用于治疗乳糜泻的组合物和方法与流程

文档序号:14967870发布日期:2018-07-20 16:36阅读:689来源:国知局

技术领域

本发明涉及用于治疗和诊断对谷蛋白(gluten)敏感的受试者(尤其是患有乳糜泻的受试者)的组合物和方法,以及其中使用的测定和试剂盒。



背景技术:

乳糜泻(celiac disease),又称为腹部疾病(coeliac disease)或口炎性腹泻(celiac sprue,coeliac sprue),影响约1%的欧洲和北美人群。很多患病人群并没有意识到患有乳糜泻,但是这种临床上的疏漏正被更高的临床警惕性所纠正。当前对乳糜泻唯一的治疗是无谷蛋白饮食,而因为常规摄入少至50mg的谷蛋白(相当于一块标准的面包片的1/100)即可损伤小肠,因此无谷蛋白饮食受试者常出现小肠的慢性炎症。持久的小肠炎症被证明增加癌症、骨质疏松和死亡的风险。因为谷蛋白的使用非常广泛,例如,在市售的汤、酱汁、冰激凌等之中,所以很难保持无谷蛋白饮食。

乳糜泻发生于遗传易感的个体中,这些个体具有HLA-DQA1*05和HLA-DQB1*02编码的HLA-DQ2(HLA-DQ2的变体)(占约90%的个体),或者HLA-DQ8。这样的个体对来源于小麦粉的水不溶性蛋白质(谷蛋白)和黑麦与大麦中相关蛋白的肽产生HLA-DQ2和/或DQ8限制性CD4+T细胞介导的不适当的免疫应答。

在乳糜泻中,所有的谷蛋白类蛋白质都被认为是有毒性的。2006年,NCBI的公开数据库Genbank中包括345条来自普通小麦(Triticum aestivum)、大麦(Hordein vulgare)和黑麦(Secale cerale)的谷蛋白类蛋白质。

根据对肠T细胞克隆已知表位的同源物的检索、或对预测或已证明为体外结合HLA-DQ2的谷蛋白序列的检索,已经采用预测性方法登记分类了几百种的不同的推测为“有毒”的谷蛋白肽,其具有适合被组织转谷氨酰胺酶(tTG)脱酰胺的基序和/或抵抗蛋白水解的序列。

权威的综述报道了在与乳糜泻相关的谷蛋白中有50个左右的“免疫优势”T细胞表位。然而,针对大麦醇溶蛋白或大麦产生的T细胞尚未被研究,而源自高分子量(HMW)麦谷蛋白的HLA-DQ2限制性T细胞表位尚未被定义。

尽管乳糜泻所牵涉的谷蛋白肽为数众多,但具有蛋白酶抗性的α-麦醇溶蛋白(α-gliadin)的33mer LQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF(SEQ ID NO:1;α2-麦醇溶蛋白56-88位)被tTG脱酰胺得到的:LQLQPFPQPELPYPQPELPYPQPELPYPQPQPF(SEQ ID NO:2)被广泛认为是HLA-DQ2相关性乳糜泻的最佳刺激肽(用于针对经蛋白酶消化的谷蛋白产生的肠T细胞系)。SEQ ID NO:1和本公开内容全文中Q残基的下划线表示这样的谷氨酰胺残基,其适于被tTG催化而脱酰胺,或与预测对tTG脱酰胺(即,Q→E)敏感的氨基酸基序相一致。

