基于ahp
‑
模糊综合评价的低功耗物联网传输可靠性评估方法
技术领域
本发明属于无线物联网技术领域,尤其涉及基于ahp
‑
模糊综合评价的低功耗物联网传输可靠性评估方法。
背景技术:无线物联网特别是工业物联网,考虑到很多智能传感设备都是电池供电的,不希望经常更换,因此低功耗特性是物联网节点设备的需求。但是,很多现有的低功耗物联网在实际应用中,一味地追求低功耗而使得网络的可靠性不能得到保证,从而影响数据的传输,导致设备之间包接受率降低、数据重传次数的增加,从而增加了不必要的能耗,影响了整个物联网系统的工作效率。在现有低功耗物联网的相关研究中,大部分评价传输可靠性的方法只通过少数常见的可量化的性能指标来衡量传输可靠性,比如丢包率、信噪比等,对低功耗物联网的传输可靠性没有一个完整且贴合工程实际的评价体系。因此,系统工程对低功耗物联网的传输可靠性的进行定期的评估显得尤为重要。且实际工程环境比理论环境更为复杂,涉及到多个可量化和不可量化的指标,此时,一种可靠的、全面的、科学的评估方法亟待提出并推广应用。
技术实现要素:本发明的目的就在于为了解决上述问题而提供基于ahp
‑
模糊综合评价的低功耗物联网传输可靠性评估方法,包括步骤:步骤1:确定ahp
‑
模糊综合评价传输可靠性指标体系,建立ahp层次结构模型,以传输可靠性为目标层a,下设主准则层b和分准则层c1、c2、c3;步骤2:确定综合评价指标集u和评语集v,确立各指标的等级划分区间;步骤3:计算得到准则层和分准则层的权重向量w,并进行一致性检验;步骤4:确定可靠性评估的模糊综合评价隶属度矩阵g;步骤5:计算低功耗物联网传输可靠性的综合评价结果值s。本发明的有益效果在于:(1)本发明方法包括指标体系和指标体系权重的确定,评语集的等级划分和隶属度的确定,以及传输可靠性的综合评估;(2)该方法参考zigbee技术物理层的射频性能和数据链路层的可靠性和低功耗性能,提取从芯片和数据包中获取到的数据,从节点设备、传输信道和外界环境三个方面对低功耗物联网的传输可靠性进行评估,形成多维度、多层次的性能指标体系;(3)运用ahp
‑
模糊综合评价方法,结合低功耗物联网的传输特性,针对端设备和协调器之间的数据传输工程,将定性与定量的指标数据相结合,用于实现低功耗物联网的传输可靠性分析与传输质量监测,保证在物联网中充分利用无线资源的同时保持低功耗与可靠性的平衡。
附图说明
图1是本发明方法的步骤流程图;图2是步骤1中确定ahp
‑
模糊综合评价传输可靠性指标体系;图3为个人局域网络中端节点设备和协调器之间数据传输的过程;图4为ahp层次结构模型图;图5为表1关于可靠性指标的度量范围和符号表示;图6为表2关于评语集等级打分;图7为表3关于低功耗物联网可靠性指标的等级划分;图8为表4关于判断矩阵a
ij
的标度方法;图9为表5关于ahp给定的一致性指标ri;图10为分准则层可靠性指标隶属度。
具体实施方式
下面结合附图对本发明作进一步说明:如附图1所示,本发明提供的基于ahp
‑
模糊综合评价法的物联网传输可靠性评估方法,利用了层次分析法和模糊综合评价方法,全面考虑了低功耗物联网端节点设备和协调器之间传输的各种因素对可靠性的影响,建立了ahp
‑
模糊综合评价传输可靠性指标体系。附图1为该方法完整的步骤流程图。该方法将定性与定量指标相结合,把对象指标的定性表示转化为定量表示,大大减少决策中的许多不确定因素,简化了系统中各个数据的大量分析,减少了计算量,是一种更科学、更准确、更全面的方法。本发明运用该评价方法所得到的关于低功耗网络的传输可靠性评价结果,可以综合且准确地反映出传输可靠性的好坏程度。具体步骤如下:步骤1:确定ahp
‑
模糊综合评价传输可靠性指标体系。建立ahp层次结构模型,以传输可靠性为目标层a,下设主准则层b和分准则层c1、c2、c3;步骤2:确定综合评价指标集u和评语集v,确立各指标的等级划分区间。其中,u={u_1,u_2,
