基于qam和mppm的可见光通信方法及其系统的制作方法
【技术领域】
[0001]本发明涉及可见光通信技术,特别涉及一种QAM和MPPM的可见光通信方法及其系统,本发明是一种正交振幅调制技术与多脉冲位置调制技术相结合的双重调制技术及实现数据收发的方法。
【背景技术】
[0002]近年来,被誉为“绿色照明”的半导体照明技术迅速发展。LED具有效率高、价格低、寿命长、绿色环保等优点将取代白炽灯等传统照明光源,被广泛用于照明、显示等领域。与此同时,白光LED更具有调制性能好、响应灵敏度高等特性,可以将信号以人眼无法识别的高频加载到LED灯具上进行传输。使白光LED从照明领域扩展到通信领域,进而催生出一门能够实现照明与通信一体化的新兴无线通信技术一一可见光通信技术。
[0003]与传统的红外和无线通信相比,可见光通信具有发射功率高、无电磁干扰、无需申请频谱资源以及信息的保密性等优点。然而,可见光通信仍然面临不少挑战,其中一方面是:通信系统存在多个LED光源,不同的点光源对应着不同的光路径,而光路径间信号传输的延迟会产生码间干扰;同时,当系统数据传输速率比较高时,由于LED带宽的限制,会造成一个信号的影响扩展到相邻信号上,产生码间干扰而使系统误码率大大提升。
[0004]另一方面,白光LED主要分为两类,荧光粉LED和红绿蓝LED,荧光粉LED其原理是利用蓝光芯片激发黄色荧光粉以产生白光。如图6所示,为荧光粉LED的光谱曲线,可知荧光粉LED的光谱特性分为蓝光部分和黄光部分。其中,蓝光部分由电源直接驱动,响应速度比较快,带宽很高;而荧光粉属于二次驱动,响应速度慢,带宽较窄,因此不同光谱的光在响应速度上存在着差异。若采用白光通信则速率受限于荧光粉的响应时间,限制了系统的数据传输速率;若采用滤光片滤去黄光部分,针对快速响应的蓝光进行通信,则限制了系统的通信距离。
【发明内容】
[0005]本发明的首要目的在于克服现有技术的上述缺点与不足,提供一种QAM和MPPM的可见光通信方法,该可见光通信方法充分利用了白光LED的光谱特性和响应特性,实现了一种基于荧光粉LED的QAM与MPPM相结合的双重调制技术。
[0006]本发明的另一目的在于克服现有技术的上述缺点与不足,提供一种实现所述QAM和MPPM的可见光通信方法的系统,该系统在光发射端,通过控制不同光谱的光,在光接收机端利用滤光片区分出不同的光谱信号,实现多路并行通信。在激励脉冲序列的时间维度上采用MPPM多脉冲位置调制,与光谱的蓝光部分相对应;在其幅度维度上进采用QAM正交幅度调制,与光谱的黄光部分相对应。以此实现不同的两路数据信息在不同的光谱上并行的传输。进一步优化了可见光通信系统信道性能,在不增加器件带宽前提下,成倍提高无线通信的质量与数据传输速率。
[0007]本发明的原理:QAM正交振幅调制就是用两个相互独立的数字基带信号对相互正交且频率相同的两路载波信号进行双边带调制,所获得的已调信号在同一带宽内频谱正交,所以可用于实现同相和正交相两路并行的数字信息传输。极大地提高了 LED频谱的利益率,提高了可见光通信系统的数据传输速率。然而随着调制阶数的增加,信号点间的距离和相位差会越来越小,使得码元符号间干扰变得越来越大,最终导致的结果是整个系统解调的难度增加,系统的抗干扰性能下降。所以,虽然理论上增加QAM调制阶数可以提高信息传输速率,但是因为误码率的增加而使通信质量下降,从而使QAM得调制阶数受到了限制。MPPM多脉冲位置振幅调制采用的是光学组编码形式,增加系统的功率利用率,抗干扰性强,其编码器上的窄脉冲形成器可以限制MPPM脉冲的带宽从而减小该MPPM脉冲对相邻频带内信号造成的干扰,即降低码间干扰;同时,也可以通过在相邻脉冲间插入延时时隙可以减弱码间干扰对系统带来的影响。
[0008]本发明的首要目的通过以下技术方案实现:一种基于QAM和MPPM的可见光通信方法,包括以下步骤:
[0009]步骤1、数据流经过常规的编码,交织,串并转换等基带系统的预处理形成二进制码流;所述的二进制码流经过正交振幅调制后形成QAM信号;
[0010]步骤2、数据流经过常规的编码,交织,串并转换等基带系统的预处理形成二进制码流;所述的二进制码流经过多脉冲位置调制后形成MPPM信号;