该α-麦醇溶蛋白的33mer(SEQ ID NO:1;α2-麦醇溶蛋白56-88位)回收自重组α2-麦醇溶蛋白的消化物,其中包含多个重叠的先前用肠T细胞克隆和细胞系鉴定出的表位,也包括用来自患有HLA-DQ2+乳糜泻的供体在体内谷蛋白攻击后的新鲜外周血T细胞鉴定的表位。这些表位包括DQ2-α-I:PFPQPELPY(SEQ ID NO:3);DQ2-α-II:PQPELPYPQ(SEQ ID NO:4)和DQ2-α-III:PYPQPELPY(SEQ ID NO:5)。事实上,HLA-DQ2+乳糜泻患者的体内谷蛋白攻击诱导了外周血CD4+T细胞,这些CD4+T细胞对α-麦醇溶蛋白序列中的单个11mer序列(p60-70PFPQPQLPYPQ(SEQ ID NO:6))具有特异性,该序列在N端和C端侧翼均含有另外3个残基时(α-麦醇溶蛋白p57-73QLQPFPQPQLPYPQPQS(SEQ ID NO:7))以及被tTG脱酰胺或Q65被谷氨酸替换时(α-麦醇溶蛋白p57-73 QE65QLQPFPQPELPYPQPQS(SEQ ID NO:8),其包含DQ2-α-I(SEQ ID NO:3)和DQ2-α-II(SEQ ID NO:4)),生物活性最高。然而,存在数百种小麦、黑麦和大麦的谷蛋白类蛋白质,而DQ2-α-I、DQ2-α-II和DQ2-α-III表位加在一起一般也只能解释HLA-DQ2+乳糜泻中的谷蛋白毒性T细胞刺激特性的不超过一半。与乳糜泻相关的其他表位已在WO 01/25793、WO 03/104273和WO 05/105129中公开。

尽管尚未针对大麦醇溶蛋白或黑麦醇溶蛋白(与小麦谷蛋白密切相关的蛋白)产生T细胞,但黑麦和大麦的毒性被归因于对小麦谷蛋白表位具有特异性的T细胞,所述表位尤其是DQ2-α-I(SEQ ID NO:3)或DQ2-α-II(SEQ ID NO:4),它们分别与被tTG脱酰胺的相关大麦醇溶蛋白或黑麦醇溶蛋白序列交叉反应,尤其是与脱酰胺为Hα9/Sα9PFPQPEQPF(SEQ ID NO:10;DQ2-ω-I)的PFPQPQQPF(SEQ ID NO:9)或脱酰胺为Hα2/Sα2PQPEQPFPQ(SEQ ID NO:12)的PQPQQPFPQ(SEQ ID NO:11)交叉反应。

本领域的权威们之间在乳糜泻中诱导T细胞刺激的特定肽的优势、等级(hierarchy)和冗余度方面的观点不一致。

关于特定肽对谷蛋白T细胞刺激能力的一致性和相对贡献方面的理解有其应用。假如它们一致地构成谷蛋白T细胞应答的一大部分,则优势的T细胞刺激肽可能单独地或共同地使得抗原特异性治疗和诊断的开发成为可能。

原则上,抗原特异性治疗是治疗自身免疫病和变应性疾病的有吸引力的策略。基于完整蛋白的脱敏方法对于人类变应性疾病有效,并且对治疗和预防实验动物模型中的自身免疫和同种异体移植排异也有效。然而,基于蛋白的抗原特异性治疗的更广泛应用受限于小但却公认的过敏反应风险,因为相关抗原可能不适于作为药物或简单地因为未被足够详细地了解而无法进行药物开发。

过敏反应的风险可被最小化,制剂的问题通过使用短的、线性的、水溶性的肽(包括来自被致病性CD4+T细胞所识别的疾病相关抗原的序列)而得以解决。基于肽的治疗性疫苗在自身免疫和同种异体移植排异的近交小鼠模型中有效,其中已定义了相关的免疫优势表位及其对应的CD4+T细胞。然而,即便是强HLA相关性的人类免疫疾病,可信程度足以支持推理性药物设计和药物开发的致病性CD4+T细胞表位鉴定仍然很有限。

在很多情况下,这种不确定性是由于患者中报道的T细胞应答处于检出限水平这一事实,一般依赖于体外扩增,可能为初始(primary)或记忆(recall)T细胞应答,而且也经常在健康的HLA匹配个体中发现。这些技术挑战导致了折中方案,治疗性疫苗的肽选择通常是基于对疾病相关HLA分子的体外结合亲和力来确定,而不是基于对作为免疫优势致病性T细胞的表位的明确定义。进一步的结果是这种方式的基于肽的化合物设计通常包括扩大的肽混合物。可以预计的是,混合物范围越大,在制备制剂、稳定性和不良作用方面的困难就越大,但对混合物中的肽具有特异性的T细胞也更可能持久地对患者中的致病性T细胞应答有显著贡献。

