结晶化的草酸脱羧酶和使用方法与流程

文档序号:14483986阅读:264来源:国知局
结晶化的草酸脱羧酶和使用方法与流程
相关申请的交叉参考本申请要求2006年8月2日提交的美国申请系列号60/834,933和2006年10月26日提交的美国申请系列号60/854,540的优先权,它们的内容通过参考整体并入本文。
背景技术
:草酸是式HO2C-CO2H的二羧酸。草酸主要作为草酸盐存在于生物体中,所述草酸盐是草酸的盐形式。草酸盐见于食物中,例如,菠菜,大黄,草莓,酸果蔓,坚果,可可,巧克力,花生酱,高粱,和茶叶。草酸盐在人类和其它哺乳动物中也是代谢终产物。它由肾排泄进尿中。当与钙结合时,草酸生成不溶的产物草酸钙,它是在肾结石中发现的最普遍的化合物。因为哺乳动物不会合成降解草酸盐的酶,个体中的草酸盐水平一般通过排泄和饮食草酸盐的低吸收来维持正常。高浓度的草酸盐与多种病理有关,例如原发性高草酸尿症,肠原性高草酸尿症和特发性高草酸尿症。Leumann等人,Nephrol.Dial.Transplant.14:2556-2558(1999)和Earnest,Adv.InternalMedicine24:407-427(1979)。增加的草酸盐的原因可以是,从食物摄入过多的草酸盐,从肠道过多吸收草酸盐,和草酸盐生成的异常。草酸盐在结肠和小肠中的吸收过多与肠病有关,包括由胆汁酸和脂肪吸收不良疾病造成的吸收过多;回肠切除;和例如,由乳糜泻导致的脂肪泻、外分泌胰腺机能不全、肠病和肝病。高草酸尿或增加的尿草酸盐排泄与许多涉及草酸钙在肾组织(肾钙沉着症)或尿道(例如,肾结石(kidneystones),尿路结石症,和肾结石(nephrolithiasis))中的沉积的健康问题有关。草酸钙也可以沉积在例如眼睛、血管、关节、骨、肌肉、心脏和其它重要器官,对它们造成损害。参见,例如,Leumann等人,J.Am.Soc.Nephrol.12:19861993(2001)和Monico等人,KidneyInternational62:392400(2002)。增加的草酸盐水平的影响可以出现在多种组织中。例如,在小血管中的沉积会造成难以痊愈的疼痛的皮肤溃疡,在骨髓中的沉积会造成贫血,在骨组织中的沉积会造成骨折或影响儿童的生长,在心脏中的草酸钙沉积会造成心率异常或心脏功能较差。现有的治疗升高的草酸盐水平的方法不总是有效,且许多原发性高草酸尿患者可能需要密集的透析和器官移植。不同高草酸尿的现有疗法包括高剂量维生素B6,正磷酸盐,镁,铁,铝,柠檬酸钾,考来烯胺,和糖胺聚糖治疗,以及调节饮食和流体摄入、透析和外科手术(例如肾和肝移植)的方案。这些疗法(例如,低草酸盐或低脂肪饮食,维生素B6,足够的钙和增加的流体)仅仅是部分有效的,它们可能具有不希望的不利副作用,例如正磷酸盐、镁或考来烯胺补充的胃肠效应,和透析和手术的风险。因此,需要安全地从身体去除草酸盐的方法。此外,降解草酸盐来降低生物样品中的草酸盐水平的方法,胜过诸如单独阻断草酸盐的吸收或加速草酸盐清除的疗法。技术实现要素:本发明涉及草酸脱羧酶(“OXDC”)晶体和其交联形式(“CLEC”)和它们用于治疗诸如高草酸尿的草酸盐相关病症的用途。在一个实施方案中,晶体状草酸脱羧酶可以施用给哺乳动物,例如,经口或直接施用至胃,以降低草酸盐水平和/或减少草酸钙在哺乳动物中沉积造成的损害。另外,公开了从细胞提取物生产蛋白晶体的方法。也公开了包含草酸脱羧酶(“OXDC”)晶体和其交联形式(“CLEC”)的组合物,例如,药物组合物。在一个方面,本发明提供了交联的草酸脱羧酶晶体。交联剂可以是多功能的,在某些实施方案中,该试剂是双功能试剂,例如戊二醛。在某些实施方案中,草酸脱羧酶晶体与基本上不改变酶活性浓度的戊二醛交联,例如至少约0.02%(w/v)的浓度。在实施方案中,草酸脱羧酶晶体的交联水平等于用0.02%(w/v)戊二醛处理产生的水平。交联水平可以通过本领域已知的或本文公开的方法来测定,例如,测定蛋白浸取的水平,例如如实施例10-11所公开的。本发明还提供了草酸脱羧酶晶体,例如,具有比可溶的草酸脱羧酶高例如至少约100%、200%、300%、400%或500%的活性的草酸脱羧酶晶体。本发明还提供了稳定化的、例如交联的草酸脱羧酶晶体,其中所述稳定化的晶体在酸性条件下保留的活性和/或稳定性比可溶的草酸脱羧酶在类似酸性条件(例如,约2至3的酸性pH)下的活性和/或稳定性高至少2、3倍。在实施方案中,所述稳定化的草酸脱羧酶晶体比在酸性条件下的可溶的草酸脱羧酶的活性和/或稳定性高至少200%、300%、400%。本发明还提供了稳定化的、例如交联的草酸脱羧酶晶体,其中所述稳定化的晶体在有蛋白酶存在下保留的活性和/或稳定性比可溶的草酸脱羧酶在类似条件下保留的活性和/或稳定性高至少2、3倍。在实施方案中,所述稳定化的草酸脱羧酶晶体比可溶的草酸脱羧酶在有蛋白酶存在下的活性和/或稳定性高至少200%、300%、400%。所述蛋白酶可以选自下述的一种或多种:例如,胃蛋白酶,胰凝乳蛋白酶或胰酶。在实施方案中,在将所述稳定化的晶体或可溶的草酸脱羧酶暴露于酸性条件和/或蛋白酶预定的时间长度例如至少1、2、3、4或5个小时后,测量所述稳定化的或可溶的草酸脱羧酶的活性(例如,如本文实施例所述)。在一个有关的方面,本发明表征了一种交联的草酸脱羧酶晶体,它在不同pH条件下(例如,约pH2.5或3至7.5或8.5)和/或在有蛋白酶存在下基本上是有活性的且是稳定的,例如,蛋白酶可以选自下述的一种或多种:例如,胃蛋白酶,胰凝乳蛋白酶或胰酶。如本文所述,在实施方案中,所述交联的晶体保留的活性比可溶的草酸脱羧酶在酸性条件下(例如,约2至3的酸性pH)和在有蛋白酶存在下保留的活性高至少2、3倍。如本文所述,在其它实施方案中,所述稳定化的草酸脱羧酶晶体比可溶的草酸脱羧酶在酸性条件下(例如,约2至3的酸性pH)和在有蛋白酶存在下的稳定性高至少200%、300%、400%。包含本文所述的晶体和/或交联的草酸脱羧酶晶体的组合物,例如,药物组合物,也在本发明范围内。在有些实施方案中,所述晶体包括具有与在天然来源中发现的草酸脱羧酶的序列相同或基本上相同序列的草酸脱羧酶,所述天然来源例如植物、细菌和真菌,尤其枯草芽孢杆菌,金针菇或绒状火菇,黑曲霉,假单胞菌属(synechoystissp.),蓝藻属,变形链球菌,毛栓菌(Trameteshirsute),核盘菌,白腐菌(T.versicolor),褐腐菌(Postiaplacenta),疣孢漆斑菌,双孢子蘑菇,甲基营养菌(Methylobacteriumextorquens),Pseudomonasoxalaticus,真养雷氏菌,Cupriavidusoxalaticus,Wautersiasp.,Oxalicibacteriumflavum,Ammoniiphilusoxalaticus,Vibriooxalaticus,A.oxalativorans,Variovoraxparadoxus,自养黄色杆菌,曲霉菌属,青霉菌属,和毛霉菌属。在其它实施方案中,重组生产草酸脱羧酶。在一个方面,本发明提供了降低受试者的草酸盐浓度的方法,其中施用本文公开的组合物,例如,药物组合物,其包含草酸脱羧酶晶体,例如,交联的草酸脱羧酶晶体。在一个实施方案中,所述草酸脱羧酶晶体用戊二醛等交联剂稳定化。组合物的施用,可以使草酸盐浓度降低至少10%、至少20%、至少30%、或至少40%或更多。在有些实施方案中,经口或通过体外装置施用所述组合物。在一个实施方案中,所述体外装置是导管,例如,涂有草酸脱羧酶晶体的导管。在其它实施方案中,所述组合物作为悬浮液、干粉、胶囊或片剂施用。在一个实施方案中,所述降低哺乳动物的草酸盐浓度的方法包括测定哺乳动物的生物样品(例如尿、血液、血浆或血清样品)中的草酸盐浓度的步骤。在另一个方面,本发明提供了治疗、预防和/或减慢哺乳动物中与升高的草酸盐浓度有关的病症的进展的方法,其中给所述哺乳动物施用草酸脱羧酶晶体和/或稳定化的、例如交联的草酸脱羧酶晶体。在一个实施方案中,所述与升高的草酸盐浓度有关的病症是肾病、关节病、眼病、肝病、胃肠病、或胰腺病。在某些实施方案中,所述病症是原发性高草酸尿,肠原性高草酸尿,特发性高草酸尿,乙二醇中毒,囊性纤维化病,炎性肠病,尿路结石症,肾结石,慢性肾病,血液透析和胃肠旁路。在另一个方面,本发明提供了一种组合物,例如,药物组合物,其包含草酸脱羧酶晶体,例如,交联的草酸脱羧酶晶体(例如,本文公开的晶体和/或交联的晶体)。在另一个方面,本发明提供了治疗哺乳动物的方法,其中施用有效量的药物组合物,后者包含草酸脱羧酶晶体,例如,交联的草酸脱羧酶晶体(例如,本文公开的晶体和/或交联的晶体)。在另一个方面,本发明提供了生产蛋白晶体例如酶晶体(例如,草酸脱羧酶晶体)的方法,其包括:提供含有所述蛋白的细胞提取物或颗粒/沉淀/溶液的制品,和从所述制品结晶所述蛋白。在实施方案中,所述方法包括下述一个或多个步骤:培养表达所述蛋白的原核宿主细胞培养物;得到含有目标蛋白的颗粒或提取物的制品;溶解颗粒制品;使蛋白晶体形成,和/或通过交联进一步使晶体稳定化。通常,重组表达所述蛋白。在实施方案中,颗粒制品包括包涵体。在实施方案中,所述溶解步骤包括,向颗粒制品中加入下述一种或多种:包含温和变性剂浓度(例如,浓度在例如约1M至约3M的脲或盐酸胍)的溶液;包含高盐浓度(例如,所述盐选自氯化钠、氯化钾、氯化钙中的一种或多种)或在例如约0.3至约0.8M的浓度的其它盐的溶液;在碱性条件下(例如,在约9至约12的pH)包含温和变性剂浓度的溶液;或包含高变性剂浓度(例如,约4M至约8M脲或盐酸胍)的溶液。在实施方案中,所述纯化步骤包括,从颗粒去除碎片,例如,通过分离溶解化的颗粒制品(例如,通过一个或多个旋转或离心步骤)和/或收集上清液。所述纯化步骤可以任选地还包括,使溶解化的颗粒制品穿过离子交换色谱,和/或过滤溶解化的制品。在实施方案中,所述结晶步骤包括,浓缩纯化的蛋白,从而形成结晶化的蛋白。在实施方案中,结晶化的蛋白从在分离步骤后收集的上清液得到,例如,在一个或多个旋转或离心步骤后。结晶步骤另外可以包含,使结晶化的蛋白接触交联剂,例如,本文公开的交联剂(例如,戊二醛)。使用的交联剂的浓度可以在0.01%至20%w/v的范围;通常0.02%至10%w/v;更通常0.02%、0.5%或1%w/v。在实施方案中,颗粒制品中蛋白的产量是在得到颗粒制品的细胞制品中发现的特定蛋白的至少约50%、60%、70%、80%。在其它实施方案中,溶解化的蛋白的产量是在颗粒制品中发现的至少约90%、95%或更高。在其它实施方案中,结晶化的蛋白的产量是在颗粒制品中发现的至少约50%、60%、70%、80%。本发明还提供了通过本文公开的方法生产的蛋白晶体,例如,酶晶体(例如,草酸脱羧酶晶体)。在附图和下面的描述中,阐明了本发明的一个或多个实施方案的细节。附图说明图1是显示可溶的草酸脱羧酶(“可溶的”)、草酸脱羧酶晶体(“晶体”)和交联的草酸脱羧酶晶体(“CLEC”)的pH活性特征的图。图2是描述施用OXDC-CLEC后SpragueDawley大鼠中的尿草酸盐水平的条线图。每个条代表平均值±SE(标准误差)。星号指示使用双尾Studentt检验计算的在指定时间点对照组和3个治疗组之间的显著性差异p<0.05。图3是描述OXDC-CLEC对乙二醇攻击的AGT1敲除的(KO)小鼠中尿草酸盐水平的降低的影响的条线图。每个条代表平均值±SE。星号指示使用双尾Studentt检验计算的在指定时间点对照组和3个治疗组之间的显著性差异p<0.05。图4是描述OXDC-CLEC对乙二醇攻击的AGT1KO小鼠中的肌酸酐清除率的影响的条线图。每个条代表平均值±SE。星号指示使用双尾Studentt检验计算的对照组和80mg治疗组之间的显著性差异p<0.05。图5A-5C是显示用OXDC-CLEC治疗后肾实质上草酸钙沉积物的预防的图像。图5A是来自用80mgOXDC-CLEC处理的EG攻击的小鼠的肾实质的切片。图5B和5C是来自对照组的肾实质的切片。图5B的切片证实中等的肾钙沉着症,图5C的切片证实严重的肾钙沉着症。深色斑是草酸钙沉积物(用白色箭头指出的实例),浅色斑是具有间质纤维化的区域(用灰色箭头指出的实例)。图6是对比用3种不同剂量的OXDC-CLEC或介质对照处理的EG攻击的小鼠的存活时间的Kaplan-Meier存活图。图7是描述在指定的时间间隔、在低pH时可溶的草酸脱羧酶(“Sol”)、草酸脱羧酶晶体(“XTAL”)和交联的草酸脱羧酶晶体(“CLEC”)的稳定性的图。图8是描述在指定的时间间隔、在pH3.0时、在有胃蛋白酶存在下可溶的草酸脱羧酶(“Sol”)、草酸脱羧酶晶体(“XTAL”)和交联的草酸脱羧酶晶体(“CLEC”)的稳定性的图。图9是描述在指定的时间间隔、在pH7.5时、在有胰凝乳蛋白酶存在下可溶的草酸脱羧酶(“Sol”)、草酸脱羧酶晶体(“XTAL”)和交联的草酸脱羧酶晶体(“CLEC”)的稳定性的图。图10是描述在指定的时间间隔、在pH6.8时、在有含胰酶的模拟肠液存在下可溶的草酸脱羧酶(“Sol”)、草酸脱羧酶晶体(“XTAL”)和交联的草酸脱羧酶晶体(“CLEC”)的稳定性的图。发明详述本发明部分地基于下述发现,施用草酸脱羧酶(OXDC)晶体可以减轻哺乳动物的高草酸尿症状。本文描述了施用OXDC晶体来治疗不同的草酸盐相关病症的方法。另外,提供了OXDC晶体和交联的晶体(CLECs)、包含和使用它们的组合物。另外,公开了从原核宿主细胞的细胞提取物中生产大量蛋白晶体的方法。定义。为了更容易地理解本发明,首先定义某些术语。在详述中阐述其它定义。本文使用的“生物样品”是从细胞、组织、器官或生物体收集的生物材料,例如,用于检测分析物。示例性的生物样品包括液体、细胞或组织样品。生物液包括,例如,血清,血液,血浆,唾液,尿或汗。细胞或组织样品包括活组织检查,组织,细胞悬浮液,或其它样本和样品,例如临床样品。“晶体”是固态物质的一种形式,其包含以三维周期性重复的模式排列的原子(参见,例如,Barret,StructureofMetals,2nded.,McGraw-Hill,NewYork(1952))。多肽的晶体形式,例如,不同于第二种形式—无定形固态。晶体表现出独特的特征,包括形状、晶格结构、溶剂百分比和光学性质,例如,折射率。“体外装置”是不在体内的结构,用于在个体的治疗中使体液接触OXDC晶体。