置,其中计划的维护操作在替代网络配置中的影响小于在当前(非替代)网络配置中的影响。另外,基于网络通信量估计值来决定维护操作的定时,并且在所选择的维护操作时间之前将网络自动重新配置为替代网络配置。
通过本发明,可以提高蜂窝无线电接入网络的整体服务质量。这是因为可以降低网络失效和蜂窝中断(outage)情况的数量。同时,所需的恢复和维护操作对服务质量的影响也可以更低。
根据一实施方案,该目的是通过连接至电信网络诸如lte网络或lte-a网络的预先防范维护节点(pem,pre-emptivemaintenancenode)来实现。
本发明的概念还允许提供更多优点的若干有用和有利的实施方案。
预先防范维护允许防止网络故障或性能问题,并因而防止直接的收入损失和客户体验影响。
预先防范维护允许防止现场工作和昂贵的现场维护操作。
根据实施方案,来自网络元件的警报和误警报被自动处理,这是有效和快速的,并在网络中提供更好的qos。
附图说明
为了更全面地理解本发明及其优点,现在借助于实施例并参照以下附图描述本发明,在附图中:
图1表示根据一实施方案的网络环境;
图2表示根据一实施方案的过程图;以及
图3表示根据一实施方案的过程流程。
具体实施方式
所有先前提及的标准、手册、专利申请和其他出版物均通过引用并入本文。
图1示出了本发明的一实施方案中的长期演进(lte)网络的配置。
在系统架构演进sae中被称为演进分组核心(epc)网络的核心网络(cn)负责对用户设备(ue)的总体控制和承载的建立。epc的主要逻辑节点为:
·分组数据网络(pdn)网关(p-gw)
·服务网关(s-gw)
·移动性管理实体(mme)
·预先防范维护节点(pem)
除了这些主要逻辑节点之外,epc还包括其他逻辑节点和功能,诸如归属订户服务器(hss)以及策略控制和计费规则功能(pcrf)。由于eps仅提供一定qos的承载路径,因此由被认为是在eps本身之外的因特网协议(ip)多媒体子系统(ims)提供对多媒体应用诸如voip的控制。
逻辑核心网络节点在图1中示出,并在下面更详细地讨论:
·策略控制和计费规则功能(pcrf)负责策略控制决策制定,以及负责控制驻留于p-gw中的策略控制执行功能(pcef)中的基于流的计费功能。pcrf提供qos授权,该qos授权决定如何在pcef中处理特定数据流,并且pcrf确保这符合用户的订阅配置文件。
·归属订户服务器(hss)包含用户的sae订阅数据诸如eps订阅的qos配置文件以及针对漫游的任何访问限制。hss还保存与用户可以连接至的pdn有关的信息。这可以是接入点名称(apn)或pdn地址的形式。此外,hss保存动态信息,诸如用户当前附加的或注册的移动性管理实体(mme)的身份。
·p-gw负责根据pcrf规则对ue进行ip地址分配以及qos强制和基于流的计费。p-gw负责将下行用户ip包过滤到不同的基于qos的承载中。这是基于通信量流模板(tft,trafficflowtemplate)进行的。p-gw对保证的比特率(gbr)承载执行qos强制。p-gw还用作与非3gpp技术互通的移动锚点。
·s-gw是通过其传输所有的用户ip包节点。当ue在enodeb(也称为enb,二者都意指演进节点b)之间移动时,s-gw用作用于数据承载的本地移动锚点,enodeb是连接至移动电话网络直接与移动电话(ue)通信的硬件元件。enodeb对应于gsm网络中的基站收发台(bts)。
·mme是处理ue和cn之间的信令的控制节点。
·pem监控从网络元件(ne)收到的警报信息,并进行预先防范维护,如将在本发明的后面更彻底地讨论的。特别地,pem监视从enodeb接收的警报消息。为了执行其任务,pem特别是与p-gw进行通信,并且也与mme和pcrf进行通信。pem还可以与核心网络之外的元件进行通信,诸如与网络运行中心(noc)或运行支持系统/业务支持系统(oss/bss)进行通信。
pem的运行的目的是识别将要引起严重警报的网络元件(ne)。意图在发生严重问题之前识别出ne。在解决问题时,pem还根据根本原因分析向导进行根本原因分析和洞察(insight)。
