一种应用于电子商务的商品销量预测算法

文档序号:9667984阅读:731来源:国知局
一种应用于电子商务的商品销量预测算法
【技术领域】
[0001] 本发明属于电子商务技术领域,特别地涉及一种应用于电子商务基于社会影响力 发现的商品销量预测算法。
【背景技术】
[0002] 随着电子商务的发展,商品的交易形式发生了翻天覆地的变化。在这种新型的虚 拟交易平台上,消费者快速而又广泛地浏览、购买、评价各种价廉物美的商品,而商品也同 样地进行着产品创新、营销拓展、物流改善。所以,消费者和商品之间早已不是简单的一对 一直接买卖关系,而是消费者和消费者之间的社交网络,消费者和商品之间的交易网络构 成了电子商务中最重要的物质载体。
[0003] 于是,对于商品销量预测这一传统经济问题,在电子商务的大环境下,有了新型的 研究意义。为了能有效和深入地研究在电子商务环境下的商品销量发展模式,大量的研究 者们对基于消费者分析的商品销量建模这一问题进行了大量的工作。"消费者分析"是指 在电子商务中,研究者充分利用消费者交易行为产生的大数据,对消费者进行一系列的详 尽数据描述,比如涉及了消费者购买力分析,消费者购买偏好分析,消费者购物时间分析等 等。
[0004] 传统的电子商务商品销量预测算法,大多注重于收集消费者的个人数据,而忽视 了更广泛存在的由消费者自身发展形成的消费者社会影响力。因此,发展一种新型的契合 目前复杂电子商务环境的商品销量预测模型迫在眉睫。目前发展的涉及消费者社会影响力 的预测模型存在以下问题:(1)目前的商品销量预测模型,假设消费者之间的关系只有唯 一的一种类型,而实际中,消费者之间的关系是多样化的(2)目前的商品销量预测模型,直 接将商品销量作为预测的目标,忽略了商品销量的变化是受多种因素影响的,其内在的组 成成分可以是多样化的。

