一种多功能电子织物及其构筑方法及应用与流程

文档序号:21202660发布日期:2020-06-23 19:30阅读:232来源:国知局
一种多功能电子织物及其构筑方法及应用与流程

本发明涉及可穿戴技术领域,更具体的是涉及一种多功能电子织物及其构筑方法及应用。



背景技术:

随着人们生活水平以及健康意识的提升,可穿戴传感设备由于可以实施监测生理信号及健康参数,保护人体免受恶劣环境的影响,并为人们提供身体状况反馈而得到广泛关注。目前的可穿戴传感器通常为薄膜器件,容易脱落或破裂,且不具备透气性和舒适性,限制了可穿戴传感器的进一步发展。与之相比,织物电子器件具备轻柔、透气、穿戴贴合度高,且可嵌入纺织面料实现大规模生产和应用等优势,极大地满足各种便携式和可穿戴柔性电子设备的需求。通过在织物上集成功能化材料制成的多种物理传感器,能够在不影响人们日常舒适的生活下,系统地采集到与人体健康密切相关的生理信息,实现疾病的预防和穿着舒适等功能。

目前,具有压力传感功能的织物已经广泛应用于医疗设备、人机交互、动作识别等领域。国外专利wo2017119532a1公开了一种包括织物、纳米线结构以及保护层的电子织物,可用于摩擦发电等。国内专利cn110606981公开了一种基于石墨烯的柔性压力传感织物,可用于卧床患者的远程患者协助系统。国内专利cn108896217a公开了一种银纳米线/石墨烯/织物碳复合型柔性应力传感器,可用于检测包含手指、手腕、肘部、膝部、脚踝部位人体关节的运动。国内专利cn108221368a公开了一种利用高分子化合物将银纳米线固定在织物表面的导电织物,可用于可穿戴设备及智能服装。压力传感功能织物可实现呼吸频次及脉搏等信号的实时监测,透气性良好,在可穿戴电子领域具有广阔的应用前景。

然而,在实际应用中,具有单一压力传感功能的织物并不能满足人们面对恶劣环境、复杂环境时的需求。例如,当人们置身于低温环境中,需要可穿戴织物具备一定的保暖性能,以增强人体的舒适度。近年来,具有被动保温及主动加热两种温度调节模式的可穿戴织物得到了广泛的关注。美国专利us10271385b2公开了一种利用银纳米线的浸涂法在织物上获得三维涂层可加热织物。国内专利cn110267370a公开了一种保健保暖用柔性电热复合织物,包含基底层、绝缘防护层、电热层多层结构,利用丝网印刷导电油墨形成电热层。国内专利cn107880524a公开了一种石墨烯银纳米线复合柔性可折叠导电发热布,具有发热均匀、可精确控温等效果。201810494312.0公开了一种具有防辐射填料的多孔纤维,具备优异的隔热保温性能。然而,这些功能织物仅具备隔热性能,不能同步获得生理健康数据。

此外,功能织物也可应用于口罩的制作。从雾霾空气污染,到新冠病毒爆发,人们对于环境污染以及病毒造成的健康威胁越来越重视。无论是普通人的日常防护还是特殊人群及危重病患的生命监测,都对口罩及防护服等医疗产品的功能提出更高的要求。本专利提出的多功能电子织物可应用于智能口罩,具备良好的病毒及有害颗粒隔离和同步监测呼吸信号的功能,不仅避免二次感染而且方便医生及时监控危重病人的生理活动。

因此,为了满足人类对于恶劣环境的适应和针对特殊人群护理需求,开发一种多功能电子织物。



技术实现要素:

本发明的目的在于:为了解决现有可穿戴电子织物功能单一、不能满足人类对于恶劣环境的适应和针对特殊人群护理需求的技术问题,本发明提供一种多功能电子织物及其构筑方法及应用,具有轻量化及良好的透气性能,不仅能大面积实时监测人体健康数据,而且具备良好的隔热/加热、pm及病毒过滤等功能。

本发明为了实现上述目的具体采用以下技术方案:

一种多功能电子织物,包括依次堆叠而成的衬底织物层、加热层和压力传感功能层,所述加热层和压力传感功能层中间放置电绝缘层,加热层和压力传感功能层均包含金属纳米线,所述加热层表面制作电极,通过焦耳效应进行加热,所述压力传感能层由底层织物层、绝缘织物间隔层和顶层织物构成,所述加热层和压力传感层内置柔性薄膜电池,用于产生焦耳热和检测压力信号。