优选地,体外装置是用于包括肾透析在内的透析的装置,用于连续动静脉血液滤过的装置,体外膜式氧合器,或用于从血流过滤废物的其它装置。类似地,该术语包括过滤废物的装置的组件,包括例如导管、多孔材料或膜。更具体地,体外装置可以是透析装置。也可以是透析装置的膜。OXDC的“功能片段”是保留了OXDC的一种或多种生物活性的OXDC多肽的一部分,所述活性例如催化草酸盐的脱羧的能力。本文使用的功能片段可以包含来自一个或两个末端的末端截头,除非另有说明。例如,功能片段可以具有从OXDC多肽的氨基和/或羧基末端省略的1,2,4,5,6,8,10,12,15,或20或更多个残基。优选地,截头从一个或两个末端不超过20个氨基酸。功能片段可以任选地连接至一个或更多个异源序列。术语“个体”或“受试者”是指任意哺乳动物,包括但不限于,这样分类的任意动物,包括人,非人灵长类动物,灵长类动物,狒狒,猩猩,猴子,啮齿类动物(例如,小鼠,大鼠),兔子,猫,狗,马,牛,绵羊,山羊,猪,等。术语“分离的”是指基本上脱离它的天然环境的分子。例如,分离的蛋白基本上脱离细胞材料或来自它的来源的细胞或组织源的其它蛋白。该术语指其中分离的蛋白的纯度足以作为治疗组合物施用的制品,或至少70%至80%(w/w)纯度、更优选地至少80%至90%(w/w)纯度、更优选地90至95%纯度;最优选地至少95%、96%、97%、98%、99%、99.5%、99.8%或100%(w/w)纯度。本文使用的术语“约”是指最高达该术语限定的值±10%。例如,约50mM是指50mM±5mM;约4%是指4%±0.4%。本文使用的“草酸盐相关病症”是指与草酸或草酸盐的病理水平有关的疾病或病症,包括、但不限于,高草酸尿,原发性高草酸尿,肠原性高草酸尿,特发性高草酸尿,乙二醇(草酸盐)中毒,特发性尿路结石病,肾衰竭(包括渐进性、慢性、或末期肾衰竭),脂肪痢,吸收不良,回肠病,外阴痛,心脏传导障碍(cardiacconductancedisorders),炎性肠病,囊性纤维化病,胰腺外分泌机能不全,克罗恩病,溃疡性结肠炎,肾钙沉着症,尿路结石症,和肾结石。这样的病症和障碍可以任选地是急性的或慢性的。本领域已知与肾、骨、肝、胃肠道和胰腺有关的草酸盐相关病症。此外,众所周知,草酸钙可以在多种组织中沉积,包括,但不限于,眼睛、血管、关节、骨、肌肉、心脏和导致许多草酸盐相关病症的其它重要器官。在尿和肠液的pH(pKa1=1.23,pKa2=4.19),“草酸”主要以它的盐形式草酸盐(作为对应的共轭碱的盐)存在。Earnest,Adv.InternalMedicine24:407427(1979)。术语"草酸"和"草酸盐"在本公开内容中互换使用。包含锂、钠、钾、和铁(II)的草酸盐是可溶的,但是草酸钙通常非常难溶于水(例如,在18℃仅溶解至约0.58mg/100ml。Earnest,Adv.InternalMedicine24:407427(1979))。来自食物的草酸也称作饮食草酸盐。由代谢过程产生的草酸盐称作内源性草酸盐。循环草酸盐是存在于循环体液例如血液中的草酸盐。术语“治疗有效剂量”或“治疗有效量”是指,导致草酸盐相关病症(包括高草酸尿,例如原发性高草酸尿或肠原性高草酸尿)的预防、症状发作的延迟或症状的改善的化合物的量。治疗有效量将足以例如治疗、预防、减轻与升高的草酸盐浓度有关的病症的严重性、延迟其发作和/或减少一种或多种症状的发作危险。通过本领域众所周知的和本说明书的后续部分所述的方法,可以确定有效量。术语“治疗”、“治疗方法”和它们的近义词是指现有病症的治疗和/或预防(prophylatic)/预防(preventative)措施。需要治疗的对象可以包括已经具有特定医学病症的个体、以及处于所述病症的危险中或具有所述病症或可能最终患病的对象。如下评价对治疗的需求:例如,通过与疾病的发展有关的一个或多个危险因素的存在,病症的存在或进展,或对具有所述病症的受试者的治疗的可能接受性。治疗可以包括减慢或逆转病症的进展。草酸脱羧酶。本文使用的草酸脱羧酶(OXDC)(EC4.1.1.2)是指草酸羧酸分解酶。草酸脱羧酶是本领域已知的能根据下述反应独立于分子氧(O2)地催化草酸氧化成二氧化碳和甲酸的一组酶:HO2C-CO2H→1CO2+HCOOH草酸脱羧酶的同种型和那些同种型的糖形包含在该定义中。该术语包括来自植物、细菌和真菌的OXDC,包括来自细菌和真菌的真草酸脱羧酶,例如枯草芽孢杆菌,金针菇或绒状火菇,黑曲霉,假单胞菌属,蓝藻属(Synechocystissp.),变形链球菌,毛栓菌(Trameteshirsute),核盘菌,白腐菌(T.versicolor),褐腐菌(Postiaplacenta),疣孢漆斑菌,双孢子蘑菇,甲基营养菌(Methylobacteriumextorquens),Pseudomonasoxalaticus,真养雷氏菌,Cupriavidusoxalaticus,Wautersiasp.,Oxalicibacteriumflavum,Ammoniiphilusoxalaticus,Vibriooxalaticus,A.oxalativorans,Variovoraxparadoxus,自养黄色杆菌,曲霉菌属,青霉菌属,和毛霉菌属。任选地,OXDC可以另外依赖于辅酶A,例如来自肠道生物的OXDC。在某些情况下,OXDC是可溶的六聚体蛋白。草酸脱羧酶由高等植物、细菌和真菌生成,且具有草酸羧酸分解酶活性。草酸脱羧酶包括由下述生物生成的那些:枯草芽孢杆菌,金针菇或绒状火菇,黑曲霉,假单胞菌属,蓝藻属(Synechocystissp.),变形链球菌,毛栓菌(Trameteshirsute),核盘菌,白腐菌(T.versicolor),褐腐菌(Postiaplacenta),疣孢漆斑菌,双孢子蘑菇,甲基营养菌(Methylobacteriumextorquens),Pseudomonasoxalaticus,真养雷氏菌,Cupriavidusoxalaticus,Wautersiasp.,Oxalicibacteriumflavum,Ammoniiphilusoxalaticus,Vibriooxalaticus,A.oxalativorans,Variovoraxparadoxus,自养黄色杆菌,曲霉菌属,青霉菌属,和毛霉菌属,它们通常鉴别为cupin型OXDC。cupin-样蛋白是一大类共有某些结构特征的蛋白。OXDC,例如来自Collybia属的G-OXDC作为例如六聚体糖蛋白是有活性的。用于制备晶体和用于本文所述方法中的草酸脱羧酶可以从例如天然来源分离,或可以源自天然来源。本文使用的术语“源自”是指具有在来源中天然存在的氨基酸或核酸序列。例如,源自枯草芽孢杆菌的草酸脱羧酶包含枯草芽孢杆菌草酸脱羧酶蛋白的基本序列,或由包含在枯草芽孢杆菌中发现的编码草酸脱羧酶或其降解物的序列的核酸编码。源自一个来源的蛋白或核酸包括从该来源分离的、重组生产的和/或化学合成的或修饰的分子。本文提供的晶体可以从包含OXDC的氨基酸序列或保留草酸盐降解活性的OXDC功能片段的多肽制备。优选地,OXDC保留天然存在的OXDC的至少一个功能特征,例如,保留下述一个或更多个:催化草酸盐降解的能力、多聚化能力和/或锰需求。分离的草酸脱羧酶。以前已经分离出草酸脱羧酶,因而可以从许多来源获得,包括枯草芽孢杆菌,金针菇或绒状火菇,黑曲霉,假单胞菌属,蓝藻属(Synechocystissp.),变形链球菌,毛栓菌(Trameteshirsute),核盘菌,白腐菌(T.versicolor),褐腐菌(Postiaplacenta),疣孢漆斑菌,双孢子蘑菇,甲基营养菌(Methylobacteriumextorquens),Pseudomonasoxalaticus,真养雷氏菌,Cupriavidusoxalaticus,Wautersiasp.,Oxalicibacteriumflavum,Ammoniiphilusoxalaticus,Vibriooxalaticus,A.oxalativorans,Variovoraxparadoxus,自养黄色杆菌,曲霉菌属,青霉菌属,和毛霉菌属。OXDC也可以购自商业供应商,例如,Sigma。从天然来源分离OXDC的方法曾经描述在,例如,下述参考文献中:Tanner等人,TheJournalofBiologicalChemistry.47:43627-43634.(2001);Dashek,W.V.andMicales,J.A.,Methodsinplantbiochemistryandmolecularbiology.BocaRaton,FL:CRCPress.5:49-71.(1997);Magro等人,FEMSMicrobiologyLetters.49:49-52.(1988);Anand等人,Biochemistry.41:7659-7669.(2002);andTannerandBornemann,S.JournalofBacteriology.182:5271-5273(2000)。这些分离的草酸脱羧酶可以用于形成本文所述的晶体和方法。重组的草酸脱羧酶。或者,重组的OXDC可以用于形成本文提供的晶体和方法。在有些情况下,重组的OXDC包括来自天然存在的OXDC序列的序列,或由其编码。此外,本文描述了包含与天然存在的序列同源的或基本上相同的氨基酸序列的OXDC。也提供了由与天然存在的OXDC-编码核酸同源的或基本上相同的的核酸编码的OXDC,且可以如本文所述结晶化,和/或施用。在本文中称作“重组的”多肽是已经通过重组DNA方法生成的多肽,包括通过依赖于人工重组例如聚合酶链式反应(PCR)和/或使用限制酶克隆进载体的方法的操作产生的那些。“重组的”多肽也是具有改变的表达的多肽,例如在细胞(例如宿主细胞)中具有重组修饰的表达的天然存在的多肽。在一个实施方案中,OXDC是从与枯草芽孢杆菌或金针菇OXDC核酸序列同源的核酸重组生产,且有时进行修饰,例如,以增加或优化在异源宿主中的重组生产。在SEQIDNO:1(核酸)中提供了这种修饰的序列的一个实例,它包括金针菇OXDC的开放读码框的核酸序列,用于在博伊丁假丝酵母中表达。所述OXDC序列已经修饰以降低它的GC含量,将它连接至α交配因子分泌信号序列,且侧接工程化的限制性内切核酸酶切割位点。在另一个实施方案中,OXDC是从SEQIDNO:2或可在GenBankAccessionNo:Z99120得到的未修饰的枯草芽孢杆菌OXDC核酸序列重组生产。由SEQIDNO:2编码的氨基酸序列提供为SEQIDNO:3。可用于形成OXDC晶体的OXDC多肽可以在宿主细胞中表达,例如包含核酸构建体的宿主细胞,所述核酸构建体含有OXDC多肽或其功能片段的编码序列。适合表达OXDC的宿主细胞可以是酵母、细菌、真菌、昆虫、植物、或哺乳动物细胞,例如,或转基因植物、转基因动物或无细胞的系统。优选地,宿主细胞能在必要时糖基化OXDC多肽,能形成二硫键,能分泌OXDC,和/或能支持OXDC多肽的多聚化。优选的宿主细胞包括、但不限于,大肠杆菌(包括大肠杆菌OrigamiB和大肠杆菌BL21),巴氏毕赤酵母,酿酒酵母,粟酒裂殖酵母,枯草芽孢杆菌,曲霉菌,Sf9细胞,中国仓鼠卵巢(CHO),293细胞(人胚胎肾),和其它人细胞。转基因植物、转基因动物(包括猪、牛、山羊、马、鸡和兔子)也是适合生产OXDC的宿主。为了重组生产OXDC,宿主或宿主细胞应当包含构建体,后者是包含至少一个编码OXDC或其功能片段的核酸的质粒、载体、噬菌粒或转录或表达盒的形式。可得到许多种构建体,包括以单个拷贝或多个拷贝维持的构建体,或掺入宿主细胞染色体中的构建体。许多重组表达系统、组分和重组表达试剂可商业上得到,例如来自InvitrogenCorporation(Carlsbad,CA);U.S.Biological(Swampscott,MA);BDBiosciencesPharmingen(SanDiego,CA);Novagen(Madison,WI);Stratagene(LaJolla,CA);andDeutscheSammlungvonMikroorganismenundZellkulturenGmbH(DSMZ),(Braunschweig,Germany)。OXDC的重组表达任选地由异源启动子,包括组成型和/或诱导型启动子控制。启动子例如,T7,醇氧化酶(AOX)启动子,二羟基-丙酮合酶(DAS)启动子,Gal1,10启动子,磷酸甘油酸激酶启动子,甘油醛-3-磷酸脱氢酶启动子,醇脱氢酶启动子,铜金属硫蛋白(CUP1)启动子,酸性磷酸酶启动子,CMV和启动子多角体蛋白也是适宜的。基于宿主或宿主细胞,选择具体的启动子。另外,例如,可由甲醇、硫酸铜、半乳糖、低磷酸盐、醇(例如,乙醇)诱导的启动子也可以使用,且是本领域众所周知的。编码OXDC的核酸可以任选地包含异源序列。例如,在有些实施方案中,将分泌序列包含在OXDC多肽的N-末端。可以使用信号序列,例如来自α交配因子、BGL2、酵母酸性磷酸酶(PHO)、木聚糖酶、α淀粉酶的那些,来自其它酵母分泌的蛋白的那些,和源自能指导宿主细胞的分泌的其它种类的分泌信号肽。类似地,其它异源序列例如连接物(例如,其包含切割或限制性内切核酸酶位点)和一个或多个表达控制元件、增强子、终止子、先导序列和一个或多个翻译信号,都在该描述的范围内。这些序列可以任选地包含在构建体中和/或连接到编码OXDC的核酸上。除非另有说明,“连接的”序列可以彼此直接地或间接地相结合。类似地,表位或亲和标记物例如组氨酸、HA(血凝素肽)、麦芽糖结合蛋白、FLAG或谷胱甘肽-S-转移酶可以任选地连接到OXDC多肽上。在生产或纯化后,可以任选地从OXDC切割下标记物。技术人员可以容易地选择适宜的异源序列,例如,匹配宿主细胞,构建体,启动子,和/或分泌信号序列。OXDC同系物或变体与OXDC参照序列相差一个或多个残基。例如可以用结构上类似的氨基酸置换一些指定的氨基酸。结构上类似的氨基酸包括:(I,L和V);(F和Y);(K和R);(Q和N);(D和E);和(G和A)。本文所述的OXDC同系物也包括氨基酸的缺失、添加或置换。这样的同系物和变体包括:(i)多态变体和天然的或人工的突变体,(ii)修饰的多肽,其中修饰了一个或多个残基,和(iii)包含一个或多个修饰的残基的突变体。如果它与参照序列具有至少40%、50%、60%、70%、75%、80%、85%、90%、95%、97%、98%、99%、或100%同一性,则OXDC多肽或核酸是“同源的”(或是“同系物”)。