一种抗菌防污金属薄膜垫的制作方法

文档序号:20188097发布日期:2020-03-27 19:21阅读:159来源:国知局
一种抗菌防污金属薄膜垫的制作方法

本发明涉及疏水材料的技术领域,更具体地说,本发明涉及一种具有优异耐久性的抗菌防污金属薄膜垫。



背景技术:

疏水材料在日常生活、工业生产和农业生产中均有许多重要应用,例如疏水材料表面通常表现出良好的抗菌作用,对大肠杆菌和金黄色葡萄球菌有明显抑制作用;另外疏水材料表面的特殊润湿性,能够表现出良好的抗污性。

理论研究表明固体表面的润湿性主要由表面自由能和表面结构的影响,根据该理论的指导,在现有技术中,通常通过控制或设计表面化学成分和表面几何结构来得到疏水表面。例如可以通过涂覆、自组装等涂覆工艺来获得氟硅烷或含氟烯烃的疏水表面,但如此形成的疏水表面耐久性较差,不易持久保留疏水性;或者通过蚀刻、转印、激光烧蚀等工艺来形成疏水表面,但工艺复杂,成本高;另外,受到荷叶等具有微纳米结构的自然材料的影响,现有技术中还公开了通过蚀刻、电镀等工艺形成“乳突状”结构,然后进一步通过涂覆氟硅烷或含氟烯烃来形成疏水表面,或者进一步通过化学气相沉积、外延工艺等形成石墨烯薄膜,来提高疏水性能,但如此形成的石墨烯薄膜与基体的粘结性较差,实用性较差。



技术实现要素:

为解决现有技术中存在的上述技术问题,本发明的目的在于提供一种抗菌防污金属薄膜垫。

本发明的抗菌防污金属薄膜垫,包括橡胶和设置在所述橡胶上的金属薄膜;其特征在于:所述金属薄膜包括金属基底,设置在所述金属基底上的nicr合金粘结层,以及设置在所述nicr合金粘结层上的nicrcn梯度涂层,所述nicrcn梯度涂层由内表面至外表面nicr的含量逐渐减少,并且所述nicrcn梯度涂层的外表面中nicr的含量为1.0wt%~20.0wt%。

其中,所述nicrcn梯度涂层外表面与水的接触角大于120°,优选大于130°。

其中,所述橡胶与所述金属薄膜的金属基底通过层压或粘结工艺结合在一起。

其中,所述金属基底为铝、铝合金、镁、镁合金、镍、镍合金、钛、钛合金或不锈钢。

其中,所述nicr合金粘结层和nicrcn梯度涂层中ni与cr的质量比为1:2~2:1。

其中,所述nicr合金粘结层的厚度为0.05μm~0.5μm。

其中,所述nicrcn梯度涂层的厚度为0.5μm~5.0μm,优选为1.0μm~3.0μm。

本发明还涉及一种抗菌防污金属薄膜垫的制备方法,其包括以下步骤:

(1)采用nicr合金靶,以非平衡磁控溅射工艺在金属基底表面沉积nicr合金粘结层,在所述nicr合金粘结层表面沉积nicrcn梯度涂层,并且通过调节通入的ar分压来得到由内表面至外表面nicr的含量逐渐减少的nicrcn梯度涂层,并且使得所述nicrcn梯度涂层的外表面中nicr的含量为1.0wt%~20.0wt%,得到金属薄膜;

(2)将所述金属薄膜通过层压或粘结工艺结合到橡胶基底上得到所述抗菌防污金属薄膜垫。

其中,在沉积nicr合金粘结层和沉积nicrcn梯度涂层时,施加的偏压为-50v~-150v。

与现有技术相比,本发明的抗菌防污金属薄膜垫具有以下有益效果:

本发明的抗菌防污金属薄膜垫具有疏水表面,具有优异的抗菌防污性能,并且耐热耐久性良好,长期放置仍能保证稳定的疏水性能。

附图说明

图1为实施例1制备的金属薄膜外表面的sem图。

图2为实施例2制备的金属薄膜外表面的sem图。

图3为实施例3制备的金属薄膜外表面的sem图。

图4为本发明的实施例制备的金属薄膜与水的接触角。

具体实施方式

以下将结合具体实施例对本发明的主题做进一步的阐述,以帮助本领域的技术人员对本发明的发明构思、技术方案有更完整、准确和深入的理解。

本发明的抗菌防污金属薄膜垫,包括橡胶和设置在橡胶上的金属薄膜。所述金属薄膜包括金属基底,所述金属基底上沉积有nicr合金粘结层,所述nicr合金粘结层上沉积有nicrcn梯度涂层,在非平衡磁控溅射系统中通过控制通入的ar的流量来调节nicrcn梯度涂层中nicr的含量,并且控制nicr的含量由内表面的50wt%~85.0wt%逐渐减少至外表面的1.0wt%~20.0wt%。通过上述工艺能够获得柱状生长的晶体结构,并在金属薄膜表面获得微纳米的复合结构,表面的cn含量高,可以获得优异的耐水性。在本发明中,所述nicrcn梯度涂层外表面与水的接触角大于120°,优选大于130°。橡胶与金属薄膜的金属基底通过层压或粘结工艺结合在一起。所述橡胶为高弹性的聚合物,可以为天然橡胶或合成橡胶,例如可以采用硅橡胶、乙丙橡胶等。所述金属基底为铝、铝合金、镁、镁合金、镍、镍合金、钛、钛合金或不锈钢等。在本发明中通过沉积nicr合金粘结层能够保证nicrcn梯度涂层与金属基体之间的粘结性,可以防止nicrcn梯度涂层从金属表面剥离,具有优异的耐久性。所述nicr合金粘结层和nicrcn梯度涂层中ni与cr的质量比为1:2~2:1,所述nicr合金粘结层和nicrcn梯度涂层中ni和cr的质量比通过采用的nicr合金靶的组成来控制。所述nicr合金粘结层的厚度为0.05μm~0.5μm。所述nicrcn梯度涂层的厚度为0.5μm~5.0μm,优选为1.0μm~3.0μm。

在本发明中,所述抗菌防污金属薄膜垫中的金属薄膜通过非平衡磁控溅射系统制备得到。使用的靶材为nicr合金靶(在以下实施例中nicr合金靶中ni和cr的含量各为50wt%),采用高纯ar作为溅射气体、高纯n2和c2h4为反应气体。所述金属基底可以为薄板或薄片状的金属,例如厚度为5μm~300μm,优选为10μm~100μm的不锈钢,首先在碱液中进行超声波清洗,水洗干燥后,放入非平衡磁控溅射系统中进行ar等离子体轰击所述金属表面,轰击时间为15min,然后通入ar溅射靶材,在金属表面沉积nicr合金粘结层,通入的ar的流量为30~100ml/min;接着通入反应气体n2和c2h4,在nicr合金粘结层表面沉积nicrcn梯度涂层,并且通过控制通入的ar的流量来调节nicrcn梯度涂层中nicr的含量,具体来说控制通入ar的流量从200~150ml/min,逐渐减少至50~75min,使得nicrcn梯度涂层中nicr的含量由内表面的50wt%~85.0wt%逐渐减少至外表面的1.0wt%~20.0wt%。在沉积nicr合金粘结层和沉积nicrcn梯度涂层时,施加的偏压为-50v~-150v,当偏压小于-50v时,不能得到致密的膜层,而当偏压高于-150v时,将会导致膜层表面的疏水性显著降低。

实施例1

以厚度为30μm的sus304不锈钢带材为金属基体,将金属基体在碱液中进行超声波清洗,除去表面的油污,水洗干燥后置于非平衡磁控溅射系统的镀膜室内,抽真空至10-3pa以下,然后通入ar等离子体轰击金属基体表面,持续时间为15min以得到清洁的表面。安装好靶材后,对金属基体施加-100v的偏压,通入流量为100ml/min的ar进行溅射沉积得到厚度约为0.2μm的nicr合金粘结层;随后通入反应气体n2和c2h4,n2的流量为20ml/min,c2h4的流量为15ml/min,并且控制ar的流量逐渐由200ml/min减少至50ml/min,时间为25min,得到厚度约为0.5μm的nicrcn梯度涂层,通过xps元素分析测定nicrcn梯度涂层的内表面的ni含量为45.1wt%,cr含量为40.2wt%(nicr合计为85.3wt%),c含量为11.1wt%,n含量为3.6wt%;外表面的ni含量为2.1wt%,cr含量为1.6wt%(nicr合计为3.7wt%),c含量为85.5wt%,n含量为10.8wt%,其表面形貌如图1所示。

实施例2

以厚度为30μm的sus304不锈钢带材为金属基体,将所述金属基体在碱液中进行超声波清洗,除去表面的油污,水洗干燥后置于非平衡磁控溅射系统的镀膜室内,抽真空至10-3pa以下,然后通入ar等离子体轰击所述金属基体表面,持续时间为15min以得到清洁的表面。安装好靶材后,对金属基体施加-150v的偏压,通入流量为100ml/min的ar进行溅射沉积得到厚度约为0.2μm的nicr合金粘结层;随后通入反应气体n2和c2h4,n2的流量为20ml/min,c2h4的流量为15ml/min,并且控制ar的流量逐渐由150ml/min减少至60ml/min,时间为25min,得到厚度约为0.5μm的nicrcn梯度涂层,通过xps元素分析测定nicrcn梯度涂层的内表面的ni含量为35.7wt%,cr含量为29.4wt%(nicr合计为65.1wt%),c含量为32.1wt%,n含量为3.8wt%;外表面的ni含量为5.3wt%,cr含量为4.8wt%(nicr合计为11.1wt%),c含量为79.3wt%,n含量为9.6wt%,其表面形貌如图2所示。

