一种降低食品中丙酮醛和甲醛的方法

文档序号:26540343发布日期:2021-09-07 21:30阅读:429来源:国知局
一种降低食品中丙酮醛和甲醛的方法

1.本发明涉及热加工食品技术领域,特别是涉及一种降低食品中丙酮醛和甲醛的方法。


背景技术:

2.丙酮醛(methylglyoxal,mgo)又名甲基乙二醛,是具有高反应活性的α

二羰基化合物。食品在热加工(油炸、焙烤)、发酵甚至储藏过程中均会产生mgo。mgo广泛存在于面包、饼干、咖啡、奶酪、蜂蜜和饮料(碳酸软饮料)等各种加工食品中。在生物体内,mgo主要由糖酵解途径产生,可通过3

磷酸甘油醛和磷酸二羟基丙酮自发形成,因此在白醋、酒等发酵食品中也含有丙酮醛。mgo的口服ld
50
为1165mg/kg,具有细胞毒性。其化学性质非常活泼,可与食品成分形成有害衍生物,包括ages、丙烯酰胺和4(5)

甲基咪唑。研究表明,丙酮醛是高血糖和糖尿病并发症的主要致病因素之一,而且mgo和ages的形成和积累与衰老相关的疾病密切相关,包括癌症,神经退行性疾病,糖尿病和动脉粥样硬化。由此可见,降低mgo的水平将是抑制ages的形成、预防和治疗相关疾病的有效方法。
3.甲醛是最活泼的脂肪醛,它既可以由食品内源性产生,也可通过外源添加或环境污染存在于食品中。甲醛是细胞的代谢产物,所以甲醛广泛存在于人体中和各种动植物组织中。食品在加工或贮存过程中会发生美拉德反应和热降解反应生成甲醛,尤其是酒、面包等发酵性食品。甲醛已被国际癌症研究机构(iarc)列为第一类致癌物,是影响人类健康最危险的化学物质之一。甲醛不仅可与视紫红质的蛋白质中赖氨酸的胺官能团发生反应,而且还会与其他蛋白质(包括许多酶)中的氨基发生反应,影响酶的功能和生化代谢。
4.鉴于mgo和甲醛均是食品中常见的有毒有害物质,科学家们一直致力于研究降低或清除食品中甲醛和丙酮醛的方法。目前研究最多的丙酮醛清除剂主要是多酚,但是在有些模拟体系中,多酚会促进其它有害物质,如1

脱氧奥苏糖和3

脱氧奥苏糖、hmf的形成,从而产生二次毒害。
5.因此,有必要提供一种降低食品中丙酮醛和甲醛的方法。


技术实现要素:

6.本发明的目的是提供一种降低食品中丙酮醛和甲醛的方法,本发明向食品中加入氨基酸作为丙酮醛和甲醛的消除剂,达到同时降低食品中丙酮醛和甲醛的目的。所述消除剂可以以干粉、溶液的形式在食品原料中加入或在食品加工中某个工艺期间加入,或者以浸泡、腌渍等方式,达到降低食品中产生的丙酮醛和甲醛含量的目的。
7.为实现上述目的,本发明提供了如下方案:
8.本发明提供一种降低食品中丙酮醛和甲醛的方法,在食品中添加氨基酸,优选在不同温度的食品加工模拟体系中添加氨基酸。
9.进一步地,所述氨基酸为l