如果同系物与参照序列不同,则它是“变体”。如果同系物的核苷酸或氨基酸序列与参照序列相差(例如,通过截短、缺失、置换或添加)不超过1、2、3、4、5、8、10、20或50个残基且保留催化草酸盐降解的能力(或编码保留该能力的多肽),则同系物与参照OXDC序列"基本上相同"。草酸脱羧酶的片段可以是同系物,包括变体和/或基本上相同的序列。作为实例,同系物可以源自不同的OXDC来源,或它们可以通过截短、缺失、置换或添加突变而源自参照序列或与参照序列有关。2个核苷酸或氨基酸序列之间的同一性百分比可以通过标准的比对算法来测定,例如,在Altschul等人,J.Mol.Biol.,215:403410(1990)中所述的BasicLocalAlignmentTool(BLAST),Needleman等人,J.Mol.Biol.,48:444453(1970)的算法,或Meyers等人,Comput.Appl.Biosci.4:1117(1988)的算法。这样的算法掺入BLASTN,BLASTP,和“BLAST2Sequences”程序(综述见McGinnisandMadden,NucleicAcidsRes.32:W20-W25,2004)。当使用这样的程序时,可以使用默认参数。例如,对于核苷酸序列,可以将下述设定用于“BLAST2Sequences”:程序BLASTN,匹配2个奖励(rewardformatch2),错配2个罚分(penaltyformismatch2),空位开放(opengap)和空位延伸罚分(extensiongappenalties)分别是5和2,gapx_dropoff50,expect10,wordsize11,filterON。对于氨基酸序列,可以将下述设定用于“BLAST2Sequences”:程序BLASTP,矩阵BLOSUM62,空位开放(opengap)和空位延伸罚分(extensiongappenalties)分别是11和1,gapx_dropoff50,expect10,wordsize3,filterON。适合形成本文所述晶体的OXDC的氨基酸和核酸序列可以包括同源的、变体的或基本上相同的序列。草酸脱羧酶的纯化。在结晶化之前,可以从来源(例如天然的或重组的来源)纯化草酸脱羧酶蛋白或多肽。在本文中称作“分离的”多肽是,基本上脱离它的天然环境(例如,它们的起源(例如,细胞,组织(即,植物组织)的蛋白、脂类、和/或核酸,或液体或培养基(在分泌多肽的情况下)))的多肽。分离的多肽包括通过本文所述方法或其它合适方法得到的那些,包括实质上纯的或基本上纯的多肽,和通过化学合成、通过重组生产、或通过生物和化学方法的组合生产的多肽。任选地,分离的蛋白在生产后经过进一步加工,例如通过纯化步骤。纯化可以包含缓冲液更换和色谱步骤。任选地,可以使用浓缩步骤,例如,通过透析,色谱聚焦色谱法,和/或结合缓冲液更换。在某些情况下,阳离子或阴离子交换色谱用于纯化,包括Q-琼脂糖,DEAE琼脂糖,DE52,磺丙基琼脂糖色谱或CM52或类似的阳离子交换柱。缓冲液更换任选地在色谱分离之前,且可以通过切线流过滤例如渗滤来实现。在某些制品中,OXDC是至少70%、80%、85%、90%、95%、96%、97%、98%、99%、99.5%、99.7%、或99.9%纯度。以克量级进行的纯化适用于制备OXDC,为有效的、廉价的、生产规模OXDC纯化优化操作。例如,在纯化操作中提供至少0.5、1、2、5、10、20、50、100、500或1000克或更多的OXDC的纯化。在一个示例性的操作中,提供至少10L、50L、100L、500L、1000L或更多的起始样品切线流过滤,以实现缓冲液更换和污染蛋白的沉淀。单个Q-琼脂糖柱任选地用于纯化OXDC。纯化的OXDC的结晶也可以去除污染物,例如进一步纯化OXDC制品。例如,与可溶的纯化的OXDC相比,如实施例2-6所述结晶化的OXDC具有降低水平的低分子量污染物。在有些方面,从晶体形式选择性地排除具有0-10KDa、1-10KDa、0.5-5KDa,或2-5KDa的测量质量(通过基质辅助的激光解吸电离质谱分析(MALDI-MS))的污染物。例如,通过结晶化,可以基本上去除具有约2.5、3.0、3.7、3.8、4.0、4.2或5.0KDa的测量质量的污染物。使用例如含有粗草酸脱羧酶的发酵培养基,也可以结晶纯化。草酸脱羧酶的结晶。使用上述的OXDC多肽例如六聚体,可以制备草酸脱羧酶晶体(参见Anand等人,Biochemistry41:7659-7669(2002))。可以使用例如蒸汽扩散(例如,悬滴和坐滴方法)和批量结晶方法。通过使蛋白从水溶液或包含有机溶剂的水溶液中受控结晶,可以逐渐形成草酸脱羧酶晶体。可以控制的条件包括例如溶剂的蒸发速率、适当共溶质和缓冲剂的存在、pH和温度。对于治疗施用,例如用于治疗与草酸盐水平有关的病症或障碍,多种OXDC晶体大小是适宜的。在某些实施方案中,施用小于约500μm平均尺寸的晶体。也提供了具有约0.01、0.1、1、5、10、25、50、100、200、300、400、500或1000μm长度的平均、最大或最小尺寸(例如)的草酸脱羧酶晶体。微晶showers也是合适的。范围是适宜的,且技术人员会明白。例如,蛋白晶体可以具有约0.01μm至约500μm、或者0.1μm至约50μm的最长尺寸。在一个具体实施方案中,最长尺寸范围是约0.1μm至约10μm。晶体也可以具有选自球、针、棒、板的形状,例如六边形和正方形,菱形,立方体,双锥和棱柱。在解释性实施方案中,晶体是具有小于5μm的最长尺寸的立方体。一般而言,通过将要结晶的蛋白与适当水性溶剂或含有适当结晶剂(例如盐或有机溶剂)的水性溶剂相组合,生产晶体。使所述溶剂与蛋白相组合,并任选地在实验测定适合诱导结晶且维持蛋白活性和稳定性可接受的温度经历搅拌。溶剂可以任选地包括共溶质,例如单价或二价阳离子、辅因子或促溶剂,以及控制pH的缓冲剂。实验测定促进结晶所需的共溶质和它们的浓度。在工业规模过程中,通过例如在分批过程中使蛋白、沉淀剂、共溶质和任选的缓冲液相组合,可以进行产生结晶的受控沉淀。可以采纳替代性的实验室结晶方法和条件,例如透析或蒸汽扩散(McPherson,等人,MethodsEnzymol.114:112-20(1985)andGilliland,CrystalGrowth90:51-59(1998))。偶尔,交联剂和结晶介质之间的不相容性可能需要在交联之前改变缓冲液(溶剂)。如实施例所述,草酸脱羧酶会在许多条件下结晶,包括宽pH范围(例如,pH3.5-8.0)。在所述的有些实施方案中包含沉淀剂例如聚乙二醇(例如,PEG200,PEG400,PEG600,PEG1000,PEG2000,PEG3000,PEG8000[参见实施例7和8])或有机共溶剂例如2-甲基-2,4-戊二醇(MPD)。可以使用的普通盐包括氯化钠、氯化钾、硫酸铵、醋酸锌等。草酸脱羧酶在结晶发酵液中的浓度可以是,例如,至少5,10,15,20,25,30,35,40,45,50,60,70,80,90,或100mg/ml,或更高。结晶反应的效率或产率是至少50%、60%、70%、80%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、或更高。在一个实施方案中,通过分批过程使草酸脱羧酶溶液与适当缓冲液相混合,逐渐形成或生产出草酸脱羧酶晶体。在某些实施方案中,所述缓冲液是100mMTris-HCl缓冲液pH8.0和含有2mM半胱氨酸-HCl的100mMNaCl。从细胞或细胞提取物结晶。晶体可以直接从细胞或粗细胞提取物制备。在一个实施方案中,收获表达草酸脱羧酶的细菌细胞。在有或没有DNA酶存在下重新悬浮细胞,并匀浆化。将盐溶液加入细胞裂解物,达到约0.3M、0.4M、0.5M、0.6M或更高的盐浓度。加入的盐可以是钠盐、钾盐、钙盐、或其它盐。通过去除细胞碎片,可以任选地从细胞混合物提取蛋白。在一个实施方案中,将匀浆化的细胞混合物离心,使蛋白在上清液溶液中。通过降低细胞混合物或蛋白溶液的盐浓度,产生晶体。在一个实施方案中,通过透析去除盐,以维持蛋白浓度。为了提高晶体产率,可以在降低溶液的盐浓度之前浓缩蛋白溶液。可以在pH约6、7或8的溶液中产生晶体。可以从蛋白沉淀物或颗粒制备晶体。在一个实施方案中,收获表达目标蛋白的细胞,并在沉淀物或颗粒中收集草酸脱羧酶蛋白。将含有草酸脱羧酶蛋白的颗粒或沉淀物溶于盐溶液。通过降低蛋白溶液的盐浓度,形成晶体。为了提高晶体产率,在降低浓度来生产晶体之前,溶解的蛋白溶液中的盐浓度是至少约0.3M、0.4M、0.5M或更高。也可以从蛋白溶液制备晶体。在一个实施方案中,在盐溶液中浓缩草酸脱羧酶蛋白溶液,当降低溶液的盐浓度时,形成晶体。为了提高晶体产率,在降低浓度来生产晶体之前,盐浓度是至少约0.3M、0.4M、0.5M或更高。稳定化的晶体。一旦草酸脱羧酶晶体已经在合适的介质中逐渐形成,可以任选地使它们稳定化,例如通过交联。通过在晶体的组分蛋白分子之间引入共价键,交联导致晶格的稳定化。这使得将蛋白转移至否则可能与所述晶格的存在不相容或甚至与完整蛋白的存在不相容的替代环境中成为可能。草酸脱羧酶晶体可以通过例如赖氨酸胺基、巯基(硫氢基)、和碳水化合物部分来交联。交联的晶体在本文中也称作“OXDC-CLEC,”“CLEC-OXDC,”或“CLEC”。交联的晶体可以改变酶稳定性(例如,pH,温度,机械和/或化学稳定性),OXDC活性的pH性质,溶解度,晶体大小或体积的均一性,酶从晶体释放的速率,和/或在基础晶格中的各个酶分子之间的孔大小和形状。有利地,以使晶体包含与可溶的OXDC相比表现出至少60%、80%、100%、150%、200%、250%、300%或更高活性的OXDC的方式,根据本发明进行交联或稳定化。与可溶的OXDC相比,稳定性可以提高至少30%、40%、50%、60%、70%、80%、90%、100%、150%、200%、250%、300%或更多。可以在储存条件下测量稳定性,例如pH稳定性,温度稳定性,抗肠蛋白酶的稳定性,溶出稳定性,和体内生物稳定性,例如。在有些实施方案中,交联会减慢晶体中的OXDC多肽向溶液中的溶出,有效地将蛋白分子固定化在微晶颗粒中。在暴露于交联的蛋白晶体的周围环境中的触发剂后,例如在使用而不是储存条件下,蛋白分子会缓慢溶解,释放出活性OXDC多肽和/或增加OXDC活性。可以控制溶出速率,例如通过下述因素中的一个或多个:交联度,蛋白晶体暴露于交联剂的时间长度,向蛋白晶体中加入交联剂的速率,交联剂的性质,交联剂的链长,pH,温度,硫羟(sulfahydryl)试剂(如半胱氨酸,谷胱甘肽)的存在,交联的蛋白晶体的表面积,交联的蛋白晶体的大小,和交联的蛋白晶体的形状。交联可以在同时(平行地)或顺序使用多种交联剂中的一种或它们的组合来实现,包括多功能剂。在暴露于周围环境中的触发剂后,或经过给定的时间阶段,与这样的多功能交联剂交联的蛋白晶体之间的交联变小或变弱,导致蛋白溶出或活性释放。或者,交联可以在结合点断裂,导致蛋白溶出或活性释放。参见美国专利号5,976,529和6,140,475。在有些实施方案中,交联剂是具有至少2,3,4,5,或更多个活性部分的多功能交联剂。在不同的实施方案中,所述试剂可以选自戊二醛,丁二醛,辛二醛,乙二醛,二硫双(琥珀酰亚胺基丙酸酯),3,3'二硫双(硫代琥珀酰亚胺基丙酸酯),3,3’-二硫代双丙亚氨酸二甲酯·HCl,N-琥珀酰亚胺基-3-(2-吡啶基二硫)丙酸酯,环己二胺,二氨基辛烷,乙二胺,琥珀酸酐,苯基戊二酸酐,水杨醛,乙酰亚胺酯(acetimidate),福尔马林,丙烯醛,琥珀半醛,丁醛,月桂醛,甘油醛,和反式-辛-2-烯醛。其它多功能交联剂包括卤代三嗪,例如,氰尿酰氯;卤代嘧啶,例如,2,4,6-三氯/溴嘧啶;脂族或芳族单羧酸或二羧酸的酸酐或卤化物,例如,马来酸酐,(甲基)丙烯酰氯,氯乙酰氯;N-羟甲基化合物,例如,N-羟甲基氯-乙酰胺;二异氰酸酯或二异硫氰酸酯,例如,亚苯基-1,4-二异氰酸酯和氮丙啶。其它交联剂包括环氧化物,例如,二环氧化物,三环氧化物和四环氧化物。在一个实施方案中,交联剂是戊二醛,即一种双功能剂,戊二醛单独使用或与环氧化物顺序使用。也可以与可逆交联剂(例如下述的那些)同时(平行地)或顺序使用其它交联剂(参见,例如,PierceChemicalCompany的1996年目录)。根据本发明的一个替代实施方案,可以平行地或顺序地使用可逆交联剂进行交联。得到的交联的蛋白晶体的特征在于反应性多功能交联物,其中触发物作为分隔基团掺入。反应官能团参与将蛋白中的反应性氨基酸侧链连接到一起,触发物由可以通过改变周围环境中的一个或多个条件(例如,pH,还原剂的存在,温度,或热力学水活性)来破坏的键组成。交联剂可以是同功能的或异功能的。反应官能团(或部分)可以,例如,选自下述官能团之一(其中R,R’,R”,和R’’’可以是烷基,芳基或氢基团):I.反应性酰基供体,例如:羧酸酯RCOOR’,酰胺RCONHR’,酰叠氮RCON3,碳二亚胺R-N=C=N-R’,N羟基亚胺酯,RCO-O-NR’,亚胺酯R-C=NH2+(OR’),酸酐RCO-O-COR’,碳酸酯RO-CO-O-R’,氨基甲酸乙酯RNHCONHR’,酸卤化物RCOHal(其中Hal=卤素),酰基肼RCONNR’R”,和(O-酰基异脲)OAcylisoureasRCO-O-C=NR’(-NR”R’’’);II.反应性羰基,例如:醛RCHO和酮RCOR’,缩醛RCO(H2)R’,和缩酮RR’CO2R’R”(在文献(PierceCatalogandHandbook,PierceChemicalCompany,Rockford,Ill.(1994);S.S.Wong,ChemistryofProteinConjugationandCross-linking,CRCPress,BocaRaton,Fla.(1991)中描述了蛋白固定化和交联领域的技术人员已知的含有反应性羰基的官能团);III.烷基或芳基供体,例如:烷基或芳基卤化物R-Hal,叠氮化物R-N3,硫酸酯RSO3R’,磷酸酯RPO(OR’3),烷基氧盐R3O+,锍R3S+,硝酸酯RONO2,Michael受体RCR’=CR’’’COR”,芳基氟ArF,异腈RN+=C-,卤代胺R2N-Hal,烯烃,和炔烃;IV.含硫基团,例如:二硫化物RSSR’,巯基RSH,和环氧化物R2C_OCR’2;和V.