植入封装的制作方法与工艺

文档序号:11868557阅读:370来源:国知局
植入封装相关申请本申请要求享有于2012年6月26日提交的第61/676,327号美国临时专利申请的权益,通过引用将其全部的公开内容并入本文。
背景技术
:神经调节(modulation)给出通过与身体自己的自然神经处理之间相互作用来治疗很多生理状况和失调的机会。神经调节包括对中央、周围或自主神经系统的活动的抑制(例如,阻滞)、刺激、修改、调整或治疗变更。通过调节神经系统的活动,例如通过刺激神经或阻滞神经信号,可以达成若干不同的目标。可以以适当次数地刺激运动神经元以引起肌肉收缩。可以对感觉神经元进行阻滞,以例如减轻痛苦,或者进行刺激,以例如对受试者提供信号。在其他的示例中,对自主神经系统的调节可以被用于调节各种不由自主的生理参数,诸如心率和血压。阻塞型睡眠呼吸暂停(OSA)是可以施加神经调节的状况之一。OSA是一种呼吸失调,其特征在于睡眠期间的上呼吸道的部分或完全阻塞的反复发作。在具有OSA的人的睡眠期间,咽部肌肉在睡眠期间放松并且逐渐下塌,使呼吸道变窄。呼吸道变窄限制了睡眠者的呼吸的效率,造成血液中的CO2水平上升。CO2的增加导致咽部肌肉收缩,从而打开呼吸道以恢复正常的呼吸。负责上呼吸道扩张的最大的咽部肌肉是颏舌肌,这是舌头中的若干不同的肌肉之一。颏舌肌负责向前的舌头运动和前咽壁的硬化。在具有OSA的病人中,颏舌肌的神经肌肉活动与正常个体相比减小,这是与正常个体相比打开呼吸道的响应和收缩不充分的原因。这种响应的不足导致部分或全部的呼吸道阻塞,其显著地限制了睡眠者呼吸的效率。在OSA病人中,在夜间经常有几次呼吸道阻塞事件。由于阻塞,血液中的氧气水平逐渐减少(血氧不足)。血氧不足导致夜间觉醒,其可以通过EEG来记录,表现为大脑从睡眠的任何阶段唤醒至短时觉醒。在觉醒期间,存在有意识的呼吸或喘息,从而解决呼吸道阻塞。作为对血氧不足的响应,也经常出现通过诸如肾上腺素和去甲肾上腺素等激素的释放引起的交感神经紧张活动率的增加。作为交感神经紧张增加的结果,心脏扩大以试图输送更多的血液,增加血压和心率,进一步地唤醒病人。在解决呼吸暂停事件之后,随着病人恢复睡眠,呼吸道再次下塌,导致进一步唤醒。这些反复的唤醒,结合反复的血氧不足,使病人无法睡眠,这导致白天困倦并且使认知功能恶化。在严重的病人中,这种循环每晚可能自己反复达数百次。因此,在夜晚期间的交感神经紧张的反复波动以及升高的血压的发作引发一整天的高血压。之后,高血压和增加的心率随后可能造成其他疾病。用于治疗OSA的努力包括持续气道正压(CPAP)治疗,这需要病人佩戴将空气吹到鼻孔中以保持呼吸道打开的面具。其他治疗选项包括在软腭中的刚性插入物以提供结构支撑的植入、气管切开术或者组织切除。可能适用神经调节的另外的状况是出现偏头痛的出现。头中的痛感经由枕部神经(特别是枕大神经)和三叉神经传送给大脑。当受试者经历头痛时,诸如在偏头痛的期间,对这些神经的抑制可以用于减小或消除痛感。还可以将神经调节应用于高血压。经由多种反馈机制控制身体中的血压。例如,颈动脉中的颈动脉体中的压力感受器对颈动脉内的血压改变敏感。压力感受器产生在血压上升时经由舌咽神经引导给大脑的信号,用信号通知大脑激活身体的调整系统来降低血压,例如通过改变心率以及血管舒张/血管收缩。相反地,在肾动脉上或周围的副交感神经神经纤维产生携带给肾脏以采取动作的信号,诸如提高血压的盐潴留和释放血管紧缩素等。调节这些神经可以提供对血压施加一些外部控制的能力。前述只是可能受益于神经调节的状况的几个示例,然而,以下描述的本发明的实施例不必限制于仅仅治疗上述的状况。技术实现要素:本公开的一些实施例包括被配置为对植入单元各种组件提供保护的植入单元。在一些实施例中,植入单元可以包括:基板;布置在基板上的可植入电路;以及部署在基板的至少一部分和可植入电路的至少一部分之上的封装结构。该封装结构可以包括具有第一密度的第一聚合物层;以及部署在第一聚合物层之上并且具有比第一密度更小的密度的第二聚合物层。本公开的另外的实施例可以包括一种用于封装植入单元的方法。该方法可以包括:提供基板,该基板包括在其上部署的可植入电路;以及用封装结构覆盖基板的至少一部分和可植入电路的至少一部分,其中所述覆盖的步骤包括:在基板的至少一部分和可植入电路的至少一部分之上部署第一聚合物层;以及在第一聚合物层之上部署第二聚合物层,其中,第二聚合物层具有比第一聚合物层更小的密度。附图说明被并入并且构成本说明书的一部分的附图图示本公开的若干实施例,并且与说明书一起用于说明在本文中公开的实施例的原理。图1示意性地图示根据本公开的示例性实施例的植入单元和外部单元。图2是根据本公开的示例性实施例的具有植入单元和外部单元的受试者的部分剖面侧视图。图3示意性地图示根据本公开的示例性实施例的包括植入单元和外部单元的系统。图4是根据一些实施例的示例性植入单元的顶视图。图5是根据本公开的示例性实施例的植入单元的替代实施例的顶视图。图6图示根据本公开的示例性实施例的植入单元和外部单元的电路。图7图示根据示例性的公开实施例的可以在确定能量递送中用作功能耦合的量的图表。图8图示图示非线性谐波的图表。图9图示根据示例性的公开实施例的可以在确定能量递送中用作功能耦合的量的图表。图10图示植入单元110的示例性实施例的附加特征。图11a和11b图示双层交叉天线。图12提供根据示例性的公开实施例的植入单元封装的概略侧面剖视图。具体实施方式现在将详细地参考本公开的示例性实施例,在附图中图示其示例。在全部图中将尽可能地使用相同的标号来指示相同或相似的部分。虽然最初在通过调节神经的OSA的治疗的背景下描述本公开,但是可以对任何病人/可能期望神经调节的身体的任何部分采用本医疗设备。即,除了对具有偏头痛的病人使用之外,本公开的实施例还可以在很多其他领域中使用,包括但不限于:深度大脑刺激(例如,癫痫、帕金森症以及抑郁症的治疗);心脏起搏、胃肌肉刺激(例如,治疗肥胖)、背部疼痛、尿失禁、经痛、和/或可以受神经调节影响的任何其他状况。本公开的实施例一般涉及一种用于通过递送能量来调节神经的设备。神经调节可以采取神经刺激的形式,其可以包括向神经提供能量以创建足以使神经激活或者传播其自身的电信号的电压改变。神经调节还可以采取神经抑制的形式,其可以包括向神经提供足以防止神经传播电信号的能量。神经抑制可以通过不断地施加能量来执行,并且还可以通过施加足够的能量以在施加之后的一段时间内抑制神经的功能。神经调节的其他形式可以修改神经的功能,引起升高的或减少的程度的灵敏度。如在本文中所指的,神经的调节可以包括对整个神经的调节和/或对神经的一部分的调节。例如,可以对运动神经元进行调节以只影响作为被施加能量的位置的末梢的神经元的那些部分。在患有OSA的病人中,例如,神经刺激的主要目标响应可以包括舌肌(例如,肌肉)的收缩以便移动舌头至不阻滞病人的呼吸道的位置。在偏头痛的治疗中,神经抑制可以用于降低或消除痛感。在高血压的治疗中,神经调节可以用于增加、减少、消除或者以其他方式修改身体产生的神经信号来调节血压。图1图示根据本公开的示例性实施例的植入单元和外部单元。植入单元110可以被配置为在允许其调节神经115的位置处植入到受试者中。植入单元110可以位于受试者中,使得中介组织111存在于植入单元110和神经115之间。中介组织可以包括肌肉组织、结缔组织、器官组织或者任何其他类型的生理组织。因此,植入单元110的位置不需要为了高效的神经调节而接触神经115。还可以将植入单元110置于直接邻近神经115,使得不存在中介组织111。在治疗OSA中,可以将植入单元110置于病人的颏舌肌上。这样的位置适于调节舌下神经,即在颏舌肌内延续的分支。植入单元110也可以被配置为放置在其他位置上。例如,偏头痛治疗可能需要在颈部的后面中、靠近受试者的发际或在受试者的耳朵的后面的皮下植入,以调节枕大神经和/或三叉神经。治疗高血压可能需要单方面或双方面地在肾动脉或肾表脉内(以调节副交感神经肾神经)、在颈动脉或颈静脉内(以通过压力感受器调节舌咽神经),在血管内植入神经调节植入物。替代地或者附加地,治疗高血压可能需要例如在耳朵的后面或在颈部中皮下地植入神经调节植入物,以直接调节舌咽神经。