…
,u_i},其中i=1,2,
…
,n,n为指标个数。评语集v={v_1,v_2,
…
,v_j},其中i=1,2,
…
,m,m为评价等级的个数,v_i为针对评价指标对象的评价等级。步骤3:计算各个指标的权重系数,得到各个层的权重向量w,并进行一致性检验。步骤4:确定可靠性评估的模糊综合评价隶属度矩阵g。步骤5:计算低功耗物联网传输可靠性的综合评价结果值s。在上述实施步骤中,步骤1确定ahp
‑
模糊综合评价传输可靠性指标体系。图2给出了本发明中建立的可靠性指标体系,具体包括:步骤1
‑
1:图3给出了zigbee的个人局域网络(personal area network,pan)中,端节点设备和协调器之间的数据传输过程,再根据低功耗物联网特性,参照zigbee底层协议规范和实际工程环境,确定影响传输可靠性的因素,确定指标对象;步骤1
‑
2:纵向维度建立ahp层次结构模型,目标层为传输可靠性,用a表示;主准则层包括:节点设备b1、传输信道b2、外界环境b3;分准则层包括:接收信号强度指示c
11
、数据包错误率c
12
、链路质量指示c
13
、丢包率c
21
、传输距离c
22
、传输时延c
23
;电磁干扰c
31
、节点数量
c
32
、障碍物遮挡c
33
。其中,步骤1
‑
2中的指标c
11
:接收信号强度指示rssi,是衡量发射功率的指标。根据本文所用芯片efr32mg12的硬件数据手册显示,在射频中心频率为2.45ghz的条件下,信号接收强度指示rssi取值的有效范围为[
‑
98dbm,5dbm]。其中,步骤1
‑
2中的指标c
12
:数据包错误率per的表达式为:式中,p
t
为发射功率,p
r
为接受功率。数据包错误率较高说明发送数据包的设备存在软硬件问题,影响传输可靠性。其中,步骤1
‑
2中的指标c
13
:链路质量指示lqi是衡量所接收的数据包的强度和质量,链路质量指示越大,设备可靠性越高。取值范围限制在0~255,lqi等于0的时候链路质量最差,等于255时最好。其中,步骤1
‑
2中的指标c
21
:丢包率plr是常用的衡量网络系统可靠性的参数。丢包率越高,包接受率越低,重传越多,信道质量越差,可靠性越低。丢包率的表达式如下:式中,rd表示接收端收到的数据包数,sd表示发送端发送的数据包数。包接受率(prr)是对应丢包率而出现的概念。指的是接收端成功收到的数据包比上发送端总共发送的数据包。其中,步骤1
‑
2中的指标c
22
:传输距离。设备之间的位置差异主要导致了设备之间的传输距离,路径损耗主要受传输距离的影响。发射功率不变的情况下,传输距离越大,路径损耗越多,功率折损越大,接收端的rssi越小。所以通常在设置设备的发送功率时,必须考虑发送节点和接收节点之间的传输距离。其中,步骤1
‑
2中的指标c
23
:传输时延,指的是发送端发送数据包之后,接收端接收到该数据包总共需要的时间,时延越长说明传输效率越低,可靠性越低。在分析低功耗网络的传输时延性能时,一般采用的是网络的平均传输时延。其中,步骤1
‑
2中的指标c
31
:电磁干扰,是一个不可忽视的影响因素,信道中同频段的其他信号的传输或者噪声,都会影响信号传输的可靠性。例如在我国zigbee网络和wi
‑
fi、蓝牙都在同一个传输频段。其中,步骤1
‑
2中的指标c
32
:节点数量节点数量越大,信号之间发生碰撞的概率也会增加,导致退避重传的概率增加。这种间接的影响关系是很多低功耗网络可靠性的研究容易忽视的。其中,步骤1
‑
2中的指标c
33
:障碍物遮挡。设备之间的位置差异也造成了设备之间是否有障碍物遮挡。如果存在障碍物(如隔墙等)而发射功率过小,会引起丢包率增大或时延增加的现象,甚至会增加重传概率。在上述实施步骤中,步骤1确定ahp