盐,例如:烷基或芳基铵盐R4N+,羧酸盐RCOO-,硫酸盐ROSO3-,磷酸盐ROPO3”,和胺R3N。可逆的交联剂,例如,包含触发物。触发物包括烷基,芳基,或具有可以与要交联的蛋白反应的活化基团的其它链。那些反应性基团可以是任意种类的基团,例如易于亲核置换、自由基置换或亲电子置换的那些,包括卤化物,醛,碳酸酯,氨基甲酸乙酯,苍耳烷,和环氧化物以及其它。例如,反应性基团可以对酸、碱、氟化物、酶、还原、氧化、巯基、金属、光分解、根(radical)或热不稳定。在T.W.Green,ProtectiveGroupsinOrganicSynthesis,JohnWiley&Sons(Eds.)(1981)中描述了可逆的交联剂的其它实例。可以将用于可逆保护基的任意种类的策略掺入适合生产能实现可逆的受控溶解的交联蛋白晶体的交联剂中。不同的方案列在Waldmann的AngewanteChemieInl.Ed.Engl.,35:2056(1996)关于该主题的综述中。其它类型的可逆的交联剂是含有二硫键交联剂。通过这样的交联剂破坏交联形成的触发物是,向交联的蛋白晶体的环境中加入还原剂,例如半胱氨酸。在PierceCatalog和Handbook(1994-1995)中描述了示例性的二硫化物交联剂。在美国专利号6,541,606中公开了这样的交联剂和方法的实例,其相关部分通过参考引入。另外,也可以使用在碳水化合物部分之间或在碳水化合物部分和氨基酸之间交联的交联剂。交联剂溶液的浓度可以是约0.01%至20%、约0.02%至10%、或约0.05%至5%w/v。通常,交联剂是约0.5%或约1%w/v。例如,交联剂溶液的浓度可以是,例如,约0.01%、0.02%、0.05%、0.075%、0.1%、0.2%、0.3%、0.5%、1%、2%、3%、3.5%、4%、5%、6%、7%、8%、9%、10%、15%、或20%w/v[参见实施例中的表2]。可能需要在交联之前更换缓冲液。可以任选地低压冻干或以其它方式制备晶体,包括CLEC。晶体,包括本文所述的交联的晶体,可以用于本文所述的治疗方法和降低草酸盐水平的方法中。OXDC晶体也可以用于与工业过程(例如,合成,加工,生物除污,消毒,灭菌)有关的方法,和治疗植物(例如植物真菌感染)的方法,例如综述参见,例如,Svedruzic等人,Arch.Biochem.Biophys.433:176-192(2005)。可溶的或无定形的OXDC的这样的非治疗用途参见,例如,美国专利号5,866,778;6,218,134;6,229,065;6,235,530;和6,503,507。基于上述稳定化的OXDC晶体的一种或多种性质,本文所述的晶体可以用于这些用途,例如增加草酸脱羧酶的稳定性。草酸脱羧酶晶体的干燥。通过下述方式去除水、有机溶剂或液体聚合物,从而干燥草酸脱羧酶晶体:包括,用氮气、空气或惰性气体干燥,真空烘箱干燥,低压冻干,用挥发性的有机溶剂洗涤、随后蒸发溶剂,在通风橱中蒸发,浅盘干燥,流化床干燥,喷雾干燥,真空干燥,或滚筒干燥。通常,当晶体变成可自由流动的粉末时,进行干燥。通过使气体流穿过湿晶体,可以进行干燥。所述气体可以选自:氮气,氩,氦,二氧化碳,空气或它们的组合。原则上,可以通过低压冻干来制备干燥的晶体。但是,该技术包含物质的快速冷却,仅适用于冻干稳定的产物。在一个实施方案中,首先将含有晶体状草酸脱羧酶的水溶液冷冻到-40至-50℃,然后在真空下取出。草酸脱羧酶晶体或包含这样的晶体的制剂或组合物的生产。在一个方面,公开了草酸脱羧酶晶体或包含这样的晶体的制剂或组合物。这样的组合物可以根据下述方法来制备:首先,使草酸脱羧酶结晶。接着,将选自糖、糖醇、增粘剂、润湿剂或增溶剂、缓冲盐、乳化剂、抗微生物剂、抗氧化剂和包衣剂的赋形剂或成分直接加入母液。或者,去除母液,然后将晶体悬浮于赋形剂溶液最少1小时至最多24小时。赋形剂浓度通常是约0.01至约10%(w/w)。所述成分浓度是约0.01至约90%(w/w)。所述晶体浓度是约0.01至约99%(w/w)。然后通过过滤或通过离心,从晶体浆料去除母液。随后,任选地在室温或在约-20℃至约25℃的温度,用一种或多种有机溶剂(例如,乙醇,甲醇,异丙醇或醋酸乙酯)的约50-100%(w/w)溶液洗涤晶体。然后通过使氮气、空气或惰性气体流经过它们,干燥晶体。或者,通过空气干燥、喷雾干燥、低压冻干或真空干燥,干燥晶体。洗涤后,干燥最少约1小时至最多约72小时,直到终产物的水含量低于约10%(按重量计)、更优选低于约5%(按重量计)。最后,如果需要可以进行晶体的微化(减小尺寸)。根据本发明的一个实施方案,当制备草酸脱羧酶晶体或包含这样的晶体的制剂或组合物时,在结晶过程中不加入增强剂,例如表面活性剂。在结晶后将所述赋形剂或成分加入母液中,其浓度为约1至约10%(w/w),或者浓度为约0.1至约25%(w/w),或者浓度为约0.1至约50%(w/w)。将所述赋形剂或成分与母液中的晶体温育约0.1至约3小时,或者温育约0.1至约12小时,或者温育约0.1至约24小时。在本发明的另一个实施方案中,将所述成分或赋形剂溶于母液以外的溶液中,从母液取出晶体,悬浮于赋形剂或成分溶液中。所述成分或赋形剂浓度和温育时间与上述的那些相同。本发明的另一个优点是,可以通过低压冻干来干燥包封在多聚体载体内的草酸脱羧酶晶体或其制剂以形成包含微球的组合物。低压冻干或冷冻干燥允许从组合物分离出水。首先冷冻草酸脱羧酶晶体组合物,然后置于高真空中。在真空中,结晶水升华,剩下草酸脱羧酶晶体组合物,其仅含有紧密结合的水。这样的加工会使组合物进一步稳定化,并使在常见的环境温度的储存和运输更容易。喷雾干燥允许从晶体制品分离出水。它非常适用于从溶液、乳状液和可泵的悬浮液形式的液体原料中连续生产粉末、颗粒或团块形式的干燥固体。喷雾干燥包含,将液体原料雾化成微滴喷雾,并使微滴在干燥室内接触热空气。通过旋转式(轮式)或喷嘴式喷雾器生成喷雾。在受控的温度和气流条件下,水分从微滴蒸发,形成干燥的颗粒。喷雾干燥操作需要相对较高的温度。但是,对产物的热损害通常仅仅是轻微的,这是因为关键干燥阶段中的蒸发冷却作用和因为干燥物质随后暴露于高温的时间非常短。将粉末从干燥室连续排出。根据产物的干燥特征和粉末规格,选择操作条件和干燥器设计。喷雾干燥是一种理想的过程,其中终产物必须在颗粒大小分布、残余水含量、堆密度和颗粒形状方面符合精确的质量标准。组合物。OXDC晶体,包括交联的晶体,作为组合物例如药物组合物(参见,例如,美国专利号6,541,606,它描述了蛋白晶体的制剂和组合物)来提供。包含OXDC晶体的药物组合物包括OXDC晶体和一种或多种成分或赋形剂,包括,但不限于糖和生物相容的聚合物。赋形剂的实例描述在美国药学协会(AmericanPharmaceuticalAssociation)和英国药学会(PharmaceuticalSocietyofGreatBritain)联合出版的HandbookofPharmaceuticalExcipients中,其它实例如下所述。OXDC酶可以作为多种生理上可接受的盐形式中的任一种作为在组合物中的晶体来施用,且/或用可接受的药用载体和/或添加剂作为药物组合物的一部分。生理上可接受的盐形式和标准的药物配制技术和赋形剂是本领域技术人员众所周知的(参见,例如,Physician’sDeskReference(PDR)2003,57thed.,MedicalEconomicsCompany,2002;和Remington:TheScienceandPracticeofPharmacy,编.Gennado等人,20thed,Lippincott,Williams&Wilkins,2000)。为了应用目的,“制剂”包括“晶体制剂”。可用于本发明方法中的草酸脱羧酶可以与赋形剂相组合。根据本发明,“赋形剂”用作填充剂或在药物组合物中使用的填充剂组合。用于组合物中的示例性的成分和赋形剂如下所述。生物相容的聚合物。生物相容的聚合物是非抗原性的(当不是用作佐剂时)、非致癌的、无毒的且另外地它们不是与活生物体固有地不相容的聚合物,它们可以用于本文所述的OXDC晶体组合物中。实例包括:聚(丙烯酸),聚(氰基丙烯酸酯),聚(氨基酸),聚(酸酐),聚(缩酚酸肽),聚(酯)例如聚(乳酸)或PLA,聚(乳酸-共聚-乙醇酸)或PLGA,聚(β-羟基丁酸酯),聚(己内酯)和聚(二氧杂环己酮);聚(乙二醇),聚((羟丙基)异丁甲基丙烯酰胺,聚[(有机)膦腈],聚(邻酯),聚(乙烯醇),聚(乙烯基吡咯烷酮),马来酸酐-烷基乙烯基醚共聚物,普卢兰尼克多元醇(pluronicpolyols),白蛋白,藻酸酯,纤维素和纤维素衍生物,胶原,纤维蛋白,明胶,透明质酸,寡糖,葡糖胺聚糖,硫酸化多糖,它们的掺合物和共聚物。生物可降解的聚合物,即可以通过水解或溶解而降解的聚合物,可以包含在OXDC晶体组合物中。降解可以是异质的(主要发生在颗粒表面)或同质的(均匀地降解整个聚合物基质)。可以在OXDC晶体组合物中包含诸如一种或多种赋形剂或药物成分或赋形剂的成分。成分可以是惰性的或有活性的成分。用OXDC晶体治疗草酸盐相关病症的方法。本发明的方法包括,给哺乳动物受试者施用草酸脱羧酶,例如OXDC晶体或其交联形式,以治疗、预防或降低与升高的草酸盐水平有关的病症的发生危险。可以在例如来自受试者的生物样品中检测升高的草酸盐水平,例如体液,包括尿、血液、血清或血浆。在某些实施方案中,检测尿草酸盐水平。在本文所述的方法中,可以施用晶体和/或包含晶体的组合物。在有些实施方案中,提供了治疗具有原发性高草酸尿、肠原性高草酸尿、外科手术造成的高草酸尿、特发性高草酸尿、草酸盐沉着症的个体的高草酸尿的方法。在其它情况下,肾、骨、肝、胃肠道和胰腺的升高的草酸盐相关病症会适合于本文公开的治疗。通过本文提供的方法治疗的其它病症或疾病包括、但不限于,乙二醇(草酸盐)中毒,特发性尿路结石病,肾衰竭(包括渐进性、慢性、或末期肾衰竭),脂肪痢,吸收不良,回肠病,外阴痛,心脏传导障碍(cardiacconductancedisorders),炎性肠病,囊性纤维化病,胰腺外分泌机能不全,克罗恩病,溃疡性结肠炎,肾钙沉着症,骨质疏松症,尿路结石症,和肾结石。这样的病症和障碍可以任选是急性的或慢性的。本发明的方法可以使受试者中的草酸盐水平与未治疗的或对照受试者中的水平相比降低至少10%、20%、30%、40%、50%、60%、70%、80%、90%、95%或更多。在有些实施方案中,通过对比在施用OXDC之前和之后受试者的草酸盐水平,测量降低。在有些实施方案中,本发明提供了治疗或改善草酸盐相关病症或障碍的方法,以使所述病症或障碍的一种或多种症状提高至少10%、20%、30%、40%、50%、60%、70%、80%、90%、95%或更多。在某些实施方案中,所述方法降低内源性草酸盐的水平和/或饮食草酸盐的吸附。在有些实施方案中,提供了治疗具有与高草酸盐水平有关的基因型的个体的方法,例如降低下述酶活性的突变纯合的或杂合的个体:例如,丙氨酸:乙醛酸氨基转移酶,乙醛酸还原酶/羟基丙酮酸还原酶,肝羟乙酸盐氧化酶,或参与草酸盐代谢或与高草酸尿有关的另一种酶。在其它实施方案中,提供了治疗具有降低的或缺少产甲酸草酸杆菌肠集群的个体的方法。公开的方法包括,给易感、患有与升高的草酸盐水平有关的病症或处于该危险中的哺乳动物受试者施用治疗有效量的草酸脱羧酶。通过本发明的方法治疗的群体包括、但不限于,遭受草酸盐相关病症(例如,原发性高草酸尿或肠原性高草酸尿)或处于发展该病症的危险中的受试者。根据本发明的方法治疗的受试者包括、但不限于哺乳动物,包括人,非人灵长类动物,灵长类动物,狒狒,猩猩,猴子,啮齿类动物(例如,小鼠,大鼠),兔子,猫,狗,马,牛,绵羊,山羊,猪,等。适应症,症状,和疾病指征。许多方法可以用于评判草酸盐相关病症或与升高的草酸盐水平有关的病症的发展或进展。这样的病症包括、但不限于,如上定义的任意病症、疾病或障碍。通过例如测量尿草酸盐、血浆草酸盐,测量肾或肝功能,或检测草酸钙沉积物,可以评判草酸盐相关病症的发展或进展。通过检测或测量例如尿样或其它生物样品或液体中的草酸盐浓度,可以鉴别病症、疾病或障碍。高草酸尿的早期症状通常是肾结石,可能伴有严重的或突发的腹痛或胁痛、血尿、频繁尿急、排尿疼痛、或发热和寒战。肾结石可以是有症状的或无症状的,且可以通过例如腹部X射线、超声或计算机断层(CT)扫描成像观察到。如果不控制高草酸尿,肾会受损,且肾功能受损。肾甚至可能衰竭。通过尿排出量的减少或缺少(肾小球滤过率)、一般的患病感觉、疲倦和显著的疲劳、恶心、呕吐、贫血和/或难以在幼儿时期正常发育和生长,可以鉴别肾衰竭(和肾功能低下)。通过直接目测(例如用眼睛)、X射线、超声、CT、超声心动图或活组织检查(例如,骨、肝或肾)等方法,也可以检测在其它组织和器官中的草酸钙沉积物。使用本领域公认的直接和间接测定法,也可以评判肾和肝功能以及草酸盐浓度。通过众所周知的技术,也可以测试化合物含量或尿、血液或其它生物样品。例如,可以测量草酸盐、羟乙酸盐和甘油酸盐水平。肝和肾功能的测定法是众所周知的,例如,分析肝组织的酶缺乏和分析肾组织的草酸盐沉积物。也可以测试样品的已知会造成原发性高草酸尿的DNA变化。其它治疗适应症包括、但不限于,存在一种或多种危险因子,包括前面和在下面部分讨论的那些。通过查明一种或多种这样的危险因子、诊断或预后指标的存在与否,可以鉴别处于发展或易感病症、疾病或障碍的受试者或可能特别易接受草酸脱羧酶治疗的受试者。类似地,通过分析一种或多种遗传型或表型标志物,可以鉴别处于发展草酸盐相关病症的危险中的个体。公开的方法可以用于每24小时周期的尿草酸盐水平为至少30、40、50、60、70、80、90、100、110、120、130、140、150、160、170、180、190、200、210、220、230、240、250、260、270、280、290、300、310、320、330、340、350、360、370、380、390或400mg草酸盐或更多的受试者。在某些实施方案中,草酸盐水平与一种或多种症状或病状有关。可以测量生物样品中的草酸盐水平,例如体液,包括血液、血清、血浆或尿。任选地,将草酸盐标准化成标准的蛋白或物质,例如尿中的肌酸酐。在有些实施方案中,要求保护的方法包括,施用草酸脱羧酶,在1、3、5、7、9、12或15天内,将受试者的循环草酸盐水平降低至不可检出的水平,或降低至治疗前受试者草酸盐水平的小于1%、2%、5%、10%、20%、30%、40%、50%、60%、70%或80%。