外部单元120可以被配置为位于病人的外部,直接接触或靠近病人的皮肤112。外部单元120可以被配置为粘贴到病人,例如通过附着到病人的皮肤112,或者通过被配置为将外部单元120保持在适合位置处的带或其他设备。可以将外部单元120附着到皮肤,使得其在植入单元110的位置的附近。图2图示用于在具有OSA的病人100中递送能量的神经调节系统的示例性实施例。该系统包括可以被配置为位于病人外部的外部单元120。如图2所示,外部单元120可以被配置为粘贴到病人100。图2图示在具有OSA的病人100中,可以将外部单元120配置为放置在病人的颏部的下面和/或在病人的颈部的前面。可以通过外部单元120与植入单元110之间的通信来确定放置位置的适合性,下面更详细的论述。在替代的实施例中,对于除了OSA之外的状况的治疗,可以根据具体应用的需求,将外部单元配置为粘贴到病人上的任何适合的地方,诸如病人的颈部的后面(亦即用于与偏头痛治疗植入单元进行通信)、在病人的腹部的外部(亦即用于与胃调节植入单元进行通信)、在病人的背部(亦即用于与肾动脉调节植入单元进行通信)和/或在病人皮肤上的任何其他适合的外部位置处。外部单元120还可以被配置为粘贴到病人附近的替代位置处。例如,在一个实施例中,外部单元可以被配置为固定地或可移动地附着到可以被配置为包裹病人身体的一部分的绷带或带。替代地或者另外地,外部单元可以被配置为保持在病人身体的外部的所期望位置处,而不是附着到该位置。外部单元120可以包括外壳。外壳可以包括被配置用于保持组件的任何适合的容器。另外,虽然在图2中示意性地图示了外部单元,但是外壳可以是任何适合的大小和/或形状,并且可以是刚性或柔性的。外部单元100的外壳的非限制性的示例包括一个或多个贴片、钮扣或者具有变化形状和尺寸并且由任何适合的材料构造的其他容器。在一个实施例中,外壳例如可以包括柔性材料,使得外部单元可以被配置为符合所期望位置。例如,如图2所示,外部单元可以包括皮肤贴片,其反过来可以包括柔性基板。外部单元的柔性基板的材料可以包括但不限于塑料、硅、机织天然纤维以及其他适合的聚合物、共聚物及其组合。外部单元120的任何部分取决于具体应用的需求可以是柔性的或刚性的。如前所述,在一些实施例中,外部单元120可以被配置为附着到所期望位置处。相应地,在一些实施例中,外壳的至少一侧包括附着材料。附着材料可以包括生物相容材料,并且可以允许病人将外部单元附着到所期望位置处,并且在使用完成时移除外部单元。附着可以被配置用于外部单元的单次或多次使用。适合的附着材料可以包括但不限于生物相容的胶、浆糊、柔性体、热塑性塑料以及乳剂。图3示意性地图示包括外部单元120和植入单元110的系统。在一些实施例中,内部单元110可以被配置为被植入到病人身体中的单元,并且外部单元120可以被配置为发送信号给和/或接收信号自植入单元110。如图3所示,多种组件可以被包括在外部单元120的外壳内或者以其他形式与外部单元120相关联。如图3所示,至少一个处理器144可以与外部单元120相关联。例如,所述至少一个处理器144可以位于外部单元120的外壳内。在替代的实施例中,所述至少一个处理器可以被配置为与来自外壳的外部位置处的外部单元进行有线或无线通信。所述至少一个处理器可以包括可以被配置为对至少一个输入变量执行逻辑操作的任何电子电路。因此,所述至少一个处理器可以包括一个或多个集成电路、微芯片、微控制器以及微处理器,其可以是中央处理单元(CPU)、数字信号处理器(DSP)、现场可编程门阵列(FPGA)或者可以适于执行指令或进行逻辑操作的本领域技术人员已知的任何其他电路中的全部或部分。图3图示外部单元120还可以与电源140相关联。电源可以可移动地耦合到在相对于外部单元的外部位置处的外部单元。替代地,如图3所示,电源140可以永久性地或可移动地耦合到外部单元120之内的位置。电源还可以包括被配置为与处理器进行电通信的任何适合的能量来源。在一个实施例中,例如,电源140可以包括电池。电源可以被配置为向外部单元内的各种组件供电。如图3所示,电源140可以被配置为向处理器144提供能量。另外,电源140可以被配置为向信号源142提供能量。信号源142可以与处理器144进行通信,并且可以包括被配置为产生信号(例如,正弦信号、方波、三角波、微波、射频(RF)信号或者任何其他类型的电磁信号)的任何设备。信号源142可以包括但不限于被配置为产生交流(AC)信号和/或直流(DC)信号的波形产生器。在一个实施例中,例如,信号源142可以被配置为产生AC信号以便传送给一个或多个其他组件。信号源142可以被配置为产生任何适合频率的信号。在一些实施例中,信号源142可以被配置为产生具有从大约6.5MHz至大约13.6MHz的频率的信号。在另外的实施例中,信号源142可以被配置为产生具有从大约7.4至大约8.8MHz的频率的信号。在另外的实施例中,信号源142可以产生具有向90kHz一样低或像28MHz一样高的频率的信号。信号源142可以被配置为与放大器146进行直接或间接的电通信。放大器可以包括被配置为放大从信号源142产生的一个或多个信号的任何适合的设备。放大器146可以包括一个或多个各种类型的放大设备,包括例如基于晶体管的设备、运算放大器、RF放大器、功率放大器或者可以增加与信号的一个或多个方面相关联的增益的任何其他类型的设备。放大器还可以被配置为向外部单元120内的一个或多个组件输出放大的信号。外部单元还可以包括主天线150。主天线可以被配置为外部单元120内的电路的一部分,并且可以直接或间接地耦合到外部单元120中的各种组件。例如,如图3所示,主天线150可以被配置为与放大器146进行通信。主天线可以包括可以被配置为创建电磁场的任何传导结构。主天线还可以是任何适合的大小、形状和/或配置。可以按照病人的大小、植入单元的放置位置、植入单元的大小和/或形状、调节神经所需的能量的量、要调节的神经的位置、存在于植入单元上的接收电子设备的类型来确定大小、形状和/或配置。主天线可以包括可以被配置为发送和/或接收信号的本领域技术人员的任何适合的天线。适合的天线可以包括但不限于长线天线、贴片天线、螺旋天线等。在一个实施例中,例如,如图3所示,主天线150可以包括线圈天线。这样的线圈天线可以由任何适合的传导材料制成,并且可以被配置为包括传导线圈的任何适合的布置(例如,直径、线圈的数量、线圈的布局等)。适于用作主天线150的线圈天线可以具有约1cm和10cm之间的直径,并且可以是圆形或椭圆形的。在一些实施例中,线圈天线可以具有5cm和7cm之间的直径,并且可以是椭圆形的。适于用作主天线150的线圈天线可以具有任何数量的绕组,例如4、8、12或者更多。适于用作主天线150的线圈天线可以具有约0.01mm和2mm之间的导线直径。这些天线参数只是示例性的,并且可以被调节为高于或低于为获得适合的结果而给出的范围。如所述的那样,植入单元110可以被配置为被植入在病人的身体中(例如,病人的皮肤的下面)。图2图示植入单元110可以被配置为被植入以便调节与受试者的舌头130的肌肉相关联的神经。调节与受试者的舌头130的肌肉相关联的神经可以包括进行刺激以引起肌肉收缩。在另外的实施例中,植入单元可以被配置为结合可能期望调节的任何神经而放置。例如,对于治疗诸如来自偏头痛的痛感这样的头部中的痛感,调节枕部神经、枕大神经和/或三叉神经可能是有用的。对于治疗高血压,调节在肾动脉上和周围的副交感神经纤维、迷走神经和/或舌咽神经可能是有用的。另外,可以调节包括运动神经元、感觉神经元、交感神经元和副交感神经元的外周神经系统的任何神经(脊神经和颅神经两者)以获得所期望的效果。可以由适于植入到病人的身体中的任何材料来形成植入单元110。在一些实施例中,植入单元110可以包括诸如例如包括柔性生物相容材料的柔性载体161(图4)这样的基板。这样的材料可以包括例如硅、聚酰亚胺、苯基三甲氧基硅烷(PTMS)、聚甲基丙烯酸甲酯(PMMA)、C型聚对二甲苯、聚酰亚胺、液体聚酰亚胺、叠片聚酰亚胺、黑色环氧树脂、聚醚醚酮(PEEK)、液晶聚合物(LCP或卡普顿等。