半胱氨酸。
10.进一步地,所述l

半胱氨酸的添加量为0.3

1.5g
·
kg
‑1食品。
11.进一步地,所述l

半胱氨酸包括以干粉、溶液的形式在食品原料中加入或在食品加工期间加入,或者以浸泡、腌渍方式添加。
12.进一步地,所述的食品为加工温度为25

190℃的食品。
13.本发明通过模拟食品加工体系,模拟不同加工温度时半胱氨酸的消除效果。
14.本发明还提供一种评价l

半胱氨酸对食品体系中丙酮醛和甲醛的消除效果的方法,所用检测方法包括以下步骤:
15.以水为溶剂,半胱氨酸、mgo和甲醛溶液恒温加热反应后,以2,4

二硝基苯肼(dnph)衍生法测定体系中mgo和甲醛的剩余量,以单独的同等浓度的丙酮醛和甲醛溶液作为空白对照,计算得到氨基酸对丙酮醛和甲醛的消除率。
16.所述衍生方法为:取200μl反应液与1.8ml乙腈和1ml 12.5mmol/ldnph(以体积比为9:1的乙腈/浓盐酸为溶剂)混匀后于60℃水浴衍生2h。
17.衍生反应后样品过0.22μm有机微孔滤膜待高效液相色谱仪检测。甲醛和mgo均以标准物质衍生后进样,每个标准样品进行三次平行试验后,绘制标准曲线,以标准曲线计算得出样品中甲醛和mgo的含量。
18.高效液相色谱条件:
19.色谱柱为zorbax sb

aq,4.6mm
×
250mm,5μm;流动相为蒸馏水

乙腈(30:70,v/v),进样体积10μl,流速1.2ml/min,柱温40℃;检测波长352nm(甲醛衍生物)和425nm(mgo衍生物)。
20.本发明公开了以下技术效果:
21.本发明在食品中添加l

半胱氨酸,可以有效同时降低食品中的丙酮醛和甲醛含量,l

半胱氨酸对丙酮醛和甲醛的消除率最高可达99.7%。l

半胱氨酸中的活泼巯基与丙酮醛或甲醛的羰基之间发生缩硫醛反应,或者其结构上的氨基可与丙酮醛或甲醛的羰基发生羰氨反应形成席夫碱,从而有效消除丙酮醛和甲醛。
附图说明
22.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
23.图1为l

半胱氨酸与丙酮醛和甲醛形成的消减产物的液相图;
24.图2为l

半胱氨酸与丙酮醛和甲醛形成的消减产物1的一级质谱图(正离子模式);
25.图3为l

半胱氨酸与丙酮醛和甲醛形成的消减产物1的二级质谱图(正离子模式);
26.图4为l

半胱氨酸与丙酮醛和甲醛形成的消减产物2的一级质谱图(正离子模式)。
具体实施方式
27.现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
28.应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每
个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
29.除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。
30.在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见得的。本发明说明书和实施例仅是示例性的。
31.关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
32.本发明实施例1

3的高效液相色谱条件相同。
33.实施例1
34.配制l

半胱氨酸(cys)、丙酮醛(mgo)和甲醛溶液,分别移取2ml于具塞比色管中,终浓度分别为40mmol/l、4mmol/l和4mmol/l。具塞比色管用封口膜封口后置于37℃水浴摇床中分别反应2h和4h。反应完后立即用冷水冷却,将反应液稀释10倍,取200μl稀释液、1.8ml乙腈和1ml 12.5mmol/ldnph混匀于10ml试管中,在60℃衍生2h后过0.22μm有机微孔滤膜待高效液相色谱仪(hplc)检测,甲醛和mgo均以标准物质衍生后进样,每个标准样品进行三次平行试验后,绘制标准曲线。分别以不加l

半胱氨酸的mgo和甲醛溶液作为空白对照,将峰面积代入标准曲线后计算得到mgo和甲醛的消除率。
35.高效液相色谱条件:
36.色谱柱为zorbax sb

aq,4.6mm
×
250mm,5μm;流动相为蒸馏水

乙腈(30:70,v/v),进样体积10μl,流速1.2ml/min,柱温40℃;检测波长352nm(甲醛衍生物)和425nm(mgo衍生物)。
37.实施例2
38.于具塞比色管中加入l

半胱氨酸、丙酮醛和甲醛溶液,终浓度分别为40mmol/l、4mmol/l和4mmol/l。混匀后置于80℃水浴摇床中分别反应2h和4h。反应后将反应液稀释10倍,取200μl稀释液、1.8ml乙腈和1ml 12.5mmol/l dnph混匀于10ml试管中,在60℃下衍生2h后过0.22μm有机微孔滤膜后待hplc检测,甲醛和mgo均以标准物质衍生后进样,每个标准样品进行三次平行试验后,绘制标准曲线。分别以不加l