人类的高草酸尿的特征在于每天的尿草酸盐排泄大于40mg(约440μmol)或30mg。示例性的临床截止水平是,例如,男性为43mg/天(约475μmol),女性为32mg/天(约350μmol)。高草酸尿也可以定义为每天每克尿肌酸酐的尿草酸盐排泄大于30mg。轻度高草酸尿患者每天可以排泄至少30-60(342-684μmol)或40-60(456-684μmol)mg草酸盐。肠原性高草酸尿患者每天可以排泄至少80mg尿草酸盐(912μmol),原发性高草酸尿患者每天可以排泄至少200mg(2280μmol),例如,BorowskiA.E,LangmanCB.HyperoxaluriaandOxalosis:CurrentTherapyandFuturedirections.ExpOpinionPhrama(2006,印刷中)。OXDC晶体和其组合物的施用根据本发明方法的草酸脱羧酶的施用不限于任何特定的给药系统,包括通过上胃肠道例如嘴(例如在胶囊、悬浮液、片剂中,或与食物一起)或胃或肠的上部(例如通过导管或注射)给药,以降低个体的草酸盐水平。在某些情况下,施用OXDC来降低内源性草酸盐水平和/或浓度。OXDC也可以由体外装置提供,例如透析装置,导管,或接触来自个体的生物样品的结构或装置。个体给药可以发生在单次剂量或重复给药中,且以多种生理上可接受的形式中的任一种,和/或使用可接受的药用载体和/或添加剂作为药物组合物的一部分(前述)。在本发明公开的方法中,草酸脱羧酶可以单独地、与一种或多种其它生物活性剂同时地或经重叠的或不重叠的间隔连续地给药,所述其它生物活性剂例如,吡多辛(维生素B-6),正磷酸盐,镁,糖胺聚糖,钙,铁,铝,镁,柠檬酸钾,考来烯胺,有机海产水胶体,植物汁,例如,香蕉茎汁或甜菜汁,或L-半胱氨酸。提供了降低草酸盐水平或增加OXDC的活性或可用性的生物活性剂。在连续给药中,草酸脱羧酶和一种或多种其它试剂可以以任意次序给药。在有些实施方案中,重叠间隔的长度可以是超过2、4、6、12、24或48周或更多。草酸脱羧酶可以作为唯一的活性化合物或与另一种活性化合物或组合物组合地给药。除非另有说明,根据症状的严重性和疾病的进展草酸脱羧酶以约10μg/kg至25mg/kg或100mg/kg的剂量给药。OXDC的适宜的治疗有效剂量由治疗临床医师选择,其大致范围是10μg/kg至20mg/kg,10μg/kg至10mg/kg,10μg/kg至1mg/kg,10μg/kg至100μg/kg,100μg/kg至1mg/kg,100μg/kg至10mg/kg,500μg/kg至5mg/kg,500μg/kg至20mg/kg,1mg/kg至5mg/kg,1mg/kg至25mg/kg,5mg/kg至100mg/kg,5mg/kg至50mg/kg,5mg/kg至25mg/kg,和10mg/kg至25mg/kg。另外,可以使用在实施例中或在Physician’sDeskReference(PDR)2003,57thed.,MedicalEconomicsCompany,2002中指出的具体剂量。本发明的草酸脱羧酶晶体可以通过例如将草酸脱羧酶递送给患者的体外装置或导管给药。导管,例如,导尿管,可以包被含有草酸脱羧酶晶体的组合物。下面的实施例提供了本发明的解释性实施方案。本领域普通技术人员会明白在不改变本发明的精神或范围的情况下可以作出的许多改进和变化。这样的改进和变化包含在本发明的范围内。实施例不以任何方式限制本发明。实施例实施例1.草酸脱羧酶的发酵和纯化。来自枯草芽孢杆菌(B.subtilis)的草酸脱羧酶(OXDC)是由6个相同的单体组成的261kDa同型六聚体蛋白。每个单体含有385个氨基酸,计算的分子量是~43-44kDa,等电点是5.2。使用枯草芽孢杆菌基因组DNA作为模板,PCR扩增以前称作yvrK的OXDC基因。首先将扩增的OXDC基因克隆进pCRII载体(Invitrogen,Carlsbad,CA),然后亚克隆,并使用大肠杆菌BL21(DE3)pLysS细胞从pET-11a表达载体表达。pET-11a载体中的这种基因表达是在T7启动子控制下,通过用IPTG(异丙基-β-D-硫代半乳糖苷)诱导,调节OXDC表达。使用发酵来实现重组的OXDC在大肠杆菌中的高水平表达。在含有酪蛋白水解物(USBCorporation,Cleveland,OH)或大豆蛋白胨、酵母浸出物(USBCorporation)、NaCl(FisherScientific)、PPG2000消泡剂(PPG)、KOH(MallinckrodtBaker,Inc.,Phillipsburg,NJ),和氨苄西林(USBCorporation)的800L(升)发酵培养基中进行表达。由于OXDC是锰-依赖性的酶,在发酵培养基中包含5mMMnCl2·4H2O(MallinckrodtBaker,Inc.)。通过加入0.4mMIPTG(LabScientific),诱导OXDC的表达。表达OXDC的细胞生长在摇瓶或发酵罐中。通过该方法,OXDC主要表达在颗粒制备物中。将使用pET11a-OXDC转化的BL21细胞的甘油原种用于发酵。对于800L发酵,用2x250ml烧瓶制备种子前培养物,每个烧瓶含有50ml培养基(LB+100μg/ml氨苄西林)。使用2x0.5ml接种物。在35℃、250rpm培养培养物6小时。然后将该培养物转移至6x2L烧瓶,每个烧瓶含有1L培养基(LB+100μg/ml氨苄西林)。在每个烧瓶中,加入10ml起始培养物。在35℃、250rpm培养这些培养物12小时。将6L该培养物转移至800L含有上述适当培养基的发酵罐中。培养物生长在37℃、pH7.0,在100rpm摇动使溶解氧为约30-40,直到OD600达到约0.3(该过程需要约2-3小时)。用0.4mMIPTG+5mMMnCl2·4H2O,诱导OXDC的表达。在37℃、100rpm诱导培养物4小时。然后收获细胞,并冷冻备用。在收获时的OD600是约5.5-8.0。在有或没有15-25U/mlDNA酶存在下,以1kg细胞糊/4L含有50mMTrispH8、100mMNaCl的缓冲液的比例,重新悬浮细胞。在4℃混合(50-60rpm)细胞悬浮液过夜。使细胞悬浮液穿过在冰上的预冷却的匀浆器3次。在显微镜下检查细胞裂解效率,将未破碎的细胞悬浮液用作对照。在4℃、在1L瓶中,在4,000rpm离心细胞40min。保存上清液和颗粒,用于SDS-PAGE表征。通过SDS-PAGE,分析OXDC的表达。在颗粒中发现大多数的OXDC,其包括包涵体和其它沉淀。通过在4000rpm离心40min,收获颗粒,将其立即使用或在-70℃冷冻备用。从800L发酵反应,我们得到5,000至5,500g细胞,它们产生2,800至3,000g湿重颗粒。实施例2.用温和变性剂浓度和随后的阴离子交换色谱从溶解化的颗粒结晶草酸脱羧酶。将在-20℃冷藏的OXDC颗粒用于制备OXDC晶体。在该操作中,在温和条件的变性剂浓度和pH下溶解颗粒。然后使用阴离子交换基质柱,重新折叠溶解化的蛋白。将颗粒溶解于2M脲、100mMTrispH10.0、10mMDTT和100mMNaCl(1:10w/v)。在室温(RT)搅拌溶液2h,然后在4℃在15K离心溶液30min。小心地倾析上清液,并保藏。小心地将颗粒称重,分别保藏。在恒定且轻柔搅拌下,以10ml/min的流速,将上清液中的溶解化的颗粒逐滴加入10体积的由2M脲、100mMTrispH8.0、1mMDTT和1mMMnCl2组成的溶液中。加入上清液结束后,在室温温育蛋白溶液1h。温育后,通过在4℃、在15K离心30min,以去除任意可能的沉淀,为阴离子交换色谱准备好蛋白溶液。通过将Q琼脂糖基质填塞在玻璃柱中,制备阴离子交换色谱柱。所述柱连接到FPLC上,通过用10柱体积(CV)的0.5M脲、100mMTrispH8.0、1mMDTT和1mMMnCl2溶液洗涤,进行平衡。流速维持在6ml/min。将溶解化的颗粒装载上柱。蛋白负载是8-10mg/ml基质。装载样品后,在6ml/min的流速,用至少10柱体积的100mMTrispH8.0、1mMDTT和1mMMnCl2洗涤柱。该步骤从结合的蛋白样品去除脲,并使蛋白重新折叠成它的天然构象。通过不连续梯度或分步洗脱,用1MNaCl、100mMTrispH8.0和1mMDTT从柱洗脱蛋白。在280nm监视蛋白洗脱,收集10ml级分。将峰级分合并到一起,通过SDS-PAGE和酶活性进行测试。如下将含有OXDC的峰级分浓缩至15mg/ml:使用10,000MWCO膜搅拌细胞,在10体积的100mMTrispH8.0、100mMNaCl和1mMDTT中透析。以1小时间隔,改变缓冲液2次,第三次改变缓冲液后,继续透析过夜,以实现最大晶体回收率。通过在4℃、在2K离心样品15min,回收在透析袋中结晶的蛋白。透析后,约70%的重折叠的OXDC会结晶。晶体是立方体形状,具有均一大小。晶体表现出约44单位的活性。实施例3.使用高变性剂浓度和随后的阴离子交换色谱,通过溶解颗粒使草酸脱羧酶结晶。通过该方法,将颗粒溶于5M脲、50mMTrispH8.6、100mMNaCl、10mMDTT(1:5w/v)。在室温搅拌溶液2h,然后在在4℃、在15K离心溶液30min。小心地倾析上清液,并保藏。小心地将颗粒称重,分别保藏。通过将Q琼脂糖基质填塞在玻璃柱中,制备阴离子交换色谱柱。所述柱连接到FPLC上,通过用3柱体积(CV)的4M脲、100mMTrispH8.6和10mMDTT洗涤,进行平衡。用7柱体积的100mMNaCl、50mMTrispH8、1mMMnCl2、10mMDTT,进一步洗涤柱,在单个步骤中用3柱体积的0.5MNaCl、50mMTrispH8.0、1mMDTT、1mMMnCl2洗脱。收集适当的级分,通过SDS-PAGE和活性测定来鉴定蛋白。在有高盐(0.5MNaCl)存在下,浓缩可溶的蛋白。用0.5M盐洗脱450ml总体积,经pellicon过滤浓缩至45ml,进入100mMNaCl、50mMTrispH8.0、1mMDTT。蛋白浓缩后,进行稀释,以便使盐浓度从0.5M降低至0.1MNaCl。在这时,OXDC晶体开始形成。在该实施例中,在100mMNaCl、50mMTrispH8.0、1mMDTT当量中,将体积调至210mL。旋转形成的晶体,在有或没有1mMDTT存在下,在100mMNaCl和50mMTrispH8.0中回收。实施例4.使用高pH和温和变性剂浓度、随后进行中空纤维浓缩,通过溶解颗粒使草酸脱羧酶结晶。在室温,将含有包涵体和其它沉淀的颗粒(3.93kg)溶于9.5L50mMTrispH12、500mMNaCl、2M脲、10mMDTT2小时。终体积是12L,pH9.9。在7000rpm旋转样品45分钟,回收上清液。旋转后的总体积是11.1L,pH9.9。在中空纤维上将样品浓缩至5L1小时,然后用50mMTrispH8.0、500mMNaCl、2M脲、10mMDTT,将体积缓慢调至20L。该过程进行1小时。在此时,估计脲的终浓度是约0.5M脲。在中空纤维中将体积浓缩至6L2.5h。用50mMTrispH8.0、500mMNaCl、1mMDTT、1mMMnCl2、200mML-精氨酸,将样品稀释至24L30min。在此时,估计脲的浓度是125mM。进行另一轮浓缩,至终体积5L。用50mMTrispH8.0、500mMNaCl、1mMDTT、1mMMnCl2,将样品稀释至18L,再次浓缩至6.5L。此时pH是8.1。在7000rpm旋转样品45分钟,保存最终的颗粒用于分析。离心后,用50mMTrispH8.0、1mMDTT进行稀释步骤,得到晶体。在室温,在混合下,使用蠕动泵稀释至30L。估计稀释液的流速是50ml/min。该稀释进行约9小时。通过离心收集晶体,保藏上清液用于分析。用50mMTris、100mMNaClpH8洗涤晶体3次,重新悬浮于50mMTris、100mMNaClpH8。在4℃保藏晶体。实施例5.使用高盐使草酸脱羧酶从细胞提取物中结晶(1)使用高盐浓度溶解含有蛋白的颗粒、随后浓缩和稀释,进行结晶在室温,将实施例1的冷冻颗粒(465g)溶于2.3L100mMTris、1mML-半胱氨酸HCL、0.5MNaCl、pH8.0中2小时,形成可溶的草酸脱羧酶。在7000rpm旋转样品45分钟,回收上清液。终体积是2.15L,测得的蛋白浓度是24.14mg/ml。通过切线流过滤(10kDPall),将样品浓缩至550ml1小时,然后在73ml/min的流速,经30分钟用100mMTrispH8.0、1mML-半胱氨酸HCl稀释至2,750L,在室温搅拌1小时。在冷室中过夜形成晶体。通过离心收获晶体,保藏上清液用于分析。用100mMTris、100mMNaClpH8洗涤晶体3次,然后重新悬浮于100mMTris、100mMNaClpH8。在4℃保藏晶体。从大肠杆菌表达培养基纯化的重组枯草芽孢杆菌OXDC在标准测定条件(参见实施例15)下表现出约50-60U/mg的比活。(2)使用高盐浓度溶解颗粒、随后浓缩和透析,进行结晶在室温,将实施例1的冷冻颗粒(510g)溶于3L100mMTris、1mML-半胱氨酸HCL、0.5MNaCl、pH8.0中2小时。在7000rpm旋转样品30分钟,回收上清液。通过切线流过滤(10kDPall),将样品浓缩至500ml1小时,然后在搅拌下在100mMTrispH8.0中透析。在冷室中过夜形成晶体。通过离心收获晶体,保藏上清液用于分析。用100mMTris、pH8.0洗涤晶体3次,然后重新悬浮于100mMTrispH8.0。在4℃保藏晶体。晶体产率是60%。(3)使用高盐浓度溶解颗粒、随后浓缩和透析,进行结晶在室温,将实施例1的冷冻颗粒(510g)溶于3L100mMTris、1mML-半胱氨酸HCL、0.5MNaCl、pH8.0中2小时。在7000rpm旋转样品30分钟,回收上清液。通过切线流过滤(10kDPall),将样品浓缩至500ml1小时,然后在搅拌下在100mMTrispH7.5中透析。在冷室中过夜形成晶体。通过离心收获晶体,保藏上清液用于分析。用100mMTris、pH7.5洗涤晶体3次,然后重新悬浮于100mMTrispH7.5。在4℃保藏晶体。晶体产率是67%。