植入单元110和柔性载体161还可以被制作成具有适于植入在病人的皮肤下面的厚度。植入物110可以具有小于约4mm或小于约2mm的厚度。在本文中所使用的术语“柔性”可以指改变组件的物理形状同时维持其所期望的功能的能力。例如,如果组件可以弯曲或折曲或伸展等,允许组件符合受试者的身体中的组织(例如,肌肉、脂肪、骨骼、结缔等),则可以将其视为是柔性的。植入单元110还可以包括布置在基板上的可植入电路。可植入电路180可以与基板上的至少一对调节电极和/或天线进行电通信(例如,直接或间接连接)。可植入电路和/或调节电极可以包括诸如金、铂、钛或任何其他生物相容的传导材料或材料的组合这样的传导材料。在一些实施例中,可植入电路可以包括被配置为在弯曲期间维持电接触的一个或多个曲折的电迹线(图10)。可植入电路可以包括诸如二极管、电容、电阻器等各种组件。在图3中图示可以包括在植入单元中或者以其他方式与其相关联的其他组件。例如,植入单元110可以包括被安放到柔性载体161上或与柔性载体161集成的次级天线152。类似于主天线,次级天线可以包括可以被配置为发送和/或接收信号的本领域技术人员已知的任何适合的天线。次线天线可以包括任何适合的大小、形状和/或配置。大小、形状和/或配置可以根据病人的大小、植入单元的放置位置、调节神经所需的能量的量等来确定。适合的天线可以包括但不限于长线天线、贴片天线、螺旋天线等。在一些实施例中,例如,次级天线152可以包括具有圆形状(还参见图4)或椭圆形状的线圈天线。这样的线圈天线可以由任何适合的传导材料制成,并且可以被配置为包括传导线圈的任何适合布置(例如,直径、线圈的数量、线圈的布局等)。适于用作次级天线152的线圈天线可以具有任何数量的绕组,例如4、15、20、30或50。适于用作次级天线152的线圈天线可以具有约0.001mm和1mm之间的导线直径。这些天线参数只是示例的,并且可以为获得适合的结果而调节至所述范围以上或以下。图11a和11b图示适于用作主天线150或次级天线152的双层交叉天线1101。虽然示出并描述了双层交叉天线,但是其他天线配置也可以适于主天线150和/或次级天线152。例如,以单一层(例如在电介质或绝缘材料上或内)布置天线组件(例如线圈)的情况下,可以使用单一层天线。另外,虽然示出交叉模式,但是其他模式也可以是适合的。例如,在一些实施例中,与主天线150和/或次级天线152相关联的导线可以包括逐渐地减小尺寸的迹线的模式。在以线圈布置的迹线的情况下,例如,每圈可以包括逐渐地减小尺寸的环以创建向内螺旋的模式。使用其他形状的迹线的类似的方法也是可行的。回到图11a,该图图示双层交叉天线1101的单个线圈,而图11b图示双层交叉天线1101的两层。天线1101可以包括布置在电介质载体1104的第一侧上的导线1102的第一线圈以及在电介质载体1104的第二侧上的导线1103的第二线圈。在双层中布置天线线圈可以用于增加天线的传送范围而不增加天线的大小。然而,这样的布置还可以用于增加每个线圈的导线之间的电容。在每个导线线圈中,导线之间的寄生电容的量可能部分地取决于每个导线离开其近邻的距离。在单一层线圈中,可能在线圈的每圈和其一侧的近邻之间产生电容。因此,越紧凑的线圈可能产生越多的寄生电容。当添加第二层线圈时,则可能在第一线圈的导线和第二线圈的导线之间产生附加电容。如果第一和第二线圈的对应圈具有相同或相似的直径,和/或如果使分开各圈的电介质载体非常薄,则可能进一步地增加该附加电容。天线中增加的寄生电容可以用于基于制造规格以不可预测的量来改变天线的诸如谐振频率这样的特征。另外,例如由湿气入侵或天线弯曲引起的谐振频率漂移可能由于更多的寄生电容的存在而增加。因此,为了减少所制造的产品的变异性,降低双层天线中的寄生电容的级别可能是有利的。图11b图示可以用于降低所制造的天线中的寄生电容的双层交叉天线1101。如图11b所示,导线1102的第一线圈从导线1103的第二线圈开始同心地偏移。与第一线圈1102的每圈具有和第二线圈1103的对应圈的相同的直径的配置相对地,将每个导线的对应的圈同心地偏移用于增加第一线圈1102的单个圈与第二线圈1103的对应圈之间的距离。该增加的距离反过来可以减小第一线圈1102的圈和第二线圈1103的对应圈之间的寄生的导线到导线的电容。这种配置在降低如下情况中的寄生电容中是特别有利的:电介质载体1104足够薄,使得每个线圈偏移的同心距离相比于电介质载体1104的厚度相对很大。例如,在电介质载体是0.5mm厚的情况下,0.5mm或更多的同心偏移可以生成寄生电容的大的改变。相对地,在电介质载体是5mm厚的情况下,0.5mm的同心偏移可以生成寄生电容中较小的变化。例如,可以通过将线圈的每圈从每个前一圈开始偏移的多个电迹线步进1105来获得第一线圈1102和第二线圈1103之间的同心偏移。在电介质载体1104的第一侧上的电迹线步进1105与电介质载体1104的第二侧上的电迹线步进1105交叉,从而提供双层交叉天线1101的交叉特征。在另外的实施例中,双层交叉天线1101可以包括在电介质载体1104中的开口1106,以便于第一和第二线圈1102、1103的电连接。双层交叉天线1101的第一和第二线圈1102、1103还可以包括被配置为与设备外壳的连接器电连接的暴露电气部分1108,设备外壳可以被配置为耦合到天线1101。可以配置暴露电气部分1108,以便无论连接的轴向如何都维持与设备外壳的连接器的电接触。为了达成这一点,如图11a所示,例如可以将暴露电气部分1108配置为连续的或不连续的圆。被配置为不连续的圆的第一暴露电气部分1108可以提供电迹线可以在其中穿过而不接触该第一暴露电气部分的空间,以例如连接位于第一内部的第二暴露电气部分或者位于第一暴露电气部分1108的圆之内的其他组件。图11a图示具有基本椭圆形线圈的天线,在不同的实施例中也可以使用诸如圆形、三角形、方形等其他形状。椭圆形线圈可以便于将外部单元120放置在某些区域中(例如受试者的颏部下面),同时维持所期望的电性能特征。植入单元110可以额外包括多个场产生植入电极158a、158b。所述电极可以包括任何适合的形状和/或在植入单元上的朝向,只要所述电极可以被配置为在病人的身体中产生电场即可。植入电极158a和158b还可以包括任何适合的传导材料(例如,铜、银、金、铂、铱、铂铱、铂金、传导性聚合物等)或者传导(和/或贵金属)材料的组合。在一些实施例中,例如,所述电极可以包括短线电极、圆形电极和/或电极的圆形对。如图4所示,电极158a和158b可以位于延长臂162的第一延伸部162a的末端。然而,电极可以位于植入单元110的任何部分上。另外,植入单元110可以包括位于多个地方的电极,例如在延长臂162的第一延伸部162a和第二延伸部162b这两者的末端上,例如如图5所示。植入电极可以具有约200纳米和1微米之间的厚度。阳极和阴极电极对可以以约0.2mm至25mm的距离间隔。在另外的实施例中,阳极和阴极电极对可以以约1mm至10mm或者在4mm和7mm之间的距离间隔。邻近的阳极和邻近的阴极可以以小如0.001mm或者更小的距离,或者大如25mm或者更大的距离间隔。在一些实施例中,邻近的阳极或邻近的阴极可以以约0.2mm和1mm之间的距离间隔。图4提供植入单元110的示例性配置的示意性表示。如图4所示,在一个实施例中,场产生电极158a和158b可以包括两组的四个圆形电极,提供在柔性基板161上,其中一组电极提供阳极,另一组电极提供阴极。植入单元110可以包括一个或多个结构元件,以便于将植入单元110植入到病人的身体中。这样的元件可以包括例如延长臂、缝合孔、聚合物外科手术网、生物胶、突出以锚定到组织的柔性载体的长钉、用于相同目的的另外的生物相容材料的长钉等,它们便于将植入单元110以所期望的朝向在病人的身体内对齐,并且提供用于固定(secure)在身体内的植入单元110的附接点。例如,在一些实施例中,植入单元110可以包括具有第一延伸部162a以及可选地具有第二延伸部162b的延长臂162。延伸部162a和162b可以有助于相对于特定肌肉(例如,颏舌肌)、病人身体内的神经或者在神经之上在身体之内的表面,为植入单元110指向。