网络管理系统是复杂的,其中在网络运行中心(noc)中必须对例如100000个网络元件进行监控和控制。在一实施方案中,网络元件代表着35种以上的技术,每天产生超过500万个警报通知。
实施方案提供严重网络故障的精确预测评分,以便在失效发生之前主动处理网络问题。这是通过pem节点进行的。操作目标是基于来自警报数据的弱信号在例如两个不同的预测时间窗口期间标记将引起严重警报(并因此故障)的那些ne。在一实施方案中,pem确定ne将在即将到来的1周内引起网络的一个或多个严重警报的倾向,以及确定ne将在即将到来的1天或24小时内引起网络的一个或多个严重警报的倾向。
根本原因的关键词分析给出了主动解析网络中的严重故障的根本原因可能是什么的指示。
网络故障事件(例如无线电网络)是相当普遍的,其影响客户体验,但也可以被合理地预测。大多数网络故障可以通过提早远程地重新启动设备被防止。可以根据数据确定连接至受影响网络的任何部分的ue。
重新启动或类似动作可以在实现的解决方案中进行协调和自动化。
选择正确的时间进行重新启动,使得对收入/客户体验的冲击最小,能够为网络运营商带来明显的收益。
在一实施方案中,使用服务保证数据(警报日志、事件日志、性能计数器)的自动预测分析过程来识别数据中的过去故障的模式,并利用这些模式来预测网络中的未来故障。该过程可以具体地应用于无线电网络,并且甚至更具体地应用于故障相当常见且影响所连接站点中的客户体验的rnc(无线电网络控制器)元件。
除了基于未来故障可能性分数对网络元件进行排序之外,根据一实施方案的预测分析过程可以为故障补救提供最佳的下一步动作建议。例如,这可以通过远程重新启动程序提前解决问题来进行。也可以进行站点访问或进一步的人工检查,如果解决问题需要的话。
在一实施方案中,分析过程将网络收入分配给特定位置(根据网络拓扑)和时隙,以便针对每个网络元件确定用于故障补救的最佳维护窗口,即,对整体网络通信量并且因此对收入具有最小负面影响的维护窗口。
基于以上措施,根据一实施方案的分析过程将输出具有高故障可能性的网络元件的入选列表(shortlist),并为每个动作提供动作建议和相应的维护窗口。网络元件的入选列表可以被构造成例如使得该入选列表包括按照最高故障可能性排序的前x%个网络元件或者具有高于阈值的故障可能性的所有网络元件。
服务履行/启用过程对该入选列表进行处理。在一实施方案中,例如,这可以包括基于入选列表经由api通过远程cli(命令行接口)命令或rpc(远程过程调用)来管理特定元件的自动远程重新启动。这还可以包括该过程将元件列表和相应的维护窗口提供给人力系统/票务系统。其还可以是方案在补救措施之后采集网络行为的数据,以便提供用于机器学习(重新拟合预测模型)过程的另外证据。
在一实施方案中,还可以重新路由一些通信量以减少某些网络设备中的负荷,从而延迟所需的重新启动。还可以做出使由于部件重新启动对用户体验产生的影响最小化的重新路由计划。
在一实施方案中,采集附加信息,并且分析(预测故障可能性)重新启动可能会引起的对附近的/受影响的网络元件的可能影响。
除了可以根据实施方案进行重新启动之外,还有其他一些事情。例如,可以基于分析对网络的部件/部分进行优化。还可以找出故障可能不是来自于部件的状况而是来自于部件超载的位置,并且确定哪些额外的资源将最有帮助。
根据一实施方案,不断地关注来自网络元件的馈送(来自网络元件位置的错误报告、环境数据等),并且实时地分析数据。该过程根据馈送来估计将来会有问题的部件。另外,该过程可以分析问题的类型,并确定修复问题的正确动作。可能的动作包括远程或本地动作,诸如重新启动、配置改变和远程站点访问。该过程还可以估计运营商必须按计划的方式采取预防动作以解决问题要用多少时间,使得网络元件不会“不受控制地”断开。
根据实施方案,可变地预测目的包括:
·预测ip路由器的严重警报
·预测由宽带订阅产生的故障单
·预测哪些警报是误警报
·预测哪些警报需要维护工作
·预测基站控制器生成的严重警报
·预测rnc板重启
·预测哪些站点正在产生影响严重警报的服务
根据实施方案,可变的源数据包括但不限于:
·来自惠普openview的思科路由器警报数据
·来自emcsmarts的宽带cpe、dsl路由器和pe路由器数据(事件、警报、系统日志、故障单)