(4)使用高盐浓度溶解颗粒、随后浓缩和透析,进行结晶在室温,将实施例1的冷冻颗粒(510g)溶于3L100mMTris、1mML-半胱氨酸HCL、0.5MNaCl、pH8.0中2小时。在7000rpm旋转样品30分钟,回收上清液。通过切线流过滤(10kDPall),将样品浓缩至500ml1小时,然后在搅拌下在100mMTrispH7.0中透析。在冷室中过夜形成晶体。通过离心收获晶体,保藏上清液用于分析。用100mMTris、pH7.0洗涤晶体3次,然后重新悬浮于100mMTrispH7.0。在4℃保藏晶体。晶体产率是约80%。(5)使用高盐浓度溶解颗粒、随后浓缩和透析,进行结晶在室温,将实施例1的冷冻颗粒(510g)溶于3L100mMTris、1mML-半胱氨酸HCL、0.5MNaCl、pH8.0中2小时。在7000rpm旋转样品30分钟,回收上清液。通过切线流过滤(10kDPall),将样品浓缩至500ml1小时,然后在搅拌下在100mM柠檬酸钠缓冲液pH6.5中透析。在冷室中过夜形成晶体。通过离心收获晶体,保藏上清液用于分析。用100mM柠檬酸钠缓冲液pH6.5洗涤晶体3次,然后重新悬浮于100mM柠檬酸钠缓冲液pH6.5。在4℃保藏晶体。晶体产率是约70%。(6)使用高盐浓度溶解颗粒、随后浓缩和透析,进行结晶在室温,将实施例1的冷冻颗粒(510g)溶于3L100mMTris、1mML-半胱氨酸HCL、0.5MNaCl、pH8.0中2小时。在7000rpm旋转样品30分钟,回收上清液。通过切线流过滤(10kDPall),将样品浓缩至500ml1小时,然后在搅拌下在100mM柠檬酸钠缓冲液pH6.0中透析。在冷室中过夜形成晶体。通过离心收获晶体,保藏上清液用于分析。用100mM柠檬酸钠缓冲液pH6.0洗涤晶体3次,然后重新悬浮于100mM柠檬酸钠缓冲液pH6.0。在4℃保藏晶体。晶体产率是约60%。(7)匀浆化和溶解后,结晶来自细胞糊的OXDC以1kg细胞糊/3L缓冲液的比例重新悬浮细胞,所述缓冲液含有100mMTrispH7.5、500mMNaCl、5mM半胱氨酸和1mM氯化锰。在4℃混合(50-60rpm)细胞悬浮液过夜。使细胞悬浮液穿过在冰上的预冷的匀浆器2次。在显微镜下检查细胞裂解效率,将未破碎的细胞悬浮液用作对照。将悬浮液补足至10L,在室温用悬顶搅拌器混合3小时。然后在4℃、在7,000rpm离心粗提物30min,回收上清液。保存上清液和颗粒,用于SDS-PAGE表征。通过SDS-PAGE,分析OXDC的表达。在上清液中发现大多数的OXDC。终体积是10L,测量的蛋白浓度是34mg/ml。通过切线流过滤(10kDPall),将样品浓缩至3.5L1小时,然后在室温在搅拌下使用结晶缓冲液(100mMTris,100mMNaClpH7.5)稀释1小时。通过离心收获晶体,保藏上清液用于分析。用100mMTris、100mMNaClpH7.5洗涤晶体3次,然后重新悬浮于100mMTris和100mMNaCl、pH7.5。在4℃保藏晶体。实施例6.结晶来自可溶蛋白的OXDC。在摇瓶中,在大肠杆菌中表达OXDC。使用25mMTris-HCl缓冲液pH8.0、含有25U/mlDNA酶I的100mMNaCl,用微流化仪(microfluidizer)裂解细胞。在室温温育细胞裂解物1小时,使OXDC晶体形成。旋转晶体,在100mMTris、100mMNaClpH8中重建。实施例7.通过蒸汽扩散结晶OXDC。使用商业上可得到的稀疏矩阵结晶试剂盒:CrystalScreen(HamptonResearch;AlisoViejo,CA),CrystalScreen2(HamptonResearch),WizardI(EmeraldBiosystems;BainbridgeIsland,WA),WizardII(EmeraldBiosystems),CryoI(EmeraldBiosystems),和CryoII(EmeraldBiosystems),进行悬滴结晶试验。将600μl试剂置于每个孔中。将3μl试剂滴到显微镜玻璃盖玻片上,将3μlOXDC滴到试剂液滴中,轻轻混合。从该6μl试剂和OXDC液滴,制备另外5个液滴。随着液滴的轻轻混合,每个后续的(更小的)液滴具有不同的且未知的蛋白/试剂比,从而增加在短时间段内获得晶体的可能性。在室温温育过夜后,在显微镜下检查悬滴的晶体。得到大量结晶条件,如表1所示。表1:悬滴中OXDC的结晶条件.aa通过Bradford试验测得OXDC浓度是约1.7mg/mL。实施例8.通过微批(microbatch)结晶OXDC。通过微批方法,从许多结晶条件结晶化草酸脱羧酶:(i)使浓度为23.46mg/ml的10μl纯化的OXDC与10μl16%PEG8000相混合。2-5秒内立即结晶。形成的大晶体含有一些沉淀。(ii)使浓度为23.46mg/ml的10μl纯化的OXDC与10μl20%PEG8000相混合。2-5秒内立即结晶。形成的大晶体不含有沉淀。(iii)使浓度为23.46mg/ml的10μl纯化的OXDC与10μl24%PEG8000相混合。2-5秒内立即结晶。形成更小的立方体形状的晶体。(iv)使浓度为23.46mg/ml的10μl纯化的OXDC与10μl28%PEG8000相混合。2-5秒内立即结晶。形成非常小的立方体形状的晶体。没有沉淀。(v)使浓度为23.46mg/ml的8μl纯化的OXDC与12μl24%PEG8000相混合。2-5秒内立即结晶。形成非常小的立方体形状的晶体。没有沉淀。(vi)使浓度为23.46mg/ml的9μl纯化的OXDC与11μl24%PEG8000相混合。2-5秒内立即结晶。形成小立方体形状的晶体。没有沉淀。(vii)使浓度为23.46mg/ml的10μl纯化的草酸脱羧酶与10μl24%PEG8000相混合。2-5秒内立即结晶。形成小立方体形状的晶体。没有沉淀。(viii)使浓度为23.46mg/ml的11μl纯化的草酸脱羧酶与9μl24%PEG8000相混合。2-5秒内立即结晶。形成立方体形状的晶体。没有沉淀。(ix)使浓度为23.46mg/ml的12μl纯化的OXDC与8μl24%PEG8000相混合。2-5秒内立即结晶。形成立方体形状的晶体。没有沉淀。实施例9.可溶的OXDC和OXDC晶体的活性溶解颗粒后,如实施例5所述收集可溶的OXDC,旋转,并回收上清液。收获和洗涤晶体后,如实施例5所述收集OXDC晶体。根据实施例15,测量可溶的OXDC和OXDC晶体的活性。在一个实验中,可溶的OXDC的活性是12单位/mg,OXDC晶体的活性是35单位/mg。如实施例2-5中任一个所述收集可溶的OXDC,并且如实施例2-8中任一个所述收获OXDC晶体。根据实施例15,测量可溶的和晶体OXDC的活性。OXDC晶体的活性可以是可溶的OXDC的活性的至少约100%、200%、300%、400%或500%。实施例10.使用戊二醛交联草酸脱羧酶晶体。使用戊二醛交联根据实施例2-8中任一个制备的草酸脱羧酶晶体。结晶后,将OXDC晶体浓缩至20-30mg/ml。将0.8ml25%戊二醛加入20ml晶体,制成1%戊二醛溶液,在室温翻滚晶体18小时。用100mMTris、pH7.00洗涤交联的晶体5次,重新悬浮于10mMTris、pH7.00中。对比晶体状OXDC和交联的OXDC(称作OXDC-CLEC)的比活(6个试验),表明在不同的制品中,交联的草酸脱羧酶晶体保留晶体状蛋白的原始活性的超过30%至超过50%。为了测试不同浓度的戊二醛对酶活性的影响,在pH8.0、在25℃,用不同浓度的戊二醛(从0.05%至2%,终浓度)交联OXDC晶体的1ml等分试样(60mg/ml)18小时。通过在埃彭道夫管中在2000rpm离心来分离交联的晶体,从而终止交联,然后将交联的晶体重新悬浮于1ml的100mMTris·HCl、pH7.0中。然后用100mMTris·HCl缓冲液pH7.5洗涤交联的OXDC(OXDC-CLEC)5次,随后用10mMTris·HCl缓冲液pH7.5洗涤3次(参见下面表2的结果)。实施例11.交联的草酸脱羧酶晶体的pH控制的溶解度。使pH从7.5降低至3.0,检查不同交联的草酸脱羧酶晶体的溶解度。在1mg/ml,在50mM甘氨酸·HCl(pH3.0)中温育交联的晶体。在搅拌下,在37℃温育5小时后,取出等分试样。在2000rpm离心分离未溶的交联晶体并通过0.22μm过滤器过滤上清液后,在OD280nm测量可溶的蛋白浓度。结果如下面的表2所述。表2:用不同百分比的戊二醛交联OXDC晶体和OXDC-CLEC的pH控制的溶解度样品%戊二醛%蛋白浸取OXDc-CLEC-10.005100.0OXDC-CLEC-20.010100.0OXDC-CLEC-30.0502.2OXDC-CLEC-40.0750.0OXDC-CLEC-50.1000.0OXDC-CLEC-60.2000.0OXDC-CLEC-71.0000.0这些结果表明,在有至少约0.05%(终浓度)戊二醛存在下,形成基本上稳定的戊二醛OXDC交联的晶体。实施例12.可溶的OXDC、晶体状OXDC和OXDC-CLEC的pH活性特征通过加入戊二醛(Sigma),交联如实施例2-8所述制备的草酸脱羧酶晶体。在25℃,用pH8.0的1%戊二醛(终浓度)交联OXDC晶体的1ml等分试样(30-40mg/ml)18小时。通过在埃彭道夫管中在2000rpm离心来分离交联的晶体,从而终止交联,然后将交联的晶体重新悬浮于1ml100mMTrisHCl、pH7.0中。然后用100mMTris·HCl缓冲液pH7.0洗涤OXDC-CLEC5次,随后用10mMTris·HCl缓冲液pH7.0洗涤3次。使用不同的缓冲液和pH,通过如实施例15所述测量晶体的活性,测定OXDC-CLEC的pH活性特征:50mM甘氨酸·HCl缓冲液,在pH2.0和3.0;50mM琥珀酸盐缓冲液,在pH4.0,5.0,和6.0;和50mMTris缓冲液,在pH7.0。测定在每个pH的活性水平2次,计算平均活性。图1所示的结果表明,OXDC-CLEC在pH3.5至6.0之间比它的可溶对应物的活性更高。未交联的晶体在不同pH表现出比草酸脱羧酶的可溶形式高得多的活性,从约50%至约200%、300%或400%更高。实施例13.肠原性高草酸尿动物模型中的草酸脱羧酶治疗。肠原性高草酸尿的大鼠模型,剂量范围研究:饲喂高草酸盐饮食的雄性SpragueDawley(SD)大鼠构成适用于研究肠原性高草酸尿的动物系统。在该研究中,施用1.1%饮食草酸钾导致尿草酸盐增加5至10倍。将20只小于35天龄且重量为100-120克的SpragueDawley(SD)大鼠随机分成对照组和实验组(每组5只大鼠)。在治疗之前,使大鼠适应各自的代谢笼(LabProducts,Inc.;Seaford,DE)7天。在该阶段,给大鼠无限制地供给补充的酸化水,并饲喂含有1.1%草酸钾和低(0.5%)浓度钙的合成饮食(ResearchDietsTD89222PWD;HarlanTeklad;Madison,WI)。在治疗期间,大鼠维持该饮食。适应阶段后,将用1%戊二醛配制成交联晶体(参见,例如,实施例9)的3个不同剂量的重组草酸脱羧酶施用给实验大鼠4个连续周。晶体作为凝固的/干燥的食物酶混合物口服(5,25和80mgOXDC-CLEC浆料在10mMTris·HClpH7.0中,各自独立地与15g食物混合,并凝固/干燥;每个早晨,给食物容器重新装填约20g食物/酶混合物)。在治疗之前,基于它们的基础尿草酸盐,将大鼠随机分成对照组和实验组。尿样的分析:在酸(使250μl6N盐酸与在24h中收集的尿样相混合)上面的代谢笼中收集24小时尿样,以便使尿抗坏血酸向草酸盐的自发分解最小化。在进一步分析之前,在-70℃保藏样品。收集每天的尿和多个24h(小时)尿样,用于草酸盐和肌酸酐测量。草酸盐和肌酸酐的测定如实施例15所述。将草酸盐和肌酸酐的尿排泄表示为在24h尿样中检测到的草酸盐和肌酸酐的μmol。使用Studentt-检验,统计分析所有数据。如图2所示,给慢性高草酸尿的SD大鼠口服OXDC-CLEC,导致从治疗第4天开始尿草酸盐的持续降低。在最高剂量组(80mgOXDC-CLEC)记录下25-40%的最大连续降低。更低剂量的5mg和25mgOXDC-CLEC导致尿草酸盐的更小降低(25mg组中高达30%,5mg组中高达20%)。25mg和80mg的剂量在所有测试天(除了25mg组的第21天外)中产生显著降低,同时最低剂量5mg具有不显著的最小效应。该结果揭示了OXDC-CLEC治疗的剂量依赖性效应。实施例14:原发性高草酸尿动物模型中的口服草酸脱羧酶治疗。I型原发性高草酸尿的小鼠模型:AGT1敲除的小鼠缺少肝过氧化物酶丙氨酸:乙醛酸氨基转移酶,即造成I型原发性高草酸尿的缺陷。在C57Bl6和129/sv背景株中将嵌合小鼠繁殖成纯合系。与野生型(0.2mmol/L)相比,所有纯合的Agxt小鼠表现出轻度的高草酸尿(1-2mmol/L),尿草酸盐比正常值升高5-10倍。也发现,30-50%的雄性和0%的雌性在生命后期(4-7月龄)发展成轻度的肾钙沉着症和尿道的草酸钙结石。令人感兴趣地,当在同种的C57Bl6株中分析突变时,任一个性别中的高草酸尿与尿结石发展不相关;这强调了在该病中经常观察到的表型变异性。在这些实验中使用共44只雄性小鼠(株AGT1KO/129sv,开发者是Dr.Salido,LaLagunaTenerife,Spain)。将小鼠随机分成对照组和3个实验组。小鼠重量为20-25克,小于6月龄。用乙二醇(EG)攻击AGT1KO(129sv)小鼠,以引起严重的高草酸尿和在肾实质中形成草酸钙沉积物。EG是在肝中代谢成草酸盐的一种普通醇。通常,在EG攻击2-6周后,在129/sv背景中的AGT1KO小鼠表现出受损的肾功能迹象,这可以如下测定:(i)尿中草酸盐的变化的排泄;(ii)降低的肌酸酐清除率,和(iii)最终导致肾衰竭和死亡的肾钙沉着症。在治疗之前,使小鼠适应各个代谢笼(TecniplastUSAInc,Exton,PA,USA)7天,饲喂含有小于0.02-0.08%草酸盐和约0.5-0.9%钙的标准种畜饮食(17%蛋白,11%脂肪,53.5%碳水化合物)。适应阶段后,将小鼠分成4组;3个治疗组饲喂与食物混合的草酸脱羧酶-CLEC,而在匹配的对照组中的小鼠接受没有加入实验物的相同饮食。从治疗第一天至研究结束,给所有小鼠无限制地提供添加了0.7%EG的饮用水。