例如,第一和第二延伸部162a、162b可以被配置为使植入单元能够至少部分地适合在病人的皮肤下面的软组织或硬组织(例如,神经、骨骼或肌肉等)周围。另外,植入单元110还可以包括位于柔性载体161上的任何地方的一个或多个缝合孔160。例如,在一些实施例中,缝合孔160可以放置在延长臂162的第二延伸部162b上和/或延长臂162的第二延伸部162a上。可以以各种形状构造植入单元110。另外地或者替代地,植入单元110可以在缝合孔1050内包括外科手术网或其他适当的(perforatable)材料,在下面参照图10更详细地描述。在一些实施例中,植入单元可以看起来基本如图4所示那样。在其他实施例中,植入单元110可以缺少诸如第二延伸部162b这样的结构,或者可以以不同的朝向具有另外的或不同的结构。另外,植入单元110可以用一般的三角形、圆形或矩形来形成,作为在图4中示出的翼形的替代。在一些实施例中,植入单元110的形状(例如,如图4所示)可以便于相对于要调节的特点神经来指向植入单元110。因此,为了便于在身体的不同部分中进行植入,可以采用其他规则的或不规则的形状。图5是根据本公开的示例性实施例的植入单元110的替代实施例的透视图。如图5所示,植入单元110可包括例如位于第一延伸部162a和第二延伸部162b的末端的多个电极。图5图示植入电极158a和158b包括短线电极的实施例。如图4所示,次级天线152和电级158a、158b可以安装在柔性载体161上,或者与柔性载体161集成。可以使用各种电路组件和连接导线来连接次级天线与植入电极158a和158b。为了保护天线、电极以及可植入电路组件不受病人身体内的环境的影响,植入单元110可以包括封装植入单元110的保护涂层。在一些实施例中,保护涂层可以由柔性材料制成以使能沿着柔性载体161弯曲。保护涂层的封装材料还可以阻止湿气入侵以及保护以免受到侵蚀。在一些实施例中,保护涂层可以包括多个层,包括在不同的层中的不同的材料或材料的组合。在本公开的一些实施例中,被植入的单元的封装结构可以包括两层。例如,第一层可以部署在布置在基板上的可植入电路的至少一部分之上,并且第二层可以部署在第一层之上。在一些实施例中,可以将第一层直接部署在可植入电路之上,但是在其他实施例中,第一层可以部署在第一层和可植入电路之间的中介材料之上。在一些实施例中,针对植入单元,第一层可以提供防潮层,并且第二层可以提供机构保护(例如,至少一些保护以免受到可以由抓挠、碰撞、弯曲等造成的物理损害)。在本文中使用的术语“封装”和“进行封装”是指完全地或部分地覆盖组件。在一些实施例中,组件可以指基板、可植入电路、天线、电极、其任何部分等。在本文中使用的术语“层”可以指覆盖表面或形成重叠部分或片段的一定厚度的材料。层厚度可以层与层不同,并且可以取决于覆盖材料以及形成该层的方法。例如,通过化学气相部署的层可能比通过其他方法部署的层更薄。可以利用其他配置。例如,可以在外层机构保护层之上形成另一防潮层。在这样的实施例中,可以在可植入电路之上(例如,直接在其之上或者具有中介层)部署第一防潮层的层(聚对二甲苯),可以在第一防潮层之上形成机构保护层(例如,硅),并且可以在机构保护层之上部署第二防潮层(例如,聚对二甲苯)。图10图示被封装的植入单元110的示例性实施例。示例性的实施例可以包含在图10中图示的一些或全部特征以及另外的特征。植入单元110的保护涂层可以包括主封壳1021。主封壳1021可以封装植入单元110,并且可以提供对植入单元110的机构保护。例如,植入单元110的组件可以是精密的,并且在植入之前处置植入单元110的需要可能需要对植入单元110的组件的额外保护,并且主封壳1021可以提供这样的保护。主封壳1021可以封装植入单元110的所有或一些组件。例如,主封壳1021可以封装天线152、柔性载体161以及可植入电路180。主封壳可以使得电极158a、158b的部分或全部被暴露,使它们能够不受主封壳的材料阻止地递送用于调节神经的能量。在替代的实施例中,可以封装或暴露不同的组件组合。主封壳1021可以用使得植入单元110在封装之后仍然具有柔性的材料和厚度来塑造。主封壳1021可以包括任何适合的生物相容的材料,诸如硅或者聚酰亚胺、苯基三甲氧基硅烷(PTMS)、聚甲基丙烯酸甲酯(PMMA)、C型聚对二甲苯、液体聚酰亚胺、叠片聚酰亚胺、聚酰亚胺、卡普顿、黑色环氧树脂、聚醚醚酮(PEEK)、液晶聚合物(LCP)或者任何其他适合的生物相容的涂层。图12是示出根据示例性的公开实施例的被封装的植入单元110的概略截面图。植入单元110的保护涂层可以包括主封壳1021以及次级封壳1070。在一些实施例中,主封壳1021可以由具有比用于形成次级封壳1070的聚合物材料的密度更小的密度的聚合物材料来形成。例如,在一些实施例中,主封壳1021可以包括硅、聚亚安酯、环氧树脂、丙烯酸树脂等,次级封壳1070可以包括N型聚对二甲苯、C型聚对二甲苯、HD型聚对二甲苯、D型聚对二甲苯等。另外,其他实施例可以包括形成在主封壳1021之上的外层阻挡层。外层阻挡层可以用作防潮层,或者可以被选择提供其他所期望的属性。例如,在一些实施例中,外层阻挡层可以由具有比主封壳1021的密度更大的密度的聚合物来形成。例如,外层阻挡层可以由聚对二甲苯来形成。次级封壳1070可以在植入单元110被植入在身体中时为其提供环境保护。例如,主封壳1021可以由硅来构造,其可能遭受来自身体的湿气入侵。这种湿气入侵由于可能的腐蚀影响而可能限制植入单元110的寿命。次级封壳1070可以提供在主封壳1021的下面以保护植入单元110免受身体的植入的腐蚀影响。例如,聚对二甲苯的层可以用作次级封壳,并且可以被提供以封装植入单元110的所有或一些组件。在示例性的实施例中,次级封壳1070可以封装与植入单元110相关联的任何或所有组件,并且可以完全或部分地覆盖那些组件。例如,次级封壳1070可以覆盖基板、次级天线152、载体161、可植入电路180以及电极158a、158b。反过来,可以由主封壳1021来封装次级封壳1070。在一些实施例中,次级封壳1070可以覆盖少于植入单元110的所有组件。例如,在一些实施例中,电极158a和/或158b的至少一部分可以保持不被次级封壳1070所覆盖。类似地,如上所述,电极158a和/或158b的多个部分可以保持不被主封壳1021所覆盖。在一些实施例中,穿过次级封壳1070的暴露窗口可以小于穿过主封壳1021的暴露窗口。因此,从在电极158a之上的视角,例如,与次级封壳1070相关联的被暴露的边,即形成穿过次级封壳1070的暴露窗口的边缘,将延伸出穿过主封壳1021的暴露窗口的边界。次级封壳1070可以包括例如聚对二甲苯、C型聚对二甲苯或者用于防止对植入单元110的湿气入侵的效果的任何其他适合的材料。在一些实施例中,次级封壳层1070可以通过化学气相沉积来沉积,并且具有约1分子厚度、在1和5分子之间的厚度,或者任何其他适合的膜厚度。主和次级封壳材料的一些组合(诸如硅或C型聚对二甲苯)可以相对较弱地相互结合。在使用材料的这样的组合的情况下,可以提供多个穿孔或刺孔1030(图2)穿过载体161和次级封壳1070这两者以提高主封壳1021到植入单元110的附着度。例如,在提供刺孔1030时,主封壳1021的材料可以在制作期间流过刺孔,允许主封壳1021的材料流入其中并且附着其上。穿过载体161和次级封壳1070而提供多个刺孔1030可以提供锚定点以允许用于形成主封壳1021的材料的自附着。可以提供刺孔1030并调整大小,使得在通过主封壳1021进行封装之后,孔1030的至少一些部分仍然没有主封壳材料,或者可以提供它们并调整大小,使得在封装之后,孔1030被填充(如图12所示)。在图10中还图示缝合孔1050,其可以包括在其中部署的外科手术网。手述网可以为外科医生提供更大的目标区域以在植入期间将植入单元110缝合到适当位置中时使用。可以用主封壳1021封装整个外科手术网,允许外科医生将针穿过网的任何部分,而不会危害植入单元110的完整性。