考虑到毒性谷蛋白肽的巨大数量,本发明人寻求鉴定最佳的非冗余免疫优势(immunodominant)肽组,从中可以选取最少的混合物用于能够调节个体对谷蛋白之免疫应答的基于肽的免疫治疗中。本发明人寻求鉴定可通过特异性调节对谷蛋白的致病性T细胞应答而用于治疗乳糜泻的免疫优势肽,并因此提供有效对抗乳糜泻的疫苗。同样的肽混合物也可用于乳糜泻的诊断和对免疫调节治疗的监测。



技术实现要素:

本发明人鉴定了三种优势T细胞刺激肽,它们一起可被用作免疫治疗剂或疫苗来调节T细胞对三种或更多谷蛋白肽之应答,并提供对谷蛋白的耐受,从而治疗乳糜泻。据此,本发明的一个方面,提供了一种制剂,其包含

i)第一肽,其包含氨基酸序列LQPFPQPELPYPQPQ(SEQ ID NO:13)或其生物活性片段或变体,

ii)第二肽,其包含氨基酸序列QPFPQPEQPFPWQP(SEQ ID NO:14)或其生物活性片段或变体,和

iii)第三肽,其包含氨基酸序列PEQPIPEQPQPYPQQ(SEQ ID NO:16)或其生物活性片段或变体。

SEQ ID NO:13(LQPFPQPELPYPQPQ)包含两个重叠表位,PFPQPELPY(SEQ ID NO:3)和PQPELPYPQ(SEQ ID NO:4),SEQ ID NO:14(QPFPQPEQPFPWQP)包含两个重叠表位,PFPQPEQPF(SEQ ID NO:10)和PQPEQPFPW(SEQ ID NO:15;DQ2-ω-II),而SEQ ID NO:16PEQPIPEQPQPYPQQ包含表位PIPEQPQPY(SEQ ID NO:17;DQ2-Hor-I)并且也包括与QQPIPEQPQ(SEQ ID NO:19)可相互替换的预测的表位EQPIPEQPQ(SEQ ID NO:18)。

在一个实施方案中,第一、第二和/或第三肽包含N端乙酰基或焦谷氨酸基和/或C端酰胺基。更优选地,第一、第二和/或第三肽包含N端焦谷氨酸基和C端酰胺基。

在另一个实施方案中,第一、第二和/或第三肽缀合到化合物上。合适的化合物的例子包括但不限于佐剂和MHC分子或其结合片段。

在一个优选的实施方案中,每个肽作为单独的分子提供。然而,在另一个实施方案中,第一、第二和第三肽中的两种或三种或其中一种或多种的生物活性片段或变体在单个多肽链上。

在另一个实施方案中,所述制剂包含一种或更多种额外的肽,其包含选自以下的氨基酸序列:SEQ ID NO:47、48、56、57、58、59、60、61、62、63、64、65、66、67、68、75、76、77、78、79、80、81、89、90、91、92、95、102、103、104、116、117、118、119、120、121、122、123、124、125、126、127、128、129、130、131、132、133、136、169、170、171、172、173、174、177、178、179、180、183、184、187、188、189、190、191、192、209、210或其中任何一种或多种的生物活性片段或变体。

所述额外的肽允许实现更广泛的有效治疗组和更宽的治疗与诊断。尤其地,额外肽的使用可增加制剂消除应答于谷蛋白摄入而引起的炎症和损伤的可能性,并使得乳糜泻患者能够正常饮食。此外,当该制剂被用于诊断时,具有更多的靶标是有优势的,这通过提供更多的肽来实现,所述肽可以是来自下表的脱酰胺的或野生型的肽:SEQ ID NO:47、48、56、57、58、59、60、61、62、63、64、65、66、67、68、75、76、77、78、79、80、81、89、90、91、92、95、102、103、104、116、117、118、119、120、121、122、123、124、125、126、127、128、129、130、131、132、133、136、169、170、171、172、173、174、177、178、179、180、183、184、187、188、189、190、191、192、209、210。