【发明内容】

[0005] 为解决上述问题,本发明的目的在于提供一种应用于电子商务的商品销量预测算 法,该算法注重于从消费者社会影响力分析入手,更好的适应真实电子商务环境中的销量 预测需求。
[0006] 为实现上述目的,本发明的技术方案为:
[0007] -种应用于电子商务的商品销量预测算法,包括以下步骤:
[0008] 步骤1,给出所需要的原始交易数据,具体包括以下子步骤,
[0009] 步骤11,设立交易环境中的消费者集合为,消费者总数为M,其中表示的是第i个 消费者,;设立交易环境中的商品集合为,商品总数为N,其中表示的是第η个商品;设立交 易环境中的交易日期集合为,其中Τ表示交易日的总数,t表示第t个交易日;
[0010] 步骤12,设立商品的销量为,其中表示的是商品在第t天的销量;并设立在交易环 境中与商品相似的商品的集合为;
[0011] 步骤13,设立消费者和商品之间的交易关系,具体为如果消费者购买了商品,那么 其购买商品的日期定义为;
[0012] 步骤2,建立在交易环境中的两种社会影响力,即"同一商品中消费者互相作用产 生的影响力"和"不同商品之间消费者互相作用产生的影响力",具体包括,
[0013] 步骤21,在交易环境中,设立商品在第t天的"同一商品中消费者互相作用产生的 影响力"为,其由一个长度为的向量所表示,即该向量长度为消费者总数的平方;具体而言, 对于消费者和消费者,如果满足以下两点(1)他们都在第天至第t天这段时间内购买了商 品,(2)消费者的购买商品时间早于消费者的购买商品时间,并且这两个时间之间的间隔 日期小于天,其中和为预先设定的数值,那么定义中的第个元素为1,反之则定义为〇 ;相应 的,中的第个元素的数学表示为
[0014]
[0015] 步骤22,在交易环境中,设立商品在第t天的"不同商品之间消费者互相作用产生 的影响力"为,其由一个长度为的向量所表示,即该向量长度为消费者总数的平方;具体而 言,对于消费者和消费者,如果满足以下两点(1)消费者在第天至第t天这段时间内购买了 商品,消费者在第天至第t天这段时间内购买了商品,其中商品为商品的相似商品,S卩,(2) 消费者的购买商品时间早于消费者的购买商品时间,并且这两个时间之间的间隔日期小于 天,其中和为预先设定的数值,那么定义中的第个元素为1,反之则定义为〇 ;相应的,中的 第个元素的数学表示为
[0016]
[0017] 步骤3,建立商品销量的预测模型,具体包括,
[0018] 步骤31,将商品的销量分为两个部分,即销量的主体部分和销量的噪声部分;具 体而言,设定商品在第t天的销量的主体部分为,设定商品在第t天的销量的噪声部分为, 并且满足以下关系,
[0019] 步骤32,构建预测模型的目标函数;首先,由于商品的多样性,设定将商品分成K 个商品类;具体为,商品属于第k个商品类的概率为,并且满足以下条件;
[0020] 其次,通过"同一商品中消费者互相作用产生的影响力"去预测商品销量的主体部 分;具体为建立预测商品销量的主体部分的目标函数,该函数如下所示,
[0021]
[0022] 该目标函数的第一项是一种混合线性回归函数,其中代表的是第k个商品类中针 对销量主体部分的回归向量,在上式函数中一共有K个回归向量,?为向量转置符号,第二 项是约束项,它要求商品销量的主体部分在时间上应该保持平滑性,其中是调节第一项和 第二项之间权重大小的参数;
[0023] 然后,通过"不同商品之间消费者互相作用产生的影响力"去预测商品销量的噪声 部分;具体为建立预测商品销量的噪声部分的目标函数,该函数如下所示,
[0024]
[0025] 该目标函数的第一项同样也是一种混合线性回归函数,其中代表的是第k个商品 类中针对销量噪声部分的回归向量,在上式函数中一共有K个回归向量,?为向量转置符号, 第二项是约束项,它要求商品销量的噪声部分是稀疏的,即只有受到较强的外界噪声干扰 时,噪声部分有数值,在其他大部分情况下,噪声部分数值为〇,其中是调节第一项和第二项 之间权重大小的参数;
[0026] 最后,将上述的两个销量预测整合到一个统一的预测模型中并优化求解;最终的 商品销量预测模型的目标函数为,
[0027]
[0028]
[0029] 在该目标函数中,已知变量为商品销量和两种两种社会影响力;所求的未知变量 为商品销量的主体部分和噪声部分,商品从属于商品类的概率回归向量
[0030] 本发明的商品销量预测算法,相比于目前的商品销量预测算法,具有以下有益效 果:
[0031] 首先,本发明提出的算法不仅考虑到消费者自身的特征,同时还考虑到存在在消 费者之间的社会影响力,考虑到在真实的电子商务中,消费者之间传递商品的价格信息或 评价信息十分便捷,因而本发明提出的算法很好的切合了实际的应用环境。
[0032] 其次,本发明提出的算法定义了交易环境中的两种社会影响力,即"同一商品中消 费者互相作用产生的影响力"和"不同商品之间消费者互相作用产生的影响力",分别考虑 到了单一商品的交易环境和多个商品互相作用的交易环境中消费者行为,其中以上两种社 会影响力都是由真实消费者社交网络分析、提炼得来的,使得本发明的提出的算法更加切 合真实的交易网络的内在结构。
[0033] 再次,本发明提出的算法将商品销量分为主体部分和噪声部分,很好的模拟了真 实交易环境中,商品销量的构成是受多成分影响的。并且在预测模型中,对主体部分和噪声 部分分别设置了不同的约束条件,具体为要求商品销量的主体部分在时间上应该保持平滑 性,并要求商品销量的噪声部分在稀疏的,以上两个约束很好的反映了真实的交易环境中 商品销量的变化形式。
【附图说明】
[0034] 图1为本发明实施例的应用于电子商务的商品销量预测的流程示意图;
【具体实施方式】
[0035] 为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对 本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并 不用于限定本发明。
[0036] 相反,本发明涵盖任何由权利要求定义的在本发明的精髓和范围上做的替代、修 改、等效方法以及方案。进一步,为了使公众对本发明有更好的了解,在下文对本发明的细 节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的 描述也可以完全理解本发明。
[0037] 参考图1,所示为本发明实施例的应用于电子商务的商品销量预测算法的流程图, 包括以下步骤:
[0038] 步骤S1,给出所需要的原始交易数据,具体包括以下子步骤,
[0039] 步骤S11,设立交易环境中的消费者集合为,消费者总数为M,其中表示的是第i个 消费者,;设立交易环境中的商品集合为,商品总数为N,其中表示的是第η个商品;设立交 易环境中的交易日期集合为,其中Τ表示交易日的总数,t表示第t个交易日;
[0040] 步骤S12,设立商品的销量为,其中表示商品在第t天的销量;并设立在交易环境 中与商品相似的商品的集合为;
[0041] 步骤S13,设立消费者和商品之间的交易关系,具体为如果消费者购买了商品,那 么其购买商品的日期定义为;
[0042] 步骤S2,建立在交易环境中的两种社会影响力,S卩"同一商品中消费者互相作用产 生的影响力"和"不同商品之间消费者互相作用产生的影响力",具体包括,
[0043] 步骤S21,在交易环境中,设立商品
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1