外科手机网还可以用于覆盖一个或多个缝合孔160,允许可以向外科医生提供更大的目标区域的更大的缝合孔160。外科手术网还可以帮助包围组织以与植入单元110相结合。在一些实施例中,外科医生可以将外科手术缝合针穿过位于植入单元110的延长臂的162的一个延伸部162a上的缝合孔160,穿过受试者的组织,并且穿过在植入单元110的延长臂162的第二延伸部162b上提供的外科手术网。在该实施例中,通过缝合孔1050提供的更大的目标区域可以便于缝合处理,因为在将其穿过组织之后可能更难以精确地定位缝合针。通过使用在下面更详细地描述的递送工具,植入和缝合过程可以更加容易。可以提供植入单元110的封壳,以使得在封装之后,植入单元110仍然保持柔性。另外,植入单元110可包括曲折的电迹线1060以便在弯曲的状况下维持电接触。如在这里所使用的那样,曲折的电迹线1060可以包括比其连接的点之间的最短距离更长的任何电迹线。曲折的电迹线1060还可以包括足够长的任何电迹线,以便在弯曲其所在的载体的期间维持电传导性。例如,如图10所示,曲折的电迹线1060可以被配置为具有连续的曲线(诸如波形等)的线。安置电迹线的载体161的反复弯曲可能造成电迹线的老化,因为它们由于载体161的弯曲而反复地受到压力。曲折的电迹线1060可以提供更长的寿命,因为所提供的额外的松弛可以用于在载体161的弯曲期间降低压力。曲折的电迹线1060可以包括任何适合的传导材料,诸如金、铂、钛、铜、银、铱、铂铱、铂金、传导性聚合物、任何传导性生物相容的材料和/或传导(和/或贵金属)材料的组合。在与本公开一致的另外的实施例中,可以通过渐进式金属化分层方法来提供植入单元110的传导电元件(诸如曲折的迹线1060和电极158a、158b)。在一些实施例中,柔性载体161可以包括相对较弱地结合到可期望用作传导电元件的传导金属(诸如钛和/或金)的诸如液晶聚合物这样的材料。渐进式金属化分层方法可以利用可以更强地结合到柔性载体161的临时结合层(包括诸如镍这样的金属)。临时结合层可以用期望用作传导电元件的金属来分层,并且用于提供与柔性载体161的材料的初始结合。然后,可以通过分解、侵蚀或类似技术通过柔性载体161移除临时结合层,在柔性载体161中的适当位置处留下所期望的金属。在一个实施例中,可以利用渐进式金属化分层方法在液晶聚合物载体161上提供金和钛传导元件。传导元件可以由镍、金和钛的渐进层来构造。接下来,可以在传导元件周围浇铸液晶聚合物,与镍层强力地结合并且形成包含被分层的传导元件的凹口。最后,可以通过分解、侵蚀或类似的技术,通过液晶聚合物来移除镍。镍的移除在适当的地方留下经金/钛分层的传导元件,紧紧地保持在浇铸处理期间创造的液晶聚合物凹口中。回到图2和3,外部单元120可以被配置为与植入单元110进行通信。例如,在一些实施例中,可以在主天线150上,使用例如处理器144、信号源142和放大器146来产生主信号。更具体地,在一个实施例中,电源140可以被配置为向处理器144和信号源142之一或两者提供能量。处理器144可以被配置为使信号源142产生信号(例如,RF能量信号)。信号源142可以被配置为向可以放大由信号源142产生的信号的放大器146输出所产生的信号。例如,可以由处理器144控制信号的放大的量,并且因此可以控制信号的幅度。处理器144使放大器146应用于信号的增益或放大的量取决于各种因素,包括但不限于主天线150的形状、大小和/或配置,病人的大小,在病人中的植入单元110的位置,次级天线152的形状、大小和/或配置,主天线150和次级天丝152(在更下面进行论述)之间的耦合程度、将由植入的电极158a、158b产生的电场的所期望的量级,等等。放大器146可以向主天线150输出放大的信号。外部单元120可以将主天线上的主信号通信给植入单元110的次级天线152。该通信可以由主天线150和次级天线152之间的耦合来产生。主天线和次级天线的这样的耦合可以包括响应于施加到主天线的信号在次级天线上引起信号的主天线和次级天线之间的交互。在一些实施例中,主天线和次级天线之间的耦合可以包括电容耦合、感应耦合、射频耦合等及其任何的组合。主天线150和次级天线152之间的耦合可以取决于主天线相对于次级天线的接近度。即,在一些实施例中,主天线150和次级天线152之间的耦合的效率或程度可以取决于主天线到次级天线的接近度。主天线和次级天线的接近度可以表述为同轴偏移(例如,在主天线和次级天线的中心轴相互对准时的主天线和次级天线之间的距离)、横向偏移(例如,主天线的中心轴和次级天线的中心轴之间的距离)和/或角度偏移(例如,主天线和次级天线的中心轴之间的角度差异)。在一些实施例中,理论上耦合的最大效率可以存在于在同轴偏移、横向偏移以及角度偏移都为零时的主天线150和次级天线152之间。同轴偏移、横向偏移和角度偏移中的任何一个的增加都可能具有降低主天线150和次级天线152之间的耦合效率或程度的效果。作为主天线150和次级天线152之间的耦合的结果,可以当在主天线150上存在主信号时在次级天线152上出现次级信号。这样的耦合可以包括感应/磁耦合、RF耦合/传送、电容耦合或可以响应于在主天线150上产生的主信号在次级天线152上产生次级信号的任何其他机构。耦合可以指主天线和次级天线之间的任何交互。除了主天线150和次级天线152之间的耦合之外,与植入单元110相关联的电路组件还可以影响在次级天线152上的次级信号。因此,在次级天线152上的次级信号可以指存在于次级天线152上的任何以及所有的信号和信号分量,而与来源无关。虽然在主天线150上的主信号的存在可能造成或引入在次级天线152上的次级信号,但是作为存在于次级天线152上的次级信号的结果,两个天线之间的耦合还可能导致在主天线150上的耦合的信号或信号分量。由次级天线152上的次级信号引起的主天线150上的信号可以被称为主耦合信号分量。主信号可以指存在于主天线150上的任何以及所有的信号或信号分量,而与来源无关,并且主耦合信号分量可以指作为与存在于次级天线152上的信号进行耦合的结果、在主天线上出现的任何信号或信号分量。因此,在一些实施例中,主耦合信号分量可以构成主天线150上的主信号。植入单元110可以被配置为响应外部单元120。例如,在一些实施例中,在主线圈150上产生的主信号可以在次级天线152上引起次级信号,其反过来可以引起由植入单元110的一个或多个响应。在一些实施例中,植入单元110的响应可以包括植入电极158a和158b之间的电场的产生。图6图示可以被包括在外部单元120中的电路170和可以被包括在植入单元110中的电路180。另外,可以在电路170和电路180中的任何一个或两者中包括不同的或更少的电路组件。如图6所示,可以将次级天线152布置为与植入电极158a、158b进行电通信。在一些实施例中,连接次线天线152与植入电极158a和158b的电路可以在次级天线152上存在次级信号时引起跨越植入电极158a和158b的电压电势。该电压电势可以被称为场感应信号,因为该电压电势可以在植入电极158a和158b之间产生电场。更宽泛地,场感应信号可以包括被施加到与植入单元相关联的电极的、可以导致在电极之间产生电场的任何信号(例如,电压电势)。场感应信号可以作为由电路180调节次级信号的结果来产生。如图6所示,外部单元120的电路170可以被配置为在主天线150上产生可以在次级天线152上引起AC次级信号的AC主信号。然而,在一些实施例中,在植入电极158a和158b处提供DC场感应信号可能是有利的(例如,为了产生用于调节神经的单向电场)。为了将次级天线152上的AC次级信号转换成DC场感应信号,植入单元110中的电路180可以包括AC-DC转换器。AC到DC转换器可以包括本领域技术人员已知的任何适合的转换器。例如,在一些实施例中,AC-DC转换器可以包括整流电路组件,包括例如二极管156和适当的电容器和电阻器。在替代的实施例中,植入单元110可以包括AC-AC转换器或者没有转换器,以便在植入电极158a和158b处提供AC场感应信号。如上所述,场感应信号可以被配置为在植入电极158a和158b之间产生电场。