另一方面,本发明提供包含一种或多种多核苷酸的制剂,所述多核苷酸编码:

i)第一肽,其包含氨基酸序列LQPFPQPELPYPQPQ(SEQ ID NO:13),或其生物活性片段或变体,

ii)第二肽,其包含氨基酸序列QPFPQPEQPFPWQP(SEQ ID NO:14),或其生物活性片段或变体,

iii)第三肽,其包含氨基酸序列PEQPIPEQPQPYPQQ(SEQ ID NO:16),或其生物活性片段或变体,和

iv)任选的一种或多种额外的肽,其包含选自以下的氨基酸序列:SEQ ID NO:47、48、56、57、58、59、60、61、62、63、64、65、66、67、68、75、76、77、78、79、80、81、89、90、91、92、95、102、103、104、116、117、118、119、120、121、122、123、124、125、126、127、128、129、130、131、132、133、136、169、170、171、172、173、174、177、178、179、180、183、184、187、188、189、190、191、192、209、210或其中任何一种或多种的生物活性片段或变体。

一种或多种肽或其生物活性片段或变体可由一种或多种多核苷酸编码。因此,所述一种或多种肽或其生物活性片段或变体中至少有一些可作为单个多肽链由单个多核苷酸转录和翻译得到。

该制剂也可为肽和多核苷酸的混合物。因此,本发明的另一方面提供一种制剂,其包含

i)本文定义的第一肽或其多核苷酸,

ii)本文定义的第二肽或其多核苷酸,和

iii)本文定义的第三肽或其多核苷酸。本领域技术人员可以理解,所述肽中的一种或多种可为所定义肽序列的生物活性片段或变体。

另一方面,本发明提供基本纯化的和/或重组的肽,其包含SEQ ID NO:16、69、73、75、78、80、87、91、92、95、96、98、100、104、107、113、116、117、123、138、144、147、149、153、155、156、159、161、163、165、179、181、185、187、189、195、196、198、202、204、205、207、209、215或223中任何一种或多种所示氨基酸序列或其中任何一种或多种的生物活性片段或变体,更优选地,由所述序列组成。在本方面的应该优选的实施方案中,所述肽为19个氨基酸或更短的长度。

在上述方面的另一个优选实施方案中,所述肽包含氨基酸序列PEQPIPEQPQPYPQQ(SEQ ID NO:16),或其生物活性片段或变体。

在另一方面中提供了编码至少一种本发明肽的分离的和/或外源性的多核苷酸。

在另一方面中提供了疫苗,其包含本发明的制剂、本发明的肽和/或本发明的多核苷酸,以及可药用载体。

在一个实施方案中,所述疫苗包含佐剂。

另一方面中提供了分离的抗原呈递细胞,其包含本发明的制剂、本发明的肽和/或本发明的多核苷酸。可用于本发明的抗原呈递细胞的实例包括但不限于树突细胞、巨噬细胞、B-淋巴细胞或肝窦内皮细胞(liver sinusoidal endothelial cell)。在一个优选的实施方案中,抗原呈递细胞为树突细胞。

在一方面中,提供了在对谷蛋白敏感的受试者中调节对谷蛋白肽的T细胞应答的方法,该方法包括给受试者施用有效量的本发明制剂、本发明的肽、本发明的多核苷酸、本发明的疫苗和/或本发明的抗原呈递细胞。

在另一方面中,提供了在对谷蛋白敏感的受试者中诱导对谷蛋白肽的免疫耐受的方法,该方法包括给受试者施用有效量的本发明的制剂、本发明的肽、本发明的多核苷酸、本发明的疫苗和/或本发明的抗原呈递细胞。

在另一方面中,提供了一种治疗乳糜泻的方法,该方法包括给受试者施用有效量的本发明的制剂、本发明的肽、本发明的多核苷酸、本发明的疫苗和/或本发明的抗原呈递细胞。

在另一方面中,提供了一种在对谷蛋白敏感的受试者中调节细胞因子分泌的方法,该方法包括给受试者施用有效量的本发明的制剂、本发明的肽、本发明的多核苷酸、本发明的疫苗和/或本发明的抗原呈递细胞。

在一个实施方案中,白细胞介素-2(IL-2)、干扰素γ(IFNγ)和/或肿瘤坏死因子α(TNFα)的分泌减少。在另一实施方案中,白细胞介素-10(IL-10)的分泌增加。

也提供了本发明的制剂、本发明的肽、本发明的多核苷酸、本发明的疫苗和/或本发明的抗原呈递细胞用于生产在对谷蛋白敏感的受试者中调节T细胞应答、诱导免疫耐受、治疗乳糜泻和/或调节细胞因子分泌的药物的用途。