·来自元件管理系统的爱立信bsc和bts警报数据
·来自netact网络管理系统的诺基亚bsc和bts警报数据
·来自元件管理系统的爱立信rnc和nodeb警报和事件数据
·来自区域气象研究所的天气资料
·来自网络元件位置的环境数据
根据实施方案,该过程提供了独特的洞察发现,包括:
·天气模式影响无线电网络设备,甚至是那些位于气候控制数据中心的设备
·可以在警报数据中看出地震
·可以在数据中看出并且可以预测到每周和每年的维护操作模式
·具体的区域、位置、元件类型和元件增加未来故障的可能性
·以前的部件重启可以降低未来故障的可能性
·以前的部件故障增加了未来故障的可能性
·来自文本数据的各种隐藏信号增加或降低未来故障的可能性。
实施方案提供的预先知识的主要益处包括:
·提高整体服务质量
·用有计划的纠正维护更换紧急的昂贵的站点访问
·优化人力费用并改善工作条件
·优化备件物流
·立刻瞄准具有若干预期故障的区域
·对关键网络节点和服务进行优先化排序
·将预测与对客户体验的影响相关
·减少对紧急站点访问的需求
·减少由停机造成的收入损失
·避免sla处罚,提高客户忠诚度
根据实施方案,纠正措施还可以包括网络的自动重新配置以补偿预见的蜂窝中断。
用于蜂窝中断管理的方法和系统已经在us2014/0357259a1、us2010/278038a1、us2008/064361a1、us2014/0295856a1、us2014/0211605a1、us2014/0099942a1、us2013/0244644a1、us20130053024a1和us20120295611a1中公开。这些方法检测指示存在蜂窝中断的信号。该方法例如通过调整至少一个相邻基站的发射功率和/或天线倾斜自动地对该情况做出反应。
在本发明的实施方案中,可以在计划的维护操作之前向中断管理系统提供人工的蜂窝中断指示,使得网络将在维护之前已经自动适应由于维护而发生的蜂窝中断。在该实施方案中,当然,人工的蜂窝中断指示须考虑到受计划的维护操作影响的网络元件而给出。在这样的实施方案中,网络在任何实际的蜂窝中断发生之前模拟蜂窝中断情况,并且因此可以为蜂窝终端提供更好的服务质量和带宽。
在计划维护时间时,可以使用所使用的蜂窝中断管理方案的知识来确定替代的网络拓扑图的替代网络配置。系统可以根据网络通信量估计值和由蜂窝中断管理方案给出的替代网络配置来确定维护时间。
蜂窝中断管理方案还可以包括通过重新配置暂时减小信道带宽。自适应的带宽可以是传输带宽和/或接收带宽。
可以对传输带宽进行适应性调整,使得在蜂窝中断期间,所选蜂窝的信道带宽自动减小并自适应地增加所选蜂窝的覆盖范围且补偿网络中的覆盖盲区。也可以从在维护中的蜂窝向相邻的蜂窝传送服务,例如通过使用蜂窝之间的强制切换来进行。
蜂窝中断管理方案还可以包括单独的或与其他管理方案一起的天线倾斜和/或发射功率自适应。
在一实施方案中并且在第一实施例中,社交链路(sl)分析软件通过pem实时地不断监视网络运行。sl可以考虑ne日志、ne警报和ne监控数据,以及天气数据、通信量数据、通信量估计值、ne物理环境数据诸如温度和/或湿度、ne维护数据、ne配置、ne软件版本、ne在网络中的位置、网络拓扑等。
在第一实施例中,sl估计出某个节点正发出在不久的将来会故障的指示。sl分析最有可能的故障,并且估计简单的远程重新启动将修复该故障。sl将信息转发到重新启动部件的网络控制元件。
在第二实施例中,sl通过其他馈送实时地不断监控网络运行。sl估计某个节点正发出在不久的将来会故障的指示。sl分析最可能的故障,并且估计简单的远程重新启动将修复该故障。sl估计在部件将变得不受控地故障之前有多长的时间进行受控的重新启动。sl估计重新启动将对qos做什么。sl估计何时是进行重新启动的最佳时间,使得在部件发生故障之前进行重新启动,但却减少对qos的影响。sl调度重新启动并指示网络控制元件,以使网络控制元件可以在调度时进行重新启动。