在一些实例中,由场感应信号得到的所产生的电场的量级和/或持续时间可以足以调节在电极158a和158b附近的一个或多个神经。在这种情况下,场感应信号可以被称为调节信号。在其他实例中,场感应信号的量级和/或持续时间可以产生不会导致神经调节的电场。在这样的情况下,场感应信号可以被称为子调节信号。各种类型的场感应信号可以构成调节信号。例如,在一些实施例中,调节信号可以包括中等幅度和中等持续时间,而在其他实施例中,调节信号可以更高的幅度和更短的持续时间。跨越电极158a、158b的场感应信号的各种量级和/或持续时间可以导致调节信号,并且场感应信号是否上升到调节信号的级别可以取决于很多因素(例如,离开要被刺激的特定神经的距离;神经是否是分支;感应电场相对于神经的朝向;在电极和神经之间存在的组织的类型;等等)。最终可以由外部单元120的处理器144来控制由场感应信号构成调节信号(得到可能引起神经调节的电场)还是由子调节信号(得到不用于引起神经调节的电场)。例如,在一些情况下,处理器144可以确定神经调节是适当的。在这些状况下,处理器144可以使信号源144和放大器146在主天线150上产生调节控制信号(亦即,具有所选择的量级和/或持续时间的信号,以使得在次级天线152上的产生的次级信号将提供在植入电极158a和158b处的调节信号)。处理器144可以被配置为限制从外部单元120到植入单元110传输的能量的量。例如,在一些实施例中,植入单元110可以与可以考虑与病人和/或植入物相关联的多个因素的阈能量限制相关联。例如,在一些情况下,病人的一些神经应当接收不多于预定最大数量的能量,以最小化损害神经和/或周围组织的风险。另外,植入单元110的电路180可以包括具有可以有助于植入单元110的实际阈能量限制的最大工作电压或能量水平的组件。处理器144可以被配置为在设置要被施加到主天线150的主信号的量级和/或持续时间时考虑这样的限制。除了确定可以递送给植入单元110的能量的上限之外,处理器144还可以至少部分地基于所递送的能量的功效来确定较低能量阈值。较低能量阈值可以基于使能神经调节的最小量的能量来计算(具有在较低能量阈值之上的能量水平的信号可以构成调节信号,而具有在较低能量阈值之下的能量水平的信号可以构成子调节信号)。还可以以替代的方式来测量或提供较低能量阈值。例如,植入单元110中的适当的电路或传感器可以测量较低能量阈值。较低能量阈值可以通过另外的外部设备来计算或感测,并且随后被编程到处理器144中或者编程到植入单元110中。替代地,植入单元110可以通过特别选取以在电极处产生至少较低能量阈值的信号的电路180来构成。在又一实施例中,外部单元120的天线可以被调节为容纳或产生对应于具体较低能量阈值的信号。较低能量阈值可以根据病人的不同而不同,并且可以考虑多个因素,诸如例如特定病人的神经纤维的调节特征、植入之后的植入单元110和外部单元120之间的距离以及植入单元组件的大小和配置(例如天线和植入电极)等。处理器144还可以被配置为将子调节控制信号施加于主天线150。这样的子调节控制信号可以包括导致在电极158a、158b处的子调节信号的量级和/或持续时间。虽然这样的子调节控制信号可能不会导致神经调节,但是这样的子调节控制信号可以使能进行神经系统的基于反馈的控制。即,在一些实施例中,处理器144可以被配置为将子调节控制信号施加于主天线150。该信号可以在次级天线152上引起次级信号,其反过来在主天线150上引起主耦合信号分量。为了分析在主天线150上引起的主耦合信号分量,外部单元120可以包括反馈电路148(例如,信号分析器或检测器等),其可以被置于与主天线150和处理器144的直接或间接通信。子调节控制信号可以以任何所期望的周期施加到主天线150。在一些实施例中,可以以每五秒(或更长)一次的速率将子调节控制信号施加到主天线150。在其他实施例中,可以更频率地施加子调节控制信号(例如,每两秒一次、每秒一次、每微秒一次、每纳秒一次或者每秒多次)。另外,应当注意的是,还可以在将调节控制信号施加到主天线150时接收反馈(亦即,导致神经调节的那些),因为这样的调节控制信号也可以导致在主天线150上产生主耦合信号分量。主耦合信号分量可以通过反馈电路148反馈给处理器144,并且可以被用作确定主天线150和次级天线152之间的耦合程度的基础。耦合程度可以使能确定两个天线之间的能量传输的功效。处理器144还可以在调整向植入单元110递送能量时使用所确定的耦合程度。可以通过用于确定如何基于所确定的耦合程度来调整向植入单元110的能量传输的任何适合的逻辑来配置处理器144。例如,在主耦合信号分量指示耦合程度已经从基准耦合水平改变的情况下,处理器144可以确定次级天线152相对主天线150已经移动(同轴偏移、横向偏移、或角度偏移之一、或任何组合)。例如,这样的移动可以与植入单元110的移动以及基于其植入位置与其相关联的组织相关联。因此,在这样的情况下,处理器144可以确定在病人身体中的神经的调节是适当的。更具体地,在一些实施例中,响应于指示耦合的改变,处理器144可以将调节控制信号施加到主天线150,以便在植入电极158a、158b处产生调节信号,以例如引起对病人的神经的调节。在OSA的治疗的实施例中,植入单元110的移动可以与舌头的移动相关联,该舌头的移动可以指示睡眠呼吸暂停事件或睡眠呼吸暂停先兆的发作。睡眠呼吸暂停先兆的睡眠呼吸暂停事件的发作可能需要对病人的颏舌肌的刺激以减轻或预防该事件。这样的刺激可能导致肌肉的收缩以及病人的舌头从病人的呼吸道离开的移动。在头部疼痛(包括偏头痛)的治疗的实施例中,处理器144可以被配置为例如基于来自用户的信号或者在感觉神经元(例如,枕大神经或三叉神经)中的所检测到的神经活动的级别来产生调节控制信号。由处理器产生并且被施加到主天线150的调节控制信号可以在植入电极158a、158b处产生调节信号,以例如引起对病人的感觉神经的抑制或阻滞。这样的抑制或阻滞可以减小或消除病人的痛感。在高血压的治疗的实施例中,处理器144可以被配置为基于例如被编程的指令和/或指示血压的、来自植入物的信号来产生调节控制信号。由处理器产生并且被施加到主天线150的调节控制信号可以在植入电极158a、158b处产生调节信号,以例如根据需求抑制或刺激病人的神经。例如,放置在颈内动脉或颈动脉中(亦即,在颈动脉压力感受器的附近)的神经调节器可以接收被定制为感应在电极处的刺激信号的调节控制信号,从而使与颈动脉压力感受器相关联的舌咽神经以更高的速率激发,以便向大脑发信号以降低血压。通过被植入在病人颈部中的或病人耳朵后面的皮下位置处的神经调节器可以获得对舌咽神经的类似的调节。放置在肾动脉中的神经调节器可以接收定制为引起在电极处的信号的抑制或阻滞的调节控制信号,从而抑制从肾神经携带给肾脏升高血压的信号。调节控制信号可以包括刺激控制信号,并且子调节控制信号可以包括子刺激控制信号。刺激控制信号可以具有导致在电极158a、158b处的刺激信号的任何幅度、脉冲持续时间或频率组合。在一些实施例中(例如,以约6.5-13.6MHz之间的频率),刺激控制信号可以包括大于约50微秒的脉冲持续时间和/或大至.5安培或0.5安培1安培之间或0.05安培和3安培之间的幅度。子刺激控制信号可以具有小于约500或小于约200纳秒的脉冲持续时间和/或小于约1安培、0.5安培、0.1安培、0.05安培或0.01安培的幅度。当然,这些值只是为了提供一般性的参考,因为高于或低于所提供的示例性指南的值的各种组合可能会或可能不会导致神经刺激。在一些实施例中,刺激控制信号可以包括脉冲系列,其中每个脉冲包括多个子脉冲。可以使用(例如,以约6.5-13.6MHz之间的频率的)交流信号来产生脉冲系列,如以下那样。子脉冲可以具有50-250微秒之间持续时间或1微秒和2毫秒之间的持续时间,在此期间接通交流信号。例如,10MHz交流信号的200微秒子脉冲将包括大约2000个时间段。反过来,每个脉冲可以具有100和500毫秒之间的持续时间,在此期间,子脉冲以20和100Hz之间的频率出现。