[0011]步骤3、传输子系统为传输光信号的自由空间;所述光信号由白光LED发射;所述白光LED由QAM与MPPM两个信号同步控制,QAM信号通过控制LED驱动电压进而实现对光强幅度的调控;MPPM信号控制LED驱动电流的通断;
[0012]步骤4、在接收子系统中存在两个光信号通道;所述光信号通道分为蓝光接收通道与黄光接收通道;所述蓝光接收通道通过蓝色滤光片获取蓝光信号,经过信号处理还原MPPM信号;所述黄光接收通道通过黄色滤光片获取黄光信号,经过信号处理还原QAM信号;
[0013]步骤5、所述MPPM信号与QAM信号经过解码处理后形成对应的二进制数据流;所述的二进制数据流经数据合并器形成最终获得信号。
[0014]在步骤I中,所述的正交振幅调制包括以下步骤:
[0015]步骤11、所述的二进制码流经过串/并变换器输出两路并行码流序列;所述的两路并行码流序列的速率减为所述二进制码流的一半;
[0016]步骤12、所述的两路并行码流序列分别经过2电平到L电平转换,形成L电平的基带信号,其中,L为正整数;
[0017]步骤13、所述的L电平的基带信号经过基带成形滤波器形成X(t)和Y(t)信号;
[0018]步骤14、所述的X(t)和Y(t)信号分别和频率相同的同相载波以及正交相载波进行相乘运算,将最后得到的两路信号进行相加运算就得到的己调制的QAM信号。
[0019]在步骤2中,所述的多脉冲位置调制包括以下步骤:
[0020]步骤21、所述的二进制码流映射成码长为η个等间距时隙的二进制比特流,其中,η为正整数;
[0021]步骤22、在所述的η个时隙的二进制比特流中m个时隙上发送光脉冲,得到已调的MPPM信号,其中,m为正整数。
[0022]在步骤4中,所述的信号处理包括以下步骤:
[0023]步骤41、所述的蓝光信号和黄光信号经过放大、滤波处理后,进行蓝光信号和黄光信号的解调处理;
[0024]步骤42、所述的解调处理分别为QAM解调处理和MPPM解调处理;所述QAM解调处理和MPPM解调处理的原理分别为权利要求2和权利要求3的逆过程。
[0025]本发明的另一目的可以通过以下技术方案实现:一种实现所述的基于QAM和MPPM的可见光通信方法的可见光通信系统,包括:发射子系统、传输子系统和接收子系统,其特征在于,所述发射子系统具有:QAM调制模块、MPPM调制模块、LED驱动电路和LED灯具;所述传输子系统用于把LED灯具发出的可见光信号传输给光电检测器件;所述接收子系统具有:第一光电检测器件、第二光电检测器件、QAM解调模块、MPPM解调模块和数据合并器;所述QAM调制模块、MPPM调制模块分别与LED驱动电路连接;所述LED驱动电路、LED灯具和光电检测器件依次连接;所述光电检测器件包括第一光电检测器件与第二光电检测器件;所述第一光电检测器件与QAM解调模块连接,所述第二光电检测器件与MPPM解调模块连接;所述QAM调制模块和MPPM调制模块分别产生QAM数据流和MPPM数据流;所述的QAM数据流和MPPM数据流这两路数据流发送至LED驱动电路,并通过Bais Tee模块与直流信号进行耦合,以驱动LED灯具发射光信号;所述光信号经光电转换进入接收子系统;所述接收子系统中具有蓝光接收通道和黄光接收通道;所述蓝光接收通道通过蓝色滤光片获取蓝光信号,再经过MPPM解调模块还原成MPPM信号;所述黄光接收通道通过黄色滤光片获取黄光信号,再经过QAM解调模块还原成QAM信号;所述MPPM信号与QAM信号经过解码处理后形成对应的二进制数据流;所述的二进制数据流经数据合并器形成最终获得信号。
[0026]所述LED驱动电路包括:信源、可变电阻、高速缓冲器、Bias Tee模块、直流电流源和限流电阻,所述的信源、可变电阻、高速缓冲器、Bias Tee模块和限流电阻依次连接;所述直流电流源的正极和信源连接,所述直流电流源的负极和Bias Tee模块连接;所述的BiasTee模块包括电容和电感;所述电感的一端与直流电流源的负极连接,所述电感的另一端与电容的负极连接,所述电容的正极与高速缓冲器连接;所述信源输出的电信号经过高速缓冲器传输到Bias Tee模块,所述直流电流源所输出的直流电信号与高速缓冲器所传输的信号在Bias Tee模块中进行耦合,生成耦合电信号;所述耦合电信号