在另一方面中,本发明提供了在受试者中诊断乳糜泻的方法,该方法包括将来自受试者的样品与本发明的制剂、本发明的肽和/或本发明的疫苗相接触,并体外测定一种或多种本文定义的肽是否结合样品中的T细胞,其中一种或多种所述肽与T细胞的结合表明该受试者患有或易感于乳糜泻。

也提供了将上述诊断方法用于监控乳糜泻进展状况和/或测定方法的效力,所述方法包括给对谷蛋白敏感的受试者施用有效量的本发明的制剂、本发明的肽、本发明的疫苗的多核苷酸和/或本发明的抗原呈递细胞。

在另一方面中,本发明提供了实现上述诊断方法的试剂盒,该试剂盒包含本发明的制剂、本发明的肽和/或本发明的疫苗,以及检测一种或多种所述肽与T细胞之结合的装置。该试剂盒还可包含使用说明。该试剂盒也可包含检测T细胞对该制剂之识别的手段。

在另一方面中,本发明提供了生产本发明的抗原呈递细胞的方法,该方法包括

i)获得抗原呈递细胞,和

ii)将该细胞与本发明的制剂、本发明的肽、本发明的多核苷酸和/或本发明的疫苗在体外接触。

也提供了本发明的制剂、本发明的肽、本发明的多核苷酸、本发明的疫苗和/或本发明的抗原呈递细胞在诊断或治疗中的应用。

在另一方面,本发明提供了制造本发明疫苗的方法,该方法包括将第一、第二和第三肽以及任选的一种或多种额外肽与可药用载体和任选的佐剂相组合,所述额外肽选自SEQ ID NO:47、48、56、57、58、59、60、61、62、63、64、65、66、67、68、75、76、77、78、79、80、81、89、90、91、92、95、102、103、104、116、117、118、119、120、121、122、123、124、125、126、127、128、129、130、131、132、133、136、169、170、171、172、173、174、177、178、179、180、183、184、187、188、189、190、191、192、209、210或其中任何一种或多种的生物活性片段或其变体。

在另一方面,本发明提供一种测定组合物或食品是否能够引起乳糜泻的方法,该方法包括检测本发明的制剂、本发明的肽和/或本发明的多核苷酸在所述组合物或食品样品中的存在情况。

在另一方面,本发明提供一种鉴定能切割本文所定义肽的蛋白酶的方法,该方法包括在能够特异性地切割该肽从而产生蛋白水解产物的条件下将所述肽与蛋白酶相接触,并检测所产生的蛋白水解产物。

在另一方面,提供了提高肽在施用于受试者时的半衰期和/或生物利用度的方法,该方法包括修饰肽的N端使其包括N端乙酰基或焦谷氨酸基,并修饰肽的C端使其包括C端酰胺基。

在一个实施方案中,该肽用于施用给受试者以诱导免疫耐受。

很明显,本发明一方面的优选特征和特性也适用于本发明的很多其他的方面。

在本说明书全篇中,词语“包括”或其变体如“包含”或“含有”应理解为指包括所述的要素、整体或步骤,或要素、整体或步骤的组,但不排除任何其他的要素、整体或步骤,或要素、整体或步骤的组。

下文通过以下非限制性的实施例并参照附图来描述本发明。

附图说明

图1:显示了在外周血单个核细胞(PBMC)中通过IFNγ ELISpot法检测的对α-麦醇溶蛋白57-73和α-麦醇溶蛋白57-73 QE65(分别为SEQ ID NO:7和8)多态性的谷蛋白肽特异性T细胞的相对频率,所述PBMC收集自HLA-DQ2+乳糜泻供体开始小麦攻击后第六天。

图2:显示了外周血T细胞对多种T细胞表位(SEQ ID NO:2、46、31、33、35、37、39、41、43和44)的IFNγ ELISpot应答。

图3:显示了在HLA-DQ2+乳糜泻供体开始被小麦、黑麦或大麦攻击后第6天收集的PBMC中,用IFNγ ELISpot法检测的谷蛋白肽特异性T细胞的频率,显示出明显的应答序位(hierarchy)。