‑
模糊综合评价传输可靠性指标体系中,如附图5所示,表1给出了所有指标的含义、符号表示、取值范围等信息。表1可靠性指标的度量范围和符号表示。在上述实施步骤中,步骤1建立ahp层次结构模型,以传输可靠性为目标层a,下设
主准则层b和分准则层c1、c2、c3中,ahp层次结构模型如附图4所示,各个指标仅用指标符号表示。在上述实施步骤中,步骤2中确定综合评价指标集u和评语集v,确立各指标的等级划分区间,具体包括:步骤2
‑
1:准则层b的指标集为:u
b
={b1,b2,b3}={节点设备,传输信道,外界环境};分准则层c1指标集为:u
c1
={c
11
,c
12
,c
13
}={接收信号强度指示rssi,数据包错误率per,链路质量指示lqi};分准则层c2指标集:u
c2
={c
21
,c
22
,c
23
}={丢包率plr,传输距离,传输时延};分准则层c3指标集:u
c3
={c
31
,c
32
,c
33
}={电磁干扰,节点数量,障碍物遮挡};步骤2
‑
2:评语集v={v1,v2,
…
,v
j
},其中i=1,2,
…
,m,m为评价等级的个数,v
i
为针对评价指标对象的评价等级,定义为5个层级,包括第一层级、第二层级、第三层级、第四层级与第五层级,设满分100,对五个等级分别打分;如附图6所示,表2评语集等级打分;步骤2
‑
3:根据实际实验数据和协议规范,对因素集中的各个指标划的取值范围分为步骤2
‑
2中5个等级对应的量化区间。如附图7所示,表3低功耗物联网可靠性指标的等级划分。在上述实施步骤中,步骤3中计算各个指标的权重系数,具体包括:步骤3
‑
1:构造各层的判断矩阵,包括主准则层b对目标层a的判断矩阵r_ab、分准则层c对主准则层b的判断矩阵判断矩阵r的一般形式为:式中,a
ij
是通过标度得到的指标间重要性程度比,且满足采用标度方法将同一层指标两两比较,得到判断矩阵的各个元素a
ij
。如附图8所示,表4判断矩阵a
ij
的标度方法。步骤3
‑
2:计算判断矩阵r
ab
、的最大特征值λ
max
和对应的特征向量,经归一化后得到各层指标的权重向量为w
ab
、、且且且w
c11
+w
c12
+w
c13
=1;且w
c11
+w
c12
+w
c13
=1;且w
c31
+w
c32
+w
c33
=1;得到的权重比是底层每一个指标元素对高层准则的重要性程度,实现了将定性因
素转化为定量表示的过程。步骤3
‑
3:经步骤3
‑
2得出的各层元素所占权重比,ahp能否将其作为指标元素的权重向量,需要一致性检验。根据公式其中ri是ahp给定的一致性指标;当一致性比率cr<0.1,此时我们认为该判断矩阵的各个元素值符合矩阵的一致性。如附图9所示,表5为ahp给定的一致性指标ri。在上述实施步骤中,步骤4中确定可靠性评估的模糊综合评价隶属度矩阵g,矩阵g的一般表达式为:式中,g
ij
表示第i个指标元素对于第j个等级的隶属程度,i=1,2,
…
n,j=1,2,
…
m,本指标模型中n=3,m=5,取值范围在[0,1]。确定g
ij
的表达式为:式中,ρ
ij
表示第i个指标元素属于该等级j的取值频率,x
i
表示第i个指标对象的取值。进一步地,前述步骤5中计算得到低功耗物联网传输可靠性的综合评价结果值s,具体计算公式为:s=wθg; (4)式中w和g分别是各个准则层指标的权重向量和隶属度矩阵,θ选用加权平均型算子该算子的计算公式为其中s
j
表示第j等级的评价系数,w
i
表示第i个指标的权重,g
ij
表示各个指标的隶属度;最后再用s
j
生成的矩阵点乘对应的评价等级分数矩阵p=p1,p2,,
…
,p
m
,本发明中p=(90,80,70,60,50)。得到最后综合评估结果s=w
·
g
·