在第三实施例中,sl通过其他馈送——包括来自维护历史的维护数据的——实时地不断监控网络运行。sl估计某个节点正发出在不久的将来会故障的指示。sl分析最有可能的故障,并估计将需要进行站点访问。sl估计在部件将变得不受控地故障之前有多长时间。sl还估计实际问题是什么以及该问题需要何种类型的动作。基于该信息,维护还可以确定在维护期间需要做何种备件/何种系统升级。sl估计将对qos做何种站点访问和所需的维护操作。sl将最后两者与工作命令(workorder,工单)调度相结合,并以最低的成本和对网络通信量的最低影响来估计最佳的可能维护窗口。
在第四实施例中,sl通过网络元件的报告实时地不断监控网络运行。sl估计某个节点正发出在不久的将来会故障的指示。sl分析最有可能的故障,并估计将需要进行站点访问。sl估计在部件将变得不受控地故障之前有多长时间。sl还估计实际问题是什么以及该问题需要何种类型的动作。基于该信息,维护还可以确定需要做何种备件/何种系统升级。例如,sl将此信息与从库存(inventory,详细目录)程序收集的网络拓扑信息相结合,并以更大的规模估计所需的维护对网络的影响。sl还可以分析如何通过重新配置网络和/或重新路由通信量/服务来最小化对网络能力的影响。sl估计将对qos做何种站点访问和维护。sl将最后三者与工作命令调度相结合,并以最低的成本和对网络通信量的最低影响来估计最佳的可能维护窗口。sl指示重新安排工作命令调度,并通知对于维护订单所需的更换/升级部分。sl还在维护访问的同时对自动网络配置/重新路由进行调度,以最小化对qos的影响。
在另一实施例中,重新路由/重新配置也可以作为单独的动作使用。这可能涉及站点访问。
在一实施方案中,重新路由/重新配置也可以在未预期到的部件故障的情况下被用作紧急措施,以最小化对qos的影响。
可能的故障的示例包括在适当分析时表明问题的根本原因实际上是电源无法为ne提供足够电力的警报。这种供电缺乏引起问题。简单的电源更换将解决这些问题,但如果没有快速更换电源,该电源该可能使部件断开。而且,在没有适当分析的情况下,不可能知道情况如何。操作人员可能会在意识到真正的问题是缺乏足够的电力之前多次以修复部件告终。
故障的示例还包括温度相关问题和水分相关问题,这些问题可以通过对各个ne周围的环境系统进行对应的投入(investment)来消除。有时,空气中的杂质也会引起问题,这可以例如通过更换空气过滤器来解决。
图2示出了根据一实施方案的过程的概述。根据图2,网络元件201将原始数据发送221到严重警报预测过程202,该严重警报预测过程使用数据挖掘和估计算法从由网络元件201发送211的大数据集中获得相关数据。过程202将相关数据发送212到网络元件级结果过程203,该网络元件级结果过程产生相关网络元件的倾向分数和洞察。网络元件级结果过程203将产生的数据的相关部分发送213到过滤和相关过程205以进一步处理。网络拓扑过程204将网络拓扑图发送214到过滤和相关过程205,该过滤和相关过程将另外的参数添加到由网络元件级结果过程203处理的数据。这样的另外的参数可以包括例如关于ne位置的数据、ne角色、ne维护历史和/或受到可能的故障影响的服务。过滤和相关过程205将丰富的数据发送215到评估过程207。评估过程对数据进行评估并确定哪些ne需要修复。然后,在评估过程207,将相应的指示发送218给工作命令过程208,该工作命令过程确定需要维护操作的实际列表,估计维护间断(break,中断)长度,并从网络拓扑过程204获得替代的网络拓扑图。工作命令过程208还从oss/bss(运行支持系统/业务支持系统)获得网络通信量估计值,并选择实际维护时间。另外,在所选择的维护时间之前,工作命令过程208自动地向网络元件201发送219配置消息,以将网络元件配置为替代网络配置。
图2还示出了严重警报预测过程202将相关数据发送216到报告和网络级聚合过程206,该报告和网络级聚合过程生成关于网络的运行的网络级分析。报告和网络级聚合过程206将其相关分析发送217到评估过程207。这些分析在评估过程207的评估中以及工作命令过程208生成的实际计划中也可以被考虑。
根据一实施方案,工作命令过程208还可以为维护队创建工作命令并且考虑他们工作的调度。工作命令过程208还可以包括工作命令中所需的信息,使得维护队知道如何平稳且快速地解决问题。如果需要,工作命令208也可以指示需要订购哪些备件。