图4:显示了应答于高度一致的谷蛋白应答序位的小麦攻击后血液中的T细胞。

图5:显示了免疫优势的ω-麦醇溶蛋白肽PQQPQQPQQPFPQPQQPFPWQP(SEQ ID NO:52)的精细作图。

图6:显示了综合肽文库中肽的清晰序位。

图7:显示了证实为T细胞刺激肽的肽的序列,其序位、优势性以及在小麦、大麦或黑麦谷蛋白攻击后,针对活性最高的肽产生的T细胞克隆的识别。

图8:显示了根据乳糜泻供体是否被小麦、大麦或黑麦攻击而有所不同的T细胞刺激肽的序位。

图9:显示优势T细胞刺激性谷蛋白肽的某些混合物在用含有谷蛋白的谷物进行体内攻击后在收集的血液中活化了显著更多的T细胞。

图10:展示了后腿皮下施用之后,NPL001(SEQ ID NO:228)、NPL002(SEQ ID NO:229)和NPL003(SEQ ID NO:230)的组合(NexVax2)活化了肠(肠系膜淋巴结,MLN)以及脾和局部引流腘淋巴结(popliteal lymph node,PLN)中的NPL001(SEQ ID NO:228)特异性T细胞。尽管肽是从后腿施用的,但NPL001特异性T细胞的增殖在三个解剖位置中非常相似。T细胞的增殖是剂量依赖性的。

图11:显示重复施用NexVax2(SEQ ID NO:228、229和230)引起脾中麦醇溶蛋白特异性CD4+细胞的比例(A)和数量(B)降低。

图12:显示重复施用NexVax2导致Treg细胞的诱导。

图13:显示重复施用NexVax2(SEQ ID NO:228、229和230)在离体情况下直接导致产生IFNγ和IL-10的细胞的比例的增加。

图14:显示麦醇溶蛋白特异性T细胞针对其对应抗原的增殖能力在重复施用NexVax2(SEQ ID NOs:228、229和230)后被消除,并在IL-2存在下恢复。

图15:显示了来自经NexVax2(SEQ ID NO:228、229和230)处理之小鼠的T细胞能够抑制幼稚的麦醇溶蛋白特异性T细胞的增殖。

图16:显示了体外细胞因子的产生。

图17:疫苗接种方案中给药、饮食和血液收集的日程安排。

具体实施方式

通用技术和定义

除非另有特别定义,所有本文使用的科技术语应理解为具有本领域(例如,细胞培养、分子遗传学、免疫学、免疫组织化学、蛋白质化学和生物化学)技术人员通常理解的意思。

除非另外指定,本发明中应用的重组蛋白、细胞培养和免疫学技术为本领域的技术人员所知的标准操作。这些技术在文献中有描述和解释,例如J.Perbal,A Practical Guide to Molecular Cloning,John Wiley and Sons(1984);J.Sambrook等,Molecular Cloning:A Laboratory Manual、Cold Spring Harbour Laboratory Press(1989);T.A.Brown(编辑)、Essential Molecular Biology:A Practical Approach,卷1和2、IRL Press(1991);D.M.Glover和B.D.Hames(编辑),DNA Cloning:A Practical Approach,卷1-4、IRL Press(1995和1996);F.M.Ausubel等(编辑),Current Protocols in Molecular Biology,Greene Pub.Associates and Wiley-Interscience(1988、包括至今为止的所有更新);Ed Harlow和David Lane(编辑)Antibodies:A Laboratory Manual,Cold Spring Harbour Laboratory,(1988);和J.E.Coligan等(编辑),Current Protocols in Immunology,John Wiley&Sons(包括至今为止的所有更新)。

本说明书中使用的无数量词修饰的名词包括复数含义。因此,例如,提到“肽”时包含单个/种肽和两个/种或更多个/种肽等。此外,抗原呈递细胞经常作为这种细胞的群体而提供。

术语“乳糜泻”指一种小肠慢性炎性疾病。该疾病包括以不同程度的谷蛋白敏感性为特征的一系列病症,包括以平坦小肠粘膜为特征的严重形式(增生性绒毛萎缩)和以其他较轻症状(包括疲劳、慢性腹泻、营养吸收不良、体重降低、腹胀、贫血)和显著提高的发生骨质疏松和肠恶性疾病(淋巴瘤和癌)的风险为特征的其他形式。