(p^t)。从分准则层c1、c2、c3开始,计算每一个层的评价结果分数最后得到目标层a的综合评价结果s
a
,结果是一个满分为百分制的分值,作为低功耗物联网的传输可靠性的定量评估结果。针对本发明方法的实施例,我们在实验室布置了一个具备星型拓扑结构的低功耗zigbee网络进行可靠性评估模型的验证。网络的中心节点是协调器模组,网络的端节点设置了8个不同功能的端设备,其中包括2个智能插座、3个灯设备、2个红外传感器和1个温湿度传感器。上述8个端设备位置各不相同,距离范围为实验室内,与协调器的距离不超过8m。另外还有1个设计的传输可靠性检测模块设备,负责将可靠性指标参数传送给协调器。根据实验测试结果,得到各个可靠性指标的隶属度,基于本发明方法,计算该低功耗物联网的可靠性评估结果。根据上述步骤3和式(1),对于准则层b之于目标层a的ahp判断矩阵为
根据上述步骤3和式(1),对于分准则层c之于准则层b的ahp判断矩阵分别为
[0010]
通过上述步骤3和上述判断矩阵求得各层的权重向量依次为:w
ab
=(0.5278,0.3325,0.1396),=(0.5278,0.3325,0.1396),表6各个判断矩阵的一致性检验结果。四个判断矩阵均通过一致性检验。根据实验测试结果,依照表3低功耗物联网可靠性指标的等级划分,得到分准则层各个可靠性指标的隶属度划分,如表5所示。如附图10所示,表7分准则层可靠性指标隶属度。由上述步骤4、表7、式(2)和式(3)可得分准则层之于准则层的的隶属度矩阵为:由上述步骤4、表7、式(2)和式(3)可得分准则层之于准则层的的隶属度矩阵为:由上述步骤4、表7、式(2)和式(3)可得分准则层之于准则层的的隶属度矩阵为:则根据上述步骤5和式(4)求得:则根据上述步骤5和式(4)求得:则根据上述步骤5和式(4)求得:则基于ahp
‑
模糊综合评价的低功耗物联网传输可靠性评估结果为:当提高设备的发射功率时,可靠性评估结果分值为:在低功耗物联网环境中,利用本发明方法检测网络的传输质量,定义一个ahp
‑
模糊综合评价的可靠性阈值,再将求得的可靠性量化分值和阈值进行比较。如果高于阈值,则认为该无线物联网的可靠性得到了保证;反之,网络很可能会因为可靠性较低导致重传次数的增加,从而增加不必要的功耗,系统或技术员应采取必要的优化策略提高可靠性,降低功耗。本发明方法包括指标体系和指标体系权重的确定,评语集的等级划分和隶属度的确定,以及传输可靠性的综合评估。该方法参考zigbee技术物理层的射频性能和数据链路层的可靠性和低功耗性能,提取从芯片和数据包中获取到的数据,从节点设备、传输信道和
外界环境三个方面对低功耗物联网的传输可靠性进行评估,形成多维度、多层次的性能指标体系。运用ahp
‑
模糊综合评价方法,结合低功耗物联网的传输特性,针对端设备和协调器之间的数据传输工程,将定性与定量的指标数据相结合,用于实现低功耗物联网的传输可靠性分析与传输质量监测,以保证在物联网中充分利用无线资源的同时保持低功耗与可靠性的平衡。本发明具有以下优点:(1)本发明方法包括指标体系和指标体系权重的确定,评语集的等级划分和隶属度的确定,以及传输可靠性的综合评估;(2)该方法参考zigbee技术物理层的射频性能和数据链路层的可靠性和低功耗性能,提取从芯片和数据包中获取到的数据,从节点设备、传输信道和外界环境三个方面对低功耗物联网的传输可靠性进行评估,形成多维度、多层次的性能指标体系;(3)运用ahp
‑
模糊综合评价方法,结合低功耗物联网的传输特性,针对端设备和协调器之间的数据传输工程,将定性与定量的指标数据相结合,用于实现低功耗物联网的传输可靠性分析与传输质量监测,保证在物联网中充分利用无线资源的同时保持低功耗与可靠性的平衡。本发明的技术方案不限于上述具体实施例的限制,凡是根据本发明的技术方案做出的技术变形,均落入本发明的保护范围之内。