根据一实施方案,严重警报预测过程202利用在美国纽约州纽约市牛津大学出版社于2002年出版的isbn:0-19-511831-6的第891-896页的《数据挖掘与知识发现手册》中公开的算法中的至少一个,该手册讨论了根据网络警报序列预测电信设备故障的不同的方法。根据另一实施方案,严重警报预测过程202利用改进的算法。
根据一实施方案,在图1的pem中执行过程202、203、205、206、207和208。
图3示出了根据一实施方案的过程。图3示出了当前拓扑图(ctm)501和估计的拓扑图(etm)504,该估计的拓扑图是不具有在维护中的ne的替代拓扑图。ctm是从库存系统获得的。etm也是从库存系统获得的,但是其经过处理以考虑到计划的维护操作。在一实施方案中,仅从ctm除去受影响的ne。在另一实施方案中,在库存系统中用关于受影响ne的信息来处理etm。在又一实施方案中,从图2的评估过程207将该信息发送到库存系统。在替代实施方案中,评估过程207将创建etm。
在另一实施方案中,从库存系统获得ctm501并将其发送到第一估计过程502,该第一估计过程基于以通信量的预测模型为基础的可能通信量的估计值来估计拓扑顶部的通信量模式。第一估计过程502产生511ctm的第一通信量估计值503。第一通信量估计值503表明在ctm下的网络的通信量流。在一些实施方案中,该第一通信量估计值503可以形成用于etm的基准。etm504也从库存系统获得,etm已被确定为不具有在维护中的一个或多个ne。将etm发送513到第二估计过程505,该第二估计过程从第一估计过程502获得512第一通信量估计值503。第二估计过程505生成在etm下的网络的第二通信量估计值506。然后,该第二通信量估计值506用于优化etm,使得网络也可以根据etm中的第二通信量估计值506来供应通信量。根据一实施方案,这时可以进行进一步检查以检查当与由ctm设置的基准相比时etm可以多好地供应估计的通信量。如果与阈值相比存在较大的差距,则可以如前所述的确定第二替代网络拓扑图并将其作为潜在的etm进行检查。如果存在一个以上可能的网络拓扑可用且不具有受影响的一个或多个ne,这可能是有用的。
在第二通信量估计值506和etm准备好之后,将配置指令发送516到ne,以在维护期间获得具有新配置507的一组ne。
在一实施方案中,在第一通信量估计值503的网络优化模型与ne的当前配置和设置之间进行比较515,并且如果需要,发出一个或多个重新配置命令。
在维护间断结束后,可以根据第一通信量估计值503的网络优化模型或根据先前的ctm重新配置ne。
在一实施方案中,当ne从框503和框506接收到矛盾的配置消息时,ne针对适当的设置对工作命令过程208、服务网关s-gw或其他适当的网络管理节点进行查询。同时,ne可以设置标志,使得系统可以在将来的情况下考虑到对网络进行优化而更全面地监控ne和相关联ne的运行。
根据一实施方案,一种提高电信网络的服务质量的方法包括:
从电信网络的多个网络元件(ne)接收技术数据,该技术数据包括警报消息,并且可选地包括关于ne的运行和/或ne的运行环境的其他数据;
处理从网络元件接收的数据,以产生每个网络元件的故障预测度量;
基于故障预测度量来识别具有高故障风险的至少一个网络元件;
对于每个识别的网络元件:
分析所接收的数据并准备预测,所述预测包括预测的故障类型、预测的故障时间、防止所预测的故障所需的维护操作的列表以及估计的维护间断长度,所述估计的维护间断长度是执行维护操作所需的时间的估计值;
从网络服务和资源库存系统获得最新的网络拓扑图,该最新的网络拓扑图包含所识别的网络元件;
确定不具有所识别的网络元件的替代网络拓扑图;
准备在比估计的维护间断长度长并且在预测的故障时间之前发生的时间段内的网络通信量估计值;
使用所准备的网络通信量估计值来选择维护操作的时间,使得在维护间断期间,估计的网络通信量值低于平均值;
基于所述网络通信量估计值来确定用于所述替代网络拓扑图的替代网络配置;以及
在所选择的维护时间之前,将网络元件自动配置为替代网络配置。
可以在上面参照图1讨论的系统环境中执行上述实施方案。根据另一实施方案,使用参照图2和/或图3描述的过程。