进一步地,所述衬底织物层具有隔离并保护人体皮肤的功能。

进一步地,所述加热层为高导电率纳米线织物,具有快速及稳定的加热性能。

进一步地,所述压力传感功能层具有高灵敏度和宽压力检测范围。

一种多功能电子织物的构筑方法,包括以下步骤:

步骤1、对衬底织物表面进行清洗,备用;

步骤2、配置不同浓度的分散均匀的金属纳米线分散液;

步骤3、把步骤1处理的衬底织物经过步骤2中得到的金属纳米线分散液处理,使衬底织物表面制备金属纳米线,得到金属纳米线织物;

步骤4、将步骤3中制备的金属纳米线织物两端制作电极,得到加热层;

步骤5、将步骤3中制备的金属纳米线织物表面制作电极;

步骤6、在步骤1中处理后的单层织物衬底表面制作多孔结构,得到织物隔层;

步骤7、将步骤6中制备的织物隔层放置于步骤5中制备的两层金属纳米线织物中间,得到压力传感功能层;

步骤8、步骤4和7中制备的压力传感功能层和加热层堆叠起来,将普通织物置于压力传感功能层和加热层之间作为电绝缘层,置于步骤1中处理后的织物衬底上表面,压力传感功能层和加热层之间内均置有柔性薄膜电池,构成多功能电子织物。

进一步地,步骤1中,所述的织物衬底包括尼龙织物、涤纶织物、麻织物、丝织物、羊毛织物、莫代尔织物和棉织物中的任意一种或至少两种的组合。

进一步地,步骤1中,清洗处理的步骤为:将织物衬底在去离子水和无水乙醇中超声清洗后使用真空干燥箱干燥。

进一步地,步骤2中,所述的金属纳米线包括但不限于银纳米线、铜纳米线、金纳米线等及其复合材料,所述金属纳米线的直径为10-1000nm,长度为1-100μm,所述金属纳米线材料应具有优异的传感和红外反射性能。

进一步地,步骤3中,在织物衬底上生长敏感层的方法包括但不限于滴涂、喷涂、旋涂、浸渍等工艺。

进一步地,步骤4中,所述加电极过程中:通过导电银浆等材料将导电线固定在织物的两端。

进一步地,步骤5中,所述加电极过程中:通过导电银浆等材料将导电线分别固定在织物的表面。

进一步地,步骤4和5中,电极材料为铜线、金、银线等,电极引出方式为粘贴或印刷。

本发明的有益效果如下:

1、本发明结构简单,所述多功能电子织物的加热层具有较高的导电率,施加安全电压即可产生所需热量,多功能电子织物整体结构具备优异的力学响应、被动隔热、主动加热、pm颗粒及病毒过滤功能,在智能服装及智能口罩中具有广泛应用。

2、本发明的多功能电子织物的设计思路可拓展至其它功能,如应变传感器,温度传感器,电磁屏蔽性能,紫外防护性能等。

附图说明

图1为本发明涉及的多功能电子织物的结构示意图;

图2为本发明设计的多功能电子织物的加热响应图;

图3为本发明设计的多功能电子织物的压力灵敏度相应图;

图4为本发明设计的多功能电子织物的红外反射率图;

图5为本发明设计的多功能电子织物的表面形貌及放大图;

图6为本发明设计的多功能电子织物的智能服装中监测脉搏信号图;

图7为本发明设计的多功能电子织物的智能口罩中过滤pm2.5效率图;

图8为本发明设计的多功能电子织物的智能口罩中监测呼吸频率图;

附图标记:1、衬底织物层,2、加热层,3、电绝缘层,4、压力传感功能层一,5、绝缘织物间隔层,6、压力传感功能层二,7、导线。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。

因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。

在本发明实施方式的描述中,需要说明的是,术语“内”、“外”、“上”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。

实施例1

如图1所示,一种多功能电子织物,包括依次堆叠而成的衬底织物层1、加热层2和压力传感功能层,所述加热层2和压力传感功能层中间放置电绝缘层3,加热层2和压力传感功能层均包含金属纳米线,所述加热层表面制作电极,通过焦耳效应进行加热,所述压力传感能层由底层织物层、绝缘织物间隔层和顶层织物构成(即图1中的压力传感功能层一4、绝缘织物间隔层5、压力传感功能层二6),所述加热层和压力传感层内置柔性薄膜电池,用于产生焦耳热和检测压力信号。

本实施例中,衬底织物采用棉布织物,加热层采用高浓度银纳米线织物,压力传感功能层由底层织物、绝缘织物间隔层和顶层织物构成,内置柔性薄膜电池,构成可穿戴电子织物。

实施例2

如图1和5所示,一种多功能电子织物的构筑方法,本实施例以银纳米线作为敏感层构筑多功能电子织物,包括以下步骤:

步骤1、选用棉布作为衬底,对棉布衬底表面进行清洗。

在对柔性棉布衬底进行清洗处理时,其步骤为:将棉布衬底在去离子水和无水乙醇中超声清洗后放入干燥箱干燥。

步骤2、使用多元醇还原法制备银纳米线。

该多元醇制备方法为:

(1)制备银纳米线,称取0.108g硝酸银(agno3)加入到6ml乙二醇(eg)溶液中,磁力搅拌20min,直到agno3至完全溶解,得到0.1m的混合液存以备用。

(2)称取0.2g聚乙烯醇吡咯烷酮(pvp)加入到6ml乙二醇溶液中,磁力搅拌20min直至完全溶解,得到0.3m的混合液存以备用。

(3)称取0.002g氯化钠(nacl)加入到2ml乙二醇溶液中磁力搅拌至溶解,然后分别将配置的nacl/eg溶液和agno3/eg溶液加入到pvp/eg溶液中,将混合液磁力搅拌20min至混合均匀,再将混合液倒入到反应釜内衬中,在加热箱中140℃反应2h,然后在160℃反应0.5h,得到agnws混合物溶液。

(4)将得到的agnws混合物溶液加入2~3倍的丙酮,4000rpm离心处理10min,倒去上层清液,重复2~3次,然后加入去离子水在4000rpm离心处理10min,倒去上层清液,将离心管底部的沉淀收集。

步骤3、配置不同浓度的分散均匀的银纳米线分散液。

在该步骤中,配置银纳米线分散液时,需要辅以超声分散处理。

步骤4、在步骤1中的织物衬底表面制备银纳米线;

在该步骤中使用浸渍与干燥工艺制备,该浸渍和干燥工艺为:将棉布衬底浸渍在银纳米线分散液中生长15min,随后在80℃干燥台表面加热干燥。依次重复上述过程步骤多次,最终在棉布衬底上形成银纳米线网络。

步骤5、将步骤4中制备的金属纳米线织物两端制作电极,得到加热层;

步骤6、将步骤4中制备的金属纳米线织物表面制作电极;

步骤7、在步骤1中处理后的单层织物衬底表面制作多孔结构,得到绝缘织物间隔层;

步骤8、将步骤7中制备的绝缘织物间隔层放置于步骤5中制备的两层金属纳米线织物(即压力传感功能层一和压力传感功能层二)中间,得到压力传感功能层;

步骤9、步骤5和8中制备的压力传感功能层和加热层堆叠起来,将普通织物置于压力传感功能层和加热层之间作为电绝缘层,置于步骤1中处理后的织物衬底上表面,压力传感功能层和加热层之间内均置有柔性薄膜电池,构成多功能电子织物。

如图2所示,本发明对制备的多功能电子织物的加热性能进行测试,结果显示多功能电子织物的加热性能优异,加热时间短,加热温度稳定。

如图3所示,本发明对制备的多功能电子织物的压力传感性能进行测试,结果显示多功能电子织物灵敏度高、可检测范围大、重复性好。

如图4所示,本发明对制备的多功能电子织物的被动隔热性能进行测试,结果显示多功能电子织物与传统棉织物纺织品相比,使环境温度设定值降低5℃,证明其优异的被动隔热性能。

如图6所示,本发明对制备的多功能可穿戴电子织物制备的智能服装进行脉搏信号测试,结果显示智能服装能够监测脉搏信号并识别脉搏波。

如图7所示,本发明对制备的多功能可穿戴电子织物制备的智能口罩进行pm2.5捕捉性能测试,结果显示智能口罩与传统口罩及活性炭口罩相比,能够迅速降低pm2.5,使pm2.5从重度污染变为优良。

如图8所示,本发明对制备的多功能可穿戴电子织物制备的智能口罩进行呼吸频率测试,结果显示智能口罩能够监测呼吸频率,分辨正常呼吸频率与运动后的呼吸频率。

本发明制成的多功能电子织物结构完整,包括衬底织物层,加热层以及压力传感功能层,所述加热层表面制作电极,通过焦耳效应进行加热。所述压力传感能层由底层织物、绝缘织物间隔层和顶层织物构成。本发明具备优异的力学响应,被动隔热、主动加热、pm及病毒过滤性能,可实现呼吸频次及脉搏等信号的实时监测,透气性良好,在可穿戴电子领域具有广阔的应用前景。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1