攻击几天后,小鼠每天在它们的尿中排泄约3-6mmol/L草酸盐,这比野生型(未攻击的)小鼠高约10-20倍。OXDC-CLEC酶的施用;剂量范围研究:在OXDC-CLEC的剂量研究中,使用共44只来自AGT1KO/129sv株的雄性小鼠。小鼠重量是20-25克,小于6月龄。用EG攻击小鼠,然后随机分成对照组和实验组。监视配制成交联晶体(1%戊二醛;参见实施例9)的3个不同剂量的重组草酸脱羧酶的功效4个连续周。在该实施例中使用的术语“OXDC-CLEC”是指如实施例9所述配制成交联晶体(1%戊二醛)的重组草酸脱羧酶。在5、25和80mg/天的标称剂量,OXDC-CLEC作为凝固的/干燥的食物酶混合物口服。将足够量的在10mMTris-HCl缓冲液(pH7.0)中的酶浆料与3.5g食物相混合,并凝固/干燥。每个早晨,给食物容器重新装填约7g食物/酶混合物。OXDC-CLEC的功效的评估:通过尿草酸盐降低、草酸钙在肾实质中的沉积的预防和存活率,监视酶治疗的功效。在研究结束时,处死存活的小鼠,取血样用于肌酸酐测量。尿样的分析:在酸(50μl6N盐酸/3-4ml尿)上面的代谢笼中收集24小时尿样,以便使尿抗坏血酸向草酸盐的自发分解最小化。在进一步分析之前,在-20℃保藏尿样。收集每天的尿和多个24h尿样,分析草酸盐和肌酸酐水平。草酸盐和肌酸酐的测定如实施例15所述。将草酸盐和肌酸酐的尿排泄表示为排泄到24h尿样(mL)中的草酸盐和肌酸酐的μmol。使用Studentt-检验,统计分析数据。血样的分析:在研究结束时,处死小鼠,收集血清样品。对于血清肌酸酐测量,使用轻微改进的Jaffereaction方法(参见,例如来自OxfordMedicalResearch,Inc.的肌酸酐微量测定平板试剂盒;Slot,ScandJ.Clin.Lab.Invest.17:381,1965;和HeinegardD,Clin.Chim.Acta43:305,1973)。在试管中将80μl未稀释的血清样品与800μl苦味碱相混合,在室温温育30分钟。在510nm分光光度计法测量显色;然后加入33.3μl60%醋酸,以淬灭非特异性反应。彻底混合样品,在室温温育5分钟后,再次在510nm读数。将最终的吸光度表达为2次读数之差。将1mM肌酸酐溶液的系列稀释液用于标准曲线。通过测量肌酸酐清除率,间接测量肾功能。将肌酸酐清除率表示为肌酸酐的排泄速率(UcrxV)(其中Ucr代表尿样中的肌酸酐浓度(μmol/L))除以血浆肌酸酐(Pcr)。这表示为:Ccr=(UcrxV)/Pcr=mL/h在研究过程中监视的安全参数是死亡率、食物和水摄入、和体重。在研究过程中,每天进行死亡率检查和笼侧客观观察一次。每天测量食物摄入,每周记录水摄入。在研究开始时和研究结束时,记录所有动物的体重。如图3所示,给EG攻击的AGT1KO(129sv)小鼠口服OXDC-CLEC,导致从治疗第4天至研究结束时,与匹配的未治疗的对照小鼠相比,尿草酸盐水平的显著降低。在所有3个治疗组中观察到30至50%的降低,在最高剂量组(80mgOXDC-CLEC)中观察到最大降低。25mg和5mgOXDC-CLEC的更低剂量产生高达35%的尿草酸盐降低。通过不成对的双尾Studentt-检验,分析结果。在研究开始时,每个给药组具有n=11小鼠,但是几个小鼠在研究过程中死于乙二醇攻击。所示的结果仅包括在尿草酸盐测量的特定天存活的小鼠。观察到尿草酸盐的起始升高导致肾钙沉着症、降低的肾过滤功能和随后草酸盐排泄速率随时间的降低、以及最差情况下最终死亡,它们可以最好地解释对照组中尿草酸盐排泄的铃形曲线。通过肌酸酐清除率测量评估肾功能。在研究结束时,处死活过EG攻击4周的所有动物,收集血液来测量血浆肌酸酐和肌酸酐清除率。80mg剂量组的所有11只小鼠活过EG攻击4周;25mgOXCD-CLEC剂量组的8/11只小鼠存活;5mgOXCD-CLEC剂量组的8/11只小鼠存活;对照组的7/11只小鼠存活。对于血清肌酸酐测量,使用上述轻微改进的Jaffereaction方法(参见,例如来自OxfordMedicalResearch,Inc.的肌酸酐微量测定平板试剂盒;Slot,ScandJ.Clin.Lab.Invest.17:381,1965;和HeinegardD,Clin.Chim.Acta43:305,1973)。通过测量肌酸酐清除率,评估口服的OXDC-CLEC对肾功能的功效。活过整个月研究阶段的小鼠的肌酸酐清除率如图4所示。当与对照组对比时,接受80mgOXDC-CLEC的存活小鼠的肌酸酐清除率显著更高(p<0.05)。80mgOXDC-CLEC治疗组的所有小鼠(11/11)活过4周EG攻击方案,而对照组中仅7只小鼠(7/11)活过该方案。通过肌酸酐清除率测定的肾过滤速率也显著低于80mg剂量组(图4)。肾组织病理学分析:石蜡包埋常规地处理小鼠肾,并定位,以便得到肾的完整横切片。以每个切片4μm,将每个肾切成12个连续切片,用苏木精和曙红染色,用于常规组织学检查,或通过特异性Yasue金属置换组织化学方法来检测草酸钙晶体在肾组织中的存在。使用20X放大率,在显微镜下检查载玻片,检查人员在4-类标尺下评分切片,将相同标准应用于肾的每个解剖区域(皮质,髓质和乳突)。评分是(i)无(在任何区域没有草酸盐晶体);(ii)最少(在任意区域有1-5个晶体);(iii)中等(在任意区域有6-10个晶体);和(iv)严重(所有区域具有多个晶体集合)。来自治疗和对照动物的肾组织的代表性图像如图5A-5C所示。在20x放大率,在肾实质中可见Yasue-阳性的草酸钙晶体。用80mgOXDC-CLEC治疗的治疗组所有小鼠具有正常的健康肾,没有草酸钙沉积物痕迹(图5A)。在对照组中和在来自低剂量治疗组的有些小鼠中,观察到中等肾钙沉着症(图5B)和严重肾钙沉着症(图5C)。图5C中的白色箭头指示草酸钙沉积物,灰色箭头指示具有间质纤维化的大区域。使用特异性Yasue金属置换方法对肾的组织学检查揭示,沉积物主要存在于肾的皮质和髓质部分。在严重肾钙沉着症(图5C)的情况下,草酸钙沉积物在肾中随机分布。也观察到纤维化和炎症的迹象,肾小球的形态改变,草酸钙沉积物在肾小球中偶尔形成。在尸体剖检后,来自80mg剂量组的所有小鼠(11/11)具有正常的肾形态,没有草酸钙在肾或膀胱中沉积的痕迹。相反,来自未治疗的对照组的100%(11/11)的小鼠具有草酸钙沉积物。在低治疗组(25mg或5mgOXDC-CLEC),63%(7/11)的小鼠在肾中具有草酸钙沉积物。这些结果证实在EG攻击的AGT1KO小鼠中OXDC-CLEC口服治疗对高草酸尿的降低和肾中草酸钙晶体沉积的预防的积极的、剂量依赖性的效应。来自所有4组小鼠的组织病理学分析的总结如表3所示。表3.肾钙沉着症的严重性和OXDC-CLEC口服治疗后治疗组和对照组中受累小鼠的数目也评价了OXDC-CLEC口服治疗对对照小鼠和来自3个不同治疗组的小鼠的尿结石形成频率的功效。在来自EGAGT1KO小鼠的膀胱中发现了2大类钙:草酸钙一水合物结石和草酸钙二水合物结石。在对照组的36%(4/11)小鼠中和在2个更低治疗组的19%(2/11)小鼠中,存在明显可见的膀胱结石。在80mg高剂量OXDC-CLEC组中没有观察到膀胱结石。X-射线衍射分析表明,具有带白色的、粗糙芽状表面的结石主要由草酸钙一水合物组成,而具有锐利晶体角的相对更大的结石对应着草酸钙二水合物。通过Kaplan-Meier估计器进行存活率分析。使用Kaplan-Meier方法,其中将在某些时间点死亡的受试者的存活率除以在研究中在该时刻仍然存活的受试者的数目,分析OXDC-CLEC治疗对乙二醇攻击的小鼠的存活率的影响。该方法用图形解释了研究中组之间的差异(图6)。统计程序例如Kaleida图和STATS经常用于计算。与匹配的对照相比,OXDC-CLEC口服治疗会增加EG攻击的AGT1KO小鼠的存活率。来自80mgOXDC-CLEC治疗组的所有小鼠(11/11)活过30天研究阶段,没有患病的迹象,而来自对照组的4/11只小鼠具有严重肾钙沉着症,且发展尿结石。由于OXDC-CLEC意图用于口服给药,评价了交联晶体对胃肠(GI)组织的不利作用的可能性。肉眼检查治疗的EG攻击的AGT1KO小鼠的消化道,用苏木精-曙红染色对包括胃(原体和窦)和小肠(空肠和回肠)在内的胃肠道不同部分进行组织学分析。评价证实,OXDC-CLEC口服治疗4周是耐受良好的,且不会造成胃肠道的结构或形态变化。对于大肠观察到类似的结果。用草酸脱羧酶-CLEC口服治疗的EG攻击的AGT1KO小鼠的剂量范围研究的总结。原发性高草酸尿动物模型中的OXDC-CLEC口服治疗是安全且有效的。总之,OXDC-CLEC口服治疗4周使尿草酸盐降低30-50%。使用3个剂量的评价的实验物,记录显著的且持续的降低。在最高治疗剂量口服治疗4周会预防肾实质中的草酸钙沉积。在2个更低的剂量口服治疗4周会提高存活率,在最高研究剂量会预防动物死亡率。最后,4周治疗方案在胃肠道中没有产生宏观或微观的变化。实施例15.测定蛋白浓度测定:通过在280nm测量吸光度,测定草酸脱羧酶的浓度。1.36光密度(OD)的吸光度视作1mg/ml。OXDC活性测定:使用改进的SigmaAldrich方案(草酸脱羧酶EC4.1.1.2的酶测定法),测量可溶的草酸脱羧酶、草酸脱羧酶晶体和交联的草酸脱羧酶晶体(OXDC-CLEC)的活性。这是一种间接的两步活性测定;在第一个反应中,OXDC将底物草酸盐转化成甲酸盐和二氧化碳。在第二个反应中,甲酸盐氢被甲酸盐脱氢酶stochiometrically转移至NAD,形成NADH。在340nm分光光度计地定量NADH的后续浓度。如下定义酶活性的单位(u):一个单位的草酸脱羧酶在pH5和37℃每分钟从1.0μmol草酸盐形成甲酸盐和二氧化碳。对于OXDC晶体和OXDC-CLEC分别在0.007-0.02和0.009-0.03mg/mL的浓度,在含有1mMDTT(Sigma)的5mM磷酸钾缓冲液pH7.0中标准化测定样品。通过在280nm的吸光度,测定蛋白浓度。在使用前在冷diH2O中制备40U/mL的甲酸盐脱氢酶(FDH),并置于冰上。所有其它试剂保持在室温。以下述方式,用搅拌棒将试剂加入2ml微型试管:混合300μl100mM磷酸钾和200μl草酸钾pH4.0,在37℃在水浴中温热5min,然后将100μl含有1mMDTT的5mM磷酸钾加入空白瓶中,将100μl稀释的草酸脱羧酶加入所有其它瓶中。2分钟后,用150mM磷酸氢二钾终止反应。在第二个反应中,将25μlNAD溶液加入100μlFDH溶液,继续温育另外20min。然后在16,100rpm离心所有样品1min。然后将反应混合物转移至1.5mL紫外线试杯,使用ShimadzuBioSpec(ShimadzuScientificInstruments,Columbia,Maryland),测定在340nm的吸光度,并记录。如下计算酶比活:在一个具体的实验中,将交联的草酸脱羧酶晶体(OXDC-CLEC)(通过翻转过夜与1%戊二醛交联的菱形晶体;参见实施例9)与OXDC晶体相对比。OXDC-CLEC保持对应的晶体状OXDC制品的活性的50%。通过色度方法测定草酸盐:用于定量测定尿中草酸盐的草酸盐色度试剂盒购自TrinityBiotechUSA(St.Louis,MO)或GreinerDiagnosticAG(Dennliweg9,Switzerland)。根据生产商的说明书,稀释和处理尿样。测定包含2个酶反应:(a)草酸盐氧化酶将草酸盐氧化成二氧化碳和过氧化氢,和(b)这样形成的过氧化氢在有过氧化物酶存在下与3-甲基-2-苯并噻唑啉酮腙(MBTH)和3-(二甲氨基)苯甲酸(DMAB)反应,形成可以在590nm吸光度检出的吲达胺染料。产生的颜色的强度与样品中草酸盐的浓度直接成比例。从标准曲线计算尿草酸盐值。通过色度方法测定肌酸酐:用于定量测定尿中肌酸酐的肌酸酐色度试剂盒购自QuidelCorporation(SanDiego,CA;METRA肌酸酐测定试剂盒)或RandoxLaboratories(Antrim,UnitedKingdom)。该测定是基于下述原理,即肌酸酐与碱溶液中的苦味酸反应,形成具有在492nm的吸光度的产物。形成的复合物的量与肌酸酐浓度直接成比例。用双蒸馏水稀释从单个代谢笼收集的24h大鼠尿样15倍。将20μl稀释的尿样与20μl苦味酸/氢氧化钠(1:1)相混合。在室温温育2分钟后,测量在492nm的吸光度。从标准曲线计算尿肌酸酐值。实施例16.用于治疗人的草酸盐相关病症的OXDC治疗通过口服交联的草酸脱羧酶晶体,可以治疗需要治疗或预防草酸盐相关病症例如高草酸尿的人。在10μg/kg至25mg/kg、1mg/kg至25mg/kg或5mg/kg至100mg/kg的近似剂量施用草酸脱羧酶晶体,这由治疗临床医师确定,且依赖于症状的严重性和疾病的进展。每天施用草酸脱羧酶交联的晶体1、2、3、4或5次,或以更低的频率施用,例如每周一次或2次。这样口服OXDC-CLEC导致尿草酸盐水平降低至少10%、20%、25%、30%、35%、40%、45%、50%、55%、60%、70%或更多。实施例17.草酸脱羧酶的重组生产在人胚胎肾(HEK293)细胞中:将编码OXDC的DNA(例如,SEQIDNO:1或2)克隆进合适的表达载体中。序列确认后,将载体线性化,在6cm直径盘中使用LipofectamineTM2000转染试剂,用线性化的载体转化预接种的HEK293细胞。在适当培养基中培养转染反应物过夜,然后在添加了0.5g/L新霉素的培养基中选择转化体。在含有新霉素的培养基中生长高达3周后,鉴别稳定转染的HEK293细胞克隆。然后分离和繁殖克隆,并用于OXDC表达。在中国仓鼠卵巢(CHO)细胞中:将编码OXDC基因的DNA克隆进合适的表达载体中。然后通过胰蛋白酶消化,使培养的CHOlec3.2.8.1细胞分离,通过离心进行收获。然后将细胞悬浮于电穿孔磷酸盐缓冲的盐水缓冲液(EPBS)中至~1x107/ml的终浓度,通过电穿孔用线性化的载体转化。过夜培养后,将培养基更换为添加了0.5g/L新霉素的培养基。进行培养基的连续更换,以筛选稳定转染的CHO细胞克隆。一旦建立和繁殖稳定转染的细胞克隆,将细胞用于OXDC表达。在巴氏毕赤酵母中:将编码OXDC基因的DNA克隆进合适的表达载体中。