在一实施方案中,电信网络是蜂窝网络,并且网络元件包括多个基站,每个基站具有一覆盖区域,在该覆盖区域内该电信网络服务于用户设备ue,诸如移动终端设备例如移动电话。
在一实施方案中,蜂窝网络是根据码分多址(cdma)标准、宽带码分多址(wcdma)标准、长期演进(lte)标准、长期演进高级(lte-a)标准和/或全球移动通信系统(gsm)标准的网络,包括根据通用移动电信系统(umts)标准的网络。
在一实施方案中,基站包括具有可自动配置的覆盖区域的可配置基站。
在一实施方案中,可配置基站包括具有可调节无线电波束的基站。
在一实施方案中,网络的自动配置或重新配置包括指示至少一个蜂窝暂时减小其信道带宽。
在一实施方案中,网络的自动配置或重新配置包括指示暂时减小至少一个蜂窝的信道带宽并自适应地增加该至少一个蜂窝的覆盖范围,以便补偿由维护操作在网络中引起的覆盖盲区。
在一实施方案中,网络的自动配置或重新配置包括命令蜂窝之间的强制切换。这可以用于将一些ue的通信量从一蜂窝传送到另一蜂窝。
在一实施方案中,网络的自动配置或重新配置包括指示服务于蜂窝的天线的自动天线倾斜。这可以用于重新形成覆盖区域,例如使得相邻蜂窝覆盖在维护中的蜂窝的区域。
在一个实施方案中,网络的自动配置或重新配置包括指示蜂窝中的自动发射功率自适应。
在一实施方案中,网络的自动配置或重新配置包括指示飞行中(flying)中继器补偿由维护操作在网络中引起的覆盖盲区。
在一实施方案中,技术数据包括事件消息。
在一实施方案中,在图1所示的pem中接收来自多个网络元件的技术数据,如同样在图2中通过从ne201到过程202的箭头211等所示的。
在一实施方案中,例如在pem中处理所接收的数据以产生每个网络元件的故障预测度量。这可以由图2的严重警报预测过程202和网络元件级结果过程203执行。
在一实施方案中,由图2的评估过程207识别具有高故障风险的至少一个网络元件。这是基于由过程202、203和205提供的故障预测度量做出的。
在一实施方案中,针对每个识别的网络元件执行以下步骤:
·图2的评估过程207分析所接收的数据并准备包括预测的故障类型和预测的故障时间的预测。
·图2的评估过程207准备所需的维护操作列表和估计的维护间断长度。
·图2的评估过程207从网络服务和资源库存系统获得最新的网络拓扑图。该最新的网络拓扑图包含所识别的网络元件,并且在图3的实施方案中也被称为ctm。
·图2的评估过程207确定或指示网络服务和资源库存系统确定不具有所识别的网络元件的替代网络拓扑图。该替代网络拓扑图在图3的实施方案中也被称为etm。
·评估过程207准备在比估计的维护间断长度长并且在预测的故障时间之前发生的时间段内的网络通信量估计值。
·图2的评估过程207使用准备的网络通信量估计值来选择维护操作的时间。对该时间进行选择,使得在维护间断期间,估计的网络通信量低于平均值,从而降低维护的影响。在一实施方案中,选择过程还可以找到最小的估计的通信量时间并选择其作为维护时间。如果维护操作还包括需要人类操作者参与的步骤,则选择过程可以考虑到这样的资源的可用性。在若干ne需要修复的情况下,选择过程也可以协调维护间断,使得以适当的顺序进行修复。这也可以防止需要彼此补偿对方的中断的ne不会同时被修复,而是按顺序进行修复。
·基于评估过程207中的网络通信量估计值来确定用于替代网络拓扑图的替代网络配置。
·在所选择的维护时间之前,图2的工作命令过程208将网络元件自动配置或重新配置为替代网络配置。在一实施方案中,这由图1的pem完成,并且由图3中的箭头516描绘出。
在一实施方案中,可以在参照图3描述的库存系统中执行图2的网络拓扑过程204。在说明书和权利要求中,库存系统也被称为网络服务和资源库存系统。
根据一实施方案,提供了一种计算机程序产品,其被配置成使连接至电信网络或形成电信网络的一部分的计算机系统执行上述方法中的任何一种。
根据一实施方案,提供了一种用于电信网络的计算机系统,其中,该系统包括适于执行上述方法中的任何一种的装置。
根据一实施方案,蜂窝无线电接入网络适于执行上述方法中的任何一种。
以上描述仅仅是用于例示本发明,并不意在限制由权利要求提供的保护范围。权利要求还意在涵盖其等同物,而不是从字面上进行解释。