例如,50Hz子脉冲的200毫秒脉冲将包括大约10个子脉冲。最后,在脉冲系列中,每个脉冲可以按照0.2和2秒之间的持续时间与下一个分开。例如,在200毫秒脉冲的脉冲系列中(每个按照1.3秒与下一个分开),每1.5秒将出现新的脉冲。例如,可以利用该实施例的脉冲系列来提供在疗程期间的持续刺激。在OSA的背景下,疗程可以是受试者睡眠并且需要治疗以防止OSA的期间的时间段。这样的疗程可以持续从约三个小时至十个小时之间的任何时间。在应用本公开的神经调节器的其他状况的背景下,根据被治疗的状况的持续时间,疗程可以不同。处理器144可以被配置为通过监视通过反馈电路148接收的主耦合信号分量的一个或多个方面来确定主天线150和次给天线152之间的耦合程度。在一些实施例中,处理器144可以通过监视与主耦合信号分量、电流水平或者可能取决于主天线150和次级天线152之间的耦合程度的任何其他属性来确定主天线150和次级天线152之间的耦合程度。例如,响应于施加到主天线150的周期性的子调节信号,处理器144可以确定与主耦合信号分量相关联的基准电压水平或电流水平。该基准电压水平例如可以与未出现睡眠呼吸暂停事件或其先兆时(例如,在正常呼吸期间)病人的舌头的移动范围相关联。在病人的舌头朝向与睡眠呼吸暂停事件或其先兆相关联的位置移动时,主天线150和次级天线152之间的同轴、横向或角度偏移可以改变。因此,主天线150和次级天线152之间的耦合程度可以改变,并且在主天线150上的主耦合信号的电压水平或电流水平也可以改变。处理器144可以被配置为在电压水平、电流水平或与主耦合信号分量相关联的其他电特征改变预定量或达到预定绝对值时识别睡眠呼吸暂停事件或其先兆。图7提供更详细地图示该原理的图表。对于其中一个线圈接收射频(RF)驱动信号的两线圈系统,图表200将在接收线圈中的感应电流的改变速率绘制为线圈之间的同轴距离的函数。对于各种线圈直径以及初始的位移,图表200图示感应电流对线圈之间的进一步位移(将它们移动地更靠近在一起或更加分开)的灵敏度。其还在总体上指示在次级线圈中的感应电流将随着将次级线圈移动离开主驱动线圈而减小,亦即以mA/mm为单位的感应电流的改变的速率总是负的。感应电流对线圈之间的进一步位移随着距离而变化。例如,在10mm的分开距离处,作为14mm的额外位移的函数的、电流的改变速率为大约-6mA/mm。如果线圈的位移为大约22mm,则响应额外位移的感应电流的改变速率为大约-11mA/mm,其对应于感应电流的改变速率的局部最大值。增加分开距离超出22mm继续导致次级线圈中的感应电流的下降,但是改变速率减小。例如,在约30mm的分开距离处,14mm线圈响应于额外位移而经历约-8mA/mm的感应电流的改变速率。通过这种类型的信息,处理器144可以能够在任何给定的时间通过观察与主天线150上的与主耦合信号分量相关联的电流的量级和/或量级的速率来确定主天线150和次级天线152之间的具体的耦合程度。处理器144可以被配置为通过监视主耦合信号分量的其他方面来确定主天线150和次级天线152之间的耦合程度。例如,在一些实施例中,可以监视植入单元110中的电路180的非线性行为,以确定耦合程度。例如,在主天线150上的主耦合信号分量中的谐波分量的存在、不存在、量级、降低和/或发作可以响应于各种控制信号(子调节或调节控制信号)来影响电路180的行为,并且因此可以被用于确定主天线150和次级天线152之间的耦合程度。如图6所示,例如由于诸如二极管156这样的非线性电路组件的存在,所以植入单元110中的电路180可以构成非线性电路。这样的非线性电路组件在一定工作条件下可以引起非线性电压响应。在跨越二极管156的电压电势超过二极管156的活动阈值时可以引发非线性工作条件。因此,在以特定频率激发植入电路180时,该电路可以以多个频率振荡。因此,对次级天线152上的次级信号的频谱分析可以显露以激发频率的一定倍数出现的一个或多个振荡(称为谐波)。通过主天线150和次级天线152的耦合,由植入电路180生成并且出现在次级天线152上的任何谐波还可以出现在存在于主天线150上的主耦合信号分量中。在一些实施例中,电路180可以包括改变电路180中所产生的谐波的特征到一定过渡点以上的另外的电路组件。监视这些非线性谐波在过渡点之上和之下如何行为可以使能主天线150和次级天线152之间的耦合程度的确定。例如,如图6所示,电路180可以包括谐波修改器电路154,其可以包括非线性地改变在电路180中产生的谐波的任何电子组件。在一些实施例中,谐波修改器电路154可以包括一对齐纳二极管。在一特定电压水平之下,这些齐纳二极管保持正向偏置,以使得没有电流将流入任一二极管。然而,在齐纳二极管的击穿电压之上,这些器件在反向偏置方向上变成导通,并将允许电流流入谐波修改器电路154。一旦齐纳二极管变成导通的,它们就开始影响电路180的振荡行为,并且因此可以影响(例如,在量级上减小)一定的谐波振荡频率。图8和9图示该效果。例如,图8图示示出了以范围从约10纳安到约20微安的若干幅度的电路180的振荡行为的图标300a。如所示那样,主激发频率出现在约6.7MHz处,并且谐波出现在主激发频率的偶数和奇数倍处。例如,偶数倍出现在激发频率的两倍(峰302a)、激发频率的四倍(峰304a)以及激发频率的六倍(峰306a)处。随着激发信号的幅度上升到10纳安和40微安之间,峰302a、304a和306a的幅度全部增加。图9图示由谐波修改器电路154造成的电路180的偶次谐波响应的效果。图9图示了示出在范围从约30微安到约100微安的若干幅度的电路180的振荡行为的图标300b。如在图8中那样,图9示出在约6.7MHz处的主激发频率以及出现在激发频率的偶数倍处的二、四和六阶谐波(分别地,峰302b、304b和306b)。然而,随着激发信号的幅度上升,在约30微安至约100微安之间,峰302b、304b和306b的幅度不连续地增加。相反地,二次谐波的幅度快速地减小至一特定过渡水平(例如,图8中的约80微安)之上。该过渡水平对应于齐纳二极管在反向偏置方向上变成导通的并且开始影响电路180的振荡行为的水平。监视发生该过渡的电平可以使能确定主天线150和次级天线152之间的耦合程度的确定。例如,在一些实施例中,病人可以在下面存在植入单元的皮肤的区域之上附着外部单元120。处理器144可以处理以将一系列的子调节控制信号施加到主天线150,反过来在次级天线152上引起次级信号。这些子调节控制信号可以在挥扫或扫描各种信号幅度电平上进展。通过监视在主天线150上得到的主耦合信号分量(通过与在次级天线152上的次级天线进行耦合产生),处理器144可以确定导致激活谐波修改器电路154的足够量级的级次信号的主信号的量级(无论是子调节信号还是其他信号)。即,处理器144可以监视二、四或六阶谐波,并且确定任何偶次谐波的幅度在其下降的主信号的幅度。图8和9图示通过检测非线性谐波来检测耦合的原理。这些图图示根据约6.7MHz激发频率的数据。然而,这些原理不限于所示的6.7MHz激发频率,并且可以与任何适合频率的主信号一起使用。在一些实施例中,对应于齐纳二极管的过渡电平的主信号的所确定的幅度(可以被称为主信号过渡幅度)可以在病人将外部单元120附着到皮肤时建立基准范围。据推测,在病人醒着时,舌头不阻滞病人的呼吸道,并且随着病人在正常范围内呼吸而移动,此时主天线150和次级天线152之间的耦合可以在基准范围内。基准耦合范围可以包含主天线150和次级天线152之间的最大耦合。基准耦合范围还可以包含不包括主天线150和次级天线152之间的最大耦合水平的范围。因此,最初确定的主信号过渡幅度完全可以表示非睡眠呼吸暂停状况,并且可以被处理器144用作在确定主天线150和次级天线152之间的耦合程度时的基准。可选地,处理器144还可以被配置为通过一系列的扫描来监视主信号过渡幅度,并且选择最大值作为基准,因为最小值可以对应于在正常呼吸状况期间主天线150和次级天线152之间的最大耦合的状况。在病人佩戴外部单元120时,处理器144可以周期性地扫描主信号幅度的范围以确定主信号过渡幅度的当前帧。