实施例3

以厚度为30μm的sus304不锈钢带材为金属基体,将所述金属基体在碱液中进行超声波清洗,除去表面的油污,水洗干燥后置于非平衡磁控溅射系统的镀膜室内,抽真空至10-3pa以下,然后通入ar等离子体轰击所述金属基体表面,持续时间为15min以得到清洁的表面。安装好靶材后,对金属基体施加-100v的偏压,通入流量为100ml/min的ar进行溅射沉积得到厚度约为0.2μm的nicr合金粘结层;随后通入反应气体n2和c2h4,n2的流量为20ml/min,c2h4的流量为15ml/min,并且控制ar的流量逐渐由200ml/min减少至75ml/min,时间为25min,得到厚度约为0.5μm的nicrcn梯度涂层,通过xps元素分析测定nicrcn梯度涂层的内表面的ni含量为44.3wt%,cr含量为40.8wt%(nicr合计为85.1wt%),c含量为13.2wt%,n含量为1.7wt%;外表面的ni含量为11.4wt%,cr含量为7.7wt%(nicr合计为19.1wt%),c含量为72.6wt%,n含量为8.3wt%,其表面形貌如图3所示。

实施例1~3制备的金属薄膜通过透射电镜能够观察到纳米晶结构,而且结合sem图可知其表面为微纳米的复合结构,表现出疏水的性能。图4示出了本发明的实施例制备的金属薄膜中nicr含量与水的接触角的关系,表明nicrcn梯度涂层外表面与水的接触角大于120°,而且实验表明金属薄膜表面对大肠杆菌和金黄色葡萄球菌有明显抑制效果,抗污性能好,并且耐热耐久性良好,长期放置仍能保证稳定的疏水性能,将其通过层压或粘结工艺结合到橡胶垫体上可以得到本发明的抗菌防污金属薄膜垫。

对比例1

以厚度为30μm的sus304不锈钢带材为金属基体,将所述金属基体在碱液中进行超声波清洗,除去表面的油污,水洗干燥后置于非平衡磁控溅射系统的镀膜室内,抽真空至10-3pa以下,然后通入ar等离子体轰击所述金属基体表面,持续时间为15min以得到清洁的表面。安装好靶材后,对金属基体施加-100v的偏压,通入流量为100ml/min的ar进行溅射沉积得到厚度约为0.2μm的nicr合金粘结层;随后通入反应气体n2和c2h4,n2的流量为20ml/min,c2h4的流量为15ml/min,并且控制ar的流量逐渐由200ml/min减少至30ml/min,时间为25min,得到厚度约为0.5μm的nicrcn梯度涂层,通过xps元素分析测定nicrcn梯度涂层的内表面的ni含量为45.0wt%,cr含量为40.3wt%(nicr合计为85.3wt%),c含量为10.9wt%,n含量为3.8wt%;外表面的ni含量为0.5wt%,cr含量为0.3wt%(nicr合计为0.8wt%),c含量为87.9wt%,n含量为11.3wt%,其与水的接触角为93°。

对比例2

以厚度为30μm的sus304不锈钢带材为金属基体,将所述金属基体在碱液中进行超声波清洗,除去表面的油污,水洗干燥后置于非平衡磁控溅射系统的镀膜室内,抽真空至10-3pa以下,然后通入ar等离子体轰击所述金属基体表面,持续时间为15min以得到清洁的表面。安装好靶材后,对金属基体施加-100v的偏压,通入流量为100ml/min的ar进行溅射沉积得到厚度约为0.2μm的nicr合金粘结层;随后通入反应气体n2和c2h4,n2的流量为20ml/min,c2h4的流量为15ml/min,ar的流量为150ml/min,时间为25min,得到厚度约为0.5μm的nicrcn涂层,通过xps元素分析测定通过xps元素分析测定nicrcn涂层外表面的ni含量为35.1wt%,cr含量为28.8wt%,c含量为32.2wt%,n含量为3.9wt%,其与水的接触角为87°。

对于本领域的普通技术人员而言,具体实施例只是对本发明进行了示例性描述,显然本发明具体实现并不受上述方式的限制,只要采用了本发明的技术方案进行的各种非实质性的改进,均在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1