术语“对谷蛋白敏感”是指这样的状态,其中受试者接触谷蛋白或其肽片段后出现了任何一种或多种乳糜泻症状或不适当的T细胞应答。在对谷蛋白不敏感的受试者中,谷蛋白摄入不引起或几乎不引起T细胞应答。相反,在对谷蛋白敏感的受试者中,摄入谷蛋白后出现针对来自谷蛋白的肽不合适的CD4+T细胞介导的免疫应答。

术语“免疫耐受”、“免疫学耐受”、“耐受”或“脱敏”在此定义为通过降低受试者对谷蛋白的免疫反应性而使敏感的或过度敏感的受试者对谷蛋白敏感性降低、不敏感或不反应。免疫耐受可以例如通过使粘膜表面接触本文定义的诱导耐受的谷蛋白抗原性片段而产生。粘膜施用高和低剂量的抗原可导致免疫耐受,其中降低了对后续全身施用抗原的免疫应答。至少可以存在两种免疫耐受的机制。对高剂量抗原的耐受看来可通过Th1和Th2细胞的失活或克隆缺失而发生。相反,对低剂量抗原的耐受导致由Treg细胞刺激介导的旁观者免疫抑制(bystander immune suppression),从而产生抑制性细胞因子,例如白细胞介素-4(IL-4)、白细胞介素-10(IL-10)和TGFβ。

本文使用的术语“诱导免疫耐受”是指在对谷蛋白敏感的受试者中产生、引起或导致对谷蛋白的免疫耐受。

术语“过度敏感”在本文中定义为生理学上对谷蛋白异常地易感。

术语“无反应性(anergy)”是指T细胞(或B细胞)对抗原的可逆性不应答或低应答状态。

本文所用“Treg”是指T细胞的一个亚类,其主要作用是在免疫反应过程中使T细胞介导的免疫终止,并抑制逃脱了胸腺中负选择的自身反应性T细胞。本文所用“Treg应答”以CD4+或CD8+Treg细胞群的分化和增殖为特征,所述细胞群表达叉形头(forkhead)家族转录因子FOXP3(叉形头盒p3)和/或II类MHC相关蛋白LAG-3,和/或表达高水平的IL-2受体α链(CD25)。也有小群的I类MHC限制性的表达FOXP3的CD8+Treg细胞。外周循环或脾中Treg细胞的存在可通过分析CD4+/CD25+的表达而确定。这可通过使用流式细胞术检测而方便地实现。此外,可通过以定量逆转录酶聚合酶链式反应(PCR)测定外周血或脾来源的单个核细胞中FOXP3 mRNA水平来定量Treg细胞。此外,Treg应答的体内诱导可通过测定外周血或淋巴结来源的单个核淋巴细胞中的Treg相关性细胞因子来测定。Treg细胞一般表现出更高表达水平的抗炎细胞因子,例如IL-10和TGFβ,而这些中介物的存在可通过本领域中已知的方法测定,例如流式细胞术、免疫组织化学染色和ELISA。

术语“T细胞刺激肽”或“刺激肽”是指能够活化T细胞的肽或表位。

与T细胞相关的术语“活化”是指一个细胞上的MHC分子将表位呈递到另一(T)细胞上合适的T细胞受体,以及共刺激分子与T细胞的结合,因而引发“T细胞应答”。

本文使用的“毒性肽”是指在受试者中刺激T细胞活化的肽。

本文使用的术语“扩增”是指在T细胞活化后增殖或扩大T细胞群。

术语“免疫优势”是指最易被免疫系统识别并因而对所诱导免疫应答(例如T细胞应答)的特异性产生最大影响的肽(表位)亚基。“免疫优势”在本文中可与“优势”替换使用。

本文使用的术语“调节T细胞应答”是指调节或调整对谷蛋白敏感的受试者的T细胞应答,以使对谷蛋白的T细胞应答降低或减轻。

本文使用的“调节细胞因子分泌”是指某种程度上变化或改变或对谷蛋白敏感的受试者的细胞因子分泌,以使该受试者的谷蛋白敏感效应降低或减轻。该术语包括提高特定细胞因子或细胞因子组合的分泌和降低特定细胞因子或细胞因子组合的分泌。

本文使用“表位”是指抗原或肽中被免疫系统(例如,T细胞受体或I类和II类主