在一些实施例中,处理器144为扫描而选择幅度的范围可以基于基准主信号过渡幅度的电平(例如,在其附近)。如果周期性扫描导致确定不同于基准主信号过度幅度的主信号过度幅度,则处理器144可以确定已经从基准初始状况发生了改变。例如,在一些实施例中,在基准值之上的主信号过渡幅度的增加可以指示主天线150和次线天线152之间的耦合程度降低了(例如,因为移动了植入物或者改变了植入物的初始状态)。除了确定是否出现了耦合程度的改变之外,处理器144还可以被配置为基于所观察到的主信号过渡幅度来确定具体耦合程度。例如,在一些实施例中,处理器144可以访问存储使各种主信号过渡幅度与主天线150和次级天线152之间距离(或者指示耦合程度的任何其他量)相关的查找表或存储器。在其他实施例中,处理器144可以被配置为基于已知的电路组件的性能特性来计算耦合程度。通过周期性地确定耦合程度值,处理器144可以被配置为就地确定将最终导致神经调节的调节控制信号的适当的参数值。例如,通过确定主天线150和次级天线152之间的耦合程度,处理器144可以被配置为选择调节控制信号的特征(例如,幅度、脉冲持续时间、频率等),该调节控制信号可以与所确定耦合程度成比例或有关地在电极158a、158b处提供调节信号。在一些实施例中,处理器144可以访问查找表或者在使调节控制信号参数值与耦合程度相关的在存储器中存储的其他数据。由此,处理器144可以响应所观察到的耦合程度来调节所施加的调节控制信号。另外地或者替代地,处理器144可以被配置为确定调节期间的主天线150和次级天线152之间的耦合程度。作为调节的结果,舌头或者位于植入物之上或附近的其他结构以及植入单元110可以移动。因此,耦合程度可以在调节期间改变。处理器144可以被配置为在耦合程度在调节期间改变时确定耦合程度,以便根据改变耦合程度而动态地调节调节控制信号的特性。该调节可以允许处理器144使植入单元110在调节事件期间在电极158a、158b处提供适当的调节信号。例如,处理器144还根据改变耦合程度来改变主信号,以便维持恒定的调节信号,或者根据病人需要以受控的方式使调节信号降低。更具体地,可以将处理器144的响应与所确定的耦合程度相关。在处理器144确定主天线150和次级天线之间的耦合程度已经降落到仅仅稍微在预定的耦合阈值以下(例如,在打鼾期间或者在舌头的小震动或其他睡眠呼吸暂停事件先兆期间)的情况下,处理器144可以确定只需要小的响应。因此,处理器144可以选择将导致相对较小的响应(例如,神经的短时刺激、小的肌肉缩)的调节控制信号参数。然而,在处理器144确定耦合程度实质降到预定耦合阈值以下的情况下(例如,舌头已经足以造成睡眠呼吸暂停事件地移动),处理器144可以确定需要更大的响应。因此,处理器144可以选择将导致更大响应的调节信号参数。在一些实施例中,可以将刚好足够的能量传送给植入单元110以引起所期望的级别的响应。换言之,处理器144可以被配置为基于主天线150和次级天线152之间的耦合程度来引起经计量的响应。随着所确定的耦合程度下降,处理器144可以以增加的量进行能量的传输。这样的方法可以保留外部单元120中的电池寿命,可以保护电路170和电路180,可以增加确定所检测到的状况的类型(例如,睡眠呼吸暂停、打鼾、舌头移动等)的效率,并且可以使病人更舒适。在一些实施例中,处理器144可以采用迭代式处理,以便选择导致所期望的响应级别的调节控制信号参数。例如,在确定应当产生调节控制信号时,处理器144可以基于一组预定的参数值来产生初始调节控制信号。如果来自反馈电路148的反馈指示神经已经被调节(例如,如果观察到耦合程度增加),则处理器144可以通过发出子调节控制信号来返回到监视模式。另一方面,如果反馈建议作为想要的调节信号的结果的想要的神经调节未发生或者神经调节发生了但是只部分地提供了所期望的结果(例如,舌头仅部分地移动离开呼吸道),则处理器144可以改变与调节控制信号相关联的一个或多个参数值(例如,幅度、脉冲持续时间等)。在未发生神经调节的情况下,处理器144可以周期性地增加调节控制信号的一个或多个参数,直至反馈指示发生了神经调节为止。在发生了神经调节但是未生成所期望的结果的情况下,处理器144可以重新评估主天线150和次级天线152之间的耦合程度,并且选择用于针对获得所期望的结果的调节控制信号的新的参数。例如,在神经的刺激使舌头只部分地移动离开病人的呼吸道的情况下,可能期望额外的刺激。然而,因为舌头已经从呼吸道移动开,所以植入单元110可能更接近于外部单元120,因此耦合响度可能已经增加。因此,为了将舌头移动剩余的距离到所期望位置处,可以要求向植入单元110传输比在舌头的最后的刺激感应的移动之前供应的电量更小的电量。因此,基于新确定的耦合程度,处理器144可以选择用于针对将舌头移动到所期望位置的剩余距离的刺激控制信号的新的参数。在一种工作模式下,处理器144可以被配置为历遍参数值的范围,直至实现神经调节为止。例如,在所施加的子调节控制信号导致指示神经调节是适当的反馈的情况下,处理器144可以使用最后施加的子调节控制信号作为产生调节控制信号的开始点。可以按照预定的量并且以预定的速率迭代式地增加与被施加到主天线150的信号相关联的幅度和/或脉冲持续时间(或者其他参数),直至反馈指示发生了神经调节为止。处理器144可以被配置为基于主天线150和次线天线152之间的预定的耦合程度来确定或得出各种生理数据。例如,在一些实施例中,耦合程度可以指示外部单元120和植入单元110之间的距离,处理器144可以用其来确定外部单元120的位置或病人舌头的相对位置。监视耦合程度还可以提供这样的生理数据:病人的舌头是正在移动还是正在振动(例如,病人是否正在打鼾)、病人的舌头正在移动或振动的程度、舌头的运动方向、舌头的运动速率等。响应于这些所确定的生理数据中的任何一种,处理器144可以基于所确定的生理数据来调节向植入单元110的能量的递送。例如,处理器144可以选择用于解决与所确定的生理数据有关的具体状况的特定调节控制信号或调节控制信号系列的参数。例如,如果生理数据指示舌头正在振动,则处理器144可确定有可能发生睡眠呼吸暂停事件,并且通过以被选择以解决该特定情况的量向植入单元110递送能量来发出响应。如果舌头处于阻滞病人的呼吸道(或者部分地阻滞病人的呼吸道)的位置处,但是生理数据指示舌头正在远离呼吸道,则处理器144可以选择不递送能量并且等待确定舌头是否通过其自身消除。替代地,处理器144可以向植入单元110递送少量能量(例如,特别是在所确定的移动速率指示舌头正在慢慢地移动离开病人的呼吸道的情况下)以鼓励舌头继续移动离开病人的呼吸道,或者加速其离开呼吸道的进度。所描述的场景只是示例性的,处理器144可以用使其能够解决具有特殊性的各种不同的生理场景的软件和/或逻辑来配置。在每种情况下,处理器144可以被配置为使用生理数据来确定要递给植入单元110的电量以便用适当量的能量来调节与舌头相关联的神经。结合用于调节向植入单元的能量的递送的方法来使用所公开的实施例。该方法可以包括确定与外部单元120相关联的主天线150和被植入在病人的身体中的与植入单元110相关联的次级天线152之间的耦合程度。可以通过位于植入单元110外部并且可以与外部单元120相关联的处理器144来完成确定耦合程度。处理器144可以被配置为基于所确定的耦合程度来调节从外部单元向植入单元的能量的递送。如先前所述,耦合程度确定可以使处理器能够进一步地确定植入单元的位置。植入单元的运动可以对应于可以附着植入单元的身体部分的运动。这可以是处理器所接收的所考虑的生理数据。相应地,处理器可以被配置为基于该生理数据来调节从电源向植入单元的能量的递送。在替代的实施例中,耦合程度确定可以使处理器能够确定属于植入单元的状况的信息。这样的状况可以包括属于植入单元的内部状态的位置以及信息。可以根据植入单元的状况将处理器配置为基于状况数据来调节从电源向植入单元的能量的递送。根据考虑说明书以及实践本公开,本公开的其他实施例对于本领域技术人员是显而易见的。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1