半胱氨酸的mgo和甲醛溶液作为空白对照,计算得到mgo和甲醛的消除率。
39.实施例3
40.于试管中加入l

半胱氨酸、丙酮醛和甲醛溶液,终浓度分别为40mmol/l、4mmol/l和4mmol/l。混匀后置于120℃油浴中分别反应15min和30min。反应后将反应液稀释10倍,取200μl稀释液、1.8ml乙腈和1ml 12.5mmol/l dnph混匀于10ml试管中,在60℃下衍生2h后过0.22μm有机微孔滤膜待hplc检测,甲醛和mgo均以标准物质衍生后进样,每个标准样品进行三次平行试验后,绘制标准曲线。分别以不加l

半胱氨酸的mgo和甲醛溶液作为空白对照,
计算得到mgo和甲醛的消除率。
41.实施例1

3所检测获得的cys对mgo和甲醛的消除率如表1和表2所示,cys对mgo和甲醛具有显著的消除作用。37℃反应2h后cys对丙酮醛的消除率达到了83.1%。80℃加热4h时cys对mgo的消除效果最好,消除率达到了96.3%。cys对甲醛的消除率最高达到了99.7%(80℃加热4h),甲醛基本被消除。随着反应温度的升高,cys对mgo的消除作用不断增强,120℃加热15min与80℃加热4h的消除率相当,达到了95.6%。cys对甲醛一直保持着很高的消除能力。实施例1

3中,cys与mgo和甲醛的反应生成的消减产物的液相图如图1所示;l

半胱氨酸与丙酮醛和甲醛形成的消减产物1的一级质谱图(正离子模式)见图2;l

半胱氨酸与丙酮醛和甲醛形成的消减产物1的二级质谱图(正离子模式)见图3;l

半胱氨酸与丙酮醛和甲醛形成的消减产物2的一级质谱图(正离子模式)见图4。产物的最大吸收波长为197nm,保留时间为3.325min。
42.表1 cys对mgo的消除率
[0043][0044]
表2 cys对甲醛的消除率
[0045][0046]
应用例1
[0047]
将l

半胱氨酸(0.3

1.5g/kg)添加到面团中,制成厚度为3mm的面片,再用饼干模具制成饼干,烤箱于190℃预热30min后将饼干面团置于烤箱中,烘焙10

15min,冷却至室温后测定残留的丙酮醛和甲醛含量,以不添加l

半胱氨酸的饼干作为空白对照,计算得到l

半胱氨酸对饼干中甲醛和丙酮醛消除率的影响,如表3所示。随着l

半胱氨酸添加量的增加,甲醛和丙酮醛的消除率不断增加,最高达到87.6%(甲醛)、85.0%(丙酮醛)。
[0048]
表3不同l

半胱氨酸添加量对饼干中甲醛和丙酮醛消除率的影响
[0049][0050]
应用例2
[0051]
将新鲜马铃薯洗净,用纱布吸干表面水分,去皮后用刨刀切成厚度为0.25cm且大小均匀的马铃薯片。用去离子水洗净马铃薯片表面的淀粉(清洗三次以上),再用滤纸吸干表面水分。称取150
±
1g马铃薯切片分别浸泡于l

半胱氨酸水溶液(浓度分别为0.1mg/ml,
0.3mg/ml,0.5mg/ml)和去离子水(空白组)中,浸泡60min后取出,沥干水分。将沥干的马铃薯切片在165℃的花生油中油炸5min后取出,沥干油渍,冷却至常温后测定残留的丙酮醛和甲醛含量。以不经过l

半胱氨酸浸泡的油炸马铃薯作为空白对照,计算得到l

半胱氨酸浸泡对薯片中甲醛和丙酮醛消除率的影响,如表4所示。随着l

半胱氨酸添加量的增加,甲醛和丙酮醛的消除率不断增加,最高达到68.7%(甲醛)、72.3%(丙酮醛)。
[0052]
表4 l

半胱氨酸浸泡对油炸薯片中甲醛和丙酮醛消除率的影响
[0053][0054]
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1