序列确认后,将载体线性化,然后转化进巴氏毕赤酵母宿主细胞(参见,Whittaker等人,J.Biol.Inorg.Chem.7:136-145,2002)。用Zeocin选择转化体,在缓冲的甘油复合培养基(BMGY)中扩增,并用甲醇诱导。然后可以从培养基分离OXDC。在酿酒酵母中:可以将合成的OXDC基因克隆进合适的表达载体,后者含有例如Gal1启动子(pGal)和表达的终止子序列。序列确认后,通过电穿孔将表达载体转化进感受态酿酒酵母W303-1A。筛选转化体,并繁殖,然后用于OXDC表达。在昆虫细胞中:可以将编码OXDC的DNA克隆进合适的表达载体,例如,杆状病毒系统。序列确认后,将载体转化进感受态DH10Bac大肠杆菌细胞。筛选并证实含有重组杆粒的大肠杆菌细胞。分离重组的杆粒DNA,并使用试剂例如CellfectinTM试剂(Invitrogen,Carlsbad,California),用于转染昆虫Sf9细胞。然后可以分离重组杆状病毒颗粒,繁殖,并滴定,然后用于感染Sf9细胞,进行OXDC表达。在大肠杆菌中:可以将编码OXDC的DNA克隆进合适的大肠杆菌表达载体。序列确认后,将载体转化进感受态大肠杆菌BL21或在必要时大肠杆菌OrigamiB(DE3),后者允许在该菌株中表达的重组蛋白中形成二硫键。通过在含有抗生素的营养平板上培养转化体,筛选转化体,并使用OXDC基因特异性的引物,通过菌落PCR进行证实。然后在液体培养基中培养转化体,并用异丙基-β-D-硫代半乳糖苷(IPTG)诱导,用于OXDC表达。实施例18.序列要在博伊丁假丝酵母(Candidaboidinii)中表达的金针菇序列(SEQIDNO:1)。2个NotI序列标有下划线;粗体的ATA三联体是间隔密码子;标有双下划线的序列是为博伊丁假丝酵母优化的α交配因子序列;OXDC编码序列用小写字母表示。1ataagaatGCGGCCGCATA50100150200250atgtttaataatt300ttcaaagattattaactgttattttattatctggttttactgctggtgtt350ccattagcttctactactactggtactggtactgctactggtacttctac400tgctgctgaaccatctgctactgttccatttgcttctactgatccaaatc450cagttttatggaatgaaacttctgatccagctttagttaaaccagaaaga500aatcaattaggtgctactattcaaggtccagataatttaccaattgattt550acaaaatccagatttattagctccaccaactactgatcatggttttgttg600gtaatgctaaatggccattttctttttctaaacaaagattacaaactggt650ggttgggctagacaacaaaatgaagttgttttaccattagctactaattt700agcttgtactaatatgagattagaagctggtgctattagagaattacatt750ggcataaaaatgctgaatgggcttatgttttaaaagggtctactcaaatt800tctgctgttgataatgaagggagaaattatatttctactgttggtccagg850tgatttatggtattttccaccaggtattccacattctttacaagctactg900ctgatgatccagaaggttctgaatttattttagtttttgattctggtgct950tttaatgatgatggtacttttttattaactgattggttatctcatgttcc1000aatggaagttattttaaaaaattttagagctaaaaatccagctgcttggt1050ctcatattccagctcaacaattatatatttttccatctgaaccaccagct1100gataatcaaccagatccagtttctccacaagggactgttccattaccata1150ttcttttaatttttcttctgttgaaccaactcaatattctggtgggactg1200ctaaaattgctgattctactacttttaatatttctgttgctattgctgtt1250gctgaagttactgttgaaccaggtgctttaagagaattacattggcatcc1300aactgaagatgaatggactttttttatttctggtaatgctagagttacta1350tttttgctgctcaatctgttgcttctacttttgattatcaaggtggtgat1400attgcttatgttccagcttctatgggtcattatgttgaaaatattggtaa1450tactactttaacttatttagaagtttttaatactgatagatttgctgatg1500tttctttatctcaatggttagctttaactccaccatctgttgttcaagct1550catttaaatttagatgatgaaactttagctgaattaaaacaatttgctac1600taaagctactgttgttggtccagttaattaaGCGGCCGCtaaactat1646枯草芽孢杆菌序列(SEQIDNO:2):在位置705的标有下划线的“G”是指A→G碱基置换。该碱基置换不会改变氨基酸序列。1ATGAAAAAACAAAATGACATTCCGCAGCCAATTAGAGGAGACAAAGGAG50CAACGGTAAAAATCCCGCGCAATATTGAAAGAGACCGGCAAAACCCTGAT100ATGCTCGTTCCGCCTGAAACCGATCATGGCACCGTCAGCAATATGAAGTT150TTCATTCTCTGATACTCATAACCGATTAGAAAAAGGCGGATATGCCCGGG200AAGTGACAGTACGTGAATTGCCGATTTCAGAAAACCTTGCATCCGTAAAT250ATGCGGCTGAAGCCAGGCGCGATTCGCGAGCTTCACTGGCATAAAGAAGC300TGAATGGGCTTATATGATTTACGGAAGTGCAAGAGTCACAATTGTAGATG350AAAAAGGGCGCAGCTTTATTGACGATGTAGGTGAAGGAGACCTTTGGTAC400TTCCCGTCAGGCCTGCCGCACTCCATCCAAGCGCTGGAGGAGGGAGCTGA450GTTCCTGCTCGTGTTTGACGATGGATCATTCTCTGAAAACAGCACGTTCC500AGCTGACAGATTGGCTGGCCCACACTCCAAAAGAAGTCATTGCTGCGAAC550TTCGGCGTGACAAAAGAAGAGATTTCCAATTTGCCTGGCAAAGAAAAATA600TATATTTGAAAACCAACTTCCTGGCAGTTTAAAAGATGATATTGTGGAAG650GGCCGAATGGCGAAGTGCCTTATCCATTTACTTACCGCCTTCTTGAACAA700GAGCCGATCGAATCTGAGGGAGGAAAAGTATACATTGCAGATTCGACAAA750CTTCAAAGTGTCTAAAACCATCGCATCAGCGCTCGTAACAGTAGAACCCG800GCGCCATGAGAGAACTGCACTGGCACCCGAATACCCACGAATGGCAATAC850TACATCTCCGGTAAAGCTAGAATGACCGTTTTTGCATCTGACGGCCATGC900CAGAACGTTTAATTACCAAGCCGGTGATGTCGGATATGTACCATTTGCAA950TGGGTCATTACGTTGAAAACATCGGGGATGAACCGCTTGTCTTTTTAGAA1000ATCTTCAAAGACGACCATTATGCTGATGTATCTTTAAACCAATGGCTTGC1050CATGCTTCCTGAAACATTTGTTCAAGCGCACCTTGACTTGGGCAAAGACT1100TTACTGATGTGCTTTCAAAAGAAAAGCACCCAGTAGTGAAAAAGAAATGC1150AGTAAATAA1158从枯草芽孢杆菌序列翻译的草酸脱羧酶蛋白如下所示(Swiss-Prot:O34714)(SEQIDNO:3)。1MKKQNDIPQPIRGDKGATVKIPRNIERDRQNPDMLVPPETDHGTVSNMK50FSFSDTHNRLEKGGYAREVTVRELPISENLASVNMRLKPGAIRELHWHKE100AEWAYMIYGSARVTIVDEKGRSFIDDVGEGDLWYFPSGLPHSIQALEEGA150EFLLVFDDGSFSENSTFQLTDWLAHTPKEVIAANFGVTKEEISNLPGKEK200YIFENQLPGSLKDDIVEGPNGEVPYPFTYRLLEQEPIESEGGKVYIADST250NFKVSKTIASALVTVEPGAMRELHWHPNTHEWQYYISGKARMTVFASDGH300ARTFNYQAGDVGYVPFAMGHYVENIGDEPLVFLEIFKDDHYADVSLNQWL350AMLPETFVQAHLDLGKDFTDVLSKEKHPVVKKKCSK385实施例19.可溶的OXDC、晶体状OXDC和OXDC-CLEC在低pH3.0时的稳定性将2.5mg/mL的可溶的OXDC(实施例5)、5.0mg/mL的晶体状OXDC(实施例5)和5.0mg/mL的OXDC-CLEC(实施例10)放入在埃彭道夫管中的各1mL柠檬酸钠缓冲液pH3.0,在37°C温育5h。在0、2和5小时取样,用于测量酶的稳定性。如实施例15所述测定活性。显示0、2和5小时后OXDC和OXDC-CLEC在pH3.0的稳定性的结果如图7所示。与最初相比,在pH3.0温育5h后,OXDC-CLEC保留约100%活性,而可溶的OXDC在前2h内丧失约51%活性,在5h后仅保留约40%活性。晶体状OXDC比可溶的OXDC更稳定,在1小时保留约68%活性,在2小时保留约67%活性。实施例20.可溶的OXDC、晶体状OXDC和OXDC-CLEC晶体在有胃蛋白酶存在下的稳定性将1.0mg/mL的可溶的OXDC(实施例5)、10.0mg/mL的晶体状OXDC(实施例5)和1.0mg/mL的OXDC-CLEC(实施例10)放入在埃彭道夫管中的各1mL柠檬酸钠缓冲液pH3.0,在37°C,以OXDC:胃蛋白酶为50:1的比例,用胃蛋白酶(胃蛋白酶原液的浓度为1mg/mL,在25mMTris-HCL缓冲液中,pH7.5)温育5h。在0、2和5小时取样,用于测量酶的稳定性。如实施例15所述测定活性。显示0、2和5小时后可溶的OXDC、晶体状OXDC和OXDC-CLEC在有胃蛋白酶存在下的稳定性的结果如图8所示。如图8所示,在低pH和在有胃蛋白酶存在下,揭示了OXDC-CLEC制剂胜过可溶的OXDC。与最初相比,在37°C温育5h后,OXDC-CLEC保留约60%活性,而大多数可溶的OXDC和未交联的晶体状OXDC在2h后被胃蛋白酶降解,在5h后仅保留约20%活性。实施例21.可溶的OXDC、晶体状OXDC和OXDC-CLEC在有胰凝乳白酶存在下的稳定性将1.0mg/mL的可溶的OXDC(实施例5)、10.0mg/mL的晶体状OXDC(实施例5)和1.0mg/mL的OXDC-CLEC(实施例10)放入在埃彭道夫管中的各1mL25mMTris-HCl缓冲液pH7.5,在37℃,以OXDC:胰凝乳蛋白酶为50:1的比例,用胰凝乳蛋白酶(胰凝乳蛋白酶原液的浓度为1mg/mL,在25mMTris-HCL缓冲液中,pH7.5,新鲜制备)温育5h。在0、2和5小时取样,用于测量酶的稳定性。如实施例15所述测定活性。显示0、2和5小时后可溶的OXDC、晶体状OXDC和OXDC-CLEC在有胰蛋白酶存在下的稳定性的结果如图9所示。图9的结果表明,在37℃温育5小时后,OXDC-CLEC和未交联的晶体状OXDC是稳定的,且能耐受胰凝乳蛋白酶的蛋白水解切割。分析表明,与它在5小时前的最初值相比,OXDC-CLEC和未交联的晶体状OXDC酶保留约100%活性。同时,在暴露于胰凝乳蛋白酶2小时后,可溶的蛋白丧失约50%活性,5小时后,所有可溶的OXDC被降解,剩余0%活性。实施例22.可溶的OXDC、晶体状OXDC和OXDC-CLEC在含有胰酶的模拟肠液中的稳定性将5.0mg/mL的可溶的OXDC(实施例5)、10.0mg/mL的晶体状OXDC(实施例5)和10.0mg/mL的OXDC-CLEC(实施例10)放入在埃彭道夫管中的各1mL模拟肠液(根据USB推荐制备模拟肠液,将6.8gm磷酸二氢钾溶于250ml水,与77ml0.2N氢氧化钠和500ml去离子水相混合;然后,加入10gm胰酶,用0.2N盐酸或0.2N氢氧化钠将pH调至pH6.8;加水至1L),在37℃温育2h。在0、1和2小时取样,用于测量酶的稳定性。如实施例15所述测定活性。结果如图10所示。图10所示的结果表明,OXDC-CLEC在含有胰酶的模拟肠液中是稳定的,保持约100%活性。相反,大多数可溶的OXDC在1小时内被胰酶(脂肪酶、淀粉酶和蛋白酶的混合物)降解,在温育1h和2h后分别仅剩余约26%-28%活性。在有胰酶存在下,未交联的晶体状OXDC比它的可溶形式稳定得多,在温育1h和2h后分别保持约76%和约49%活性。另外,OXDC-CLEC会保护酶免受蛋白酶(例如胃蛋白酶和胰凝乳蛋白酶)的切割。在相同条件下,OXDC-CLEC的稳定性可以是可溶的OXDC的稳定性的至少约100%、200%、300%、400%或更多。在相同条件下,OXDC-CLEC维持的活性比可溶的OXDC维持的活性高至少约2、3或4倍。因而,与可溶的OXDC相比,OXDC-CLEC在范围从约2.5或3的酸性pH至约7.5或8.5的pH、且含有不同蛋白酶的肠苛刻条件下是有活性的且是稳定的。已经描述了本发明的许多实施方案。尽管如此,应当理解,可以作出不同的修改,而不脱离本发明的精神和范围。因此,其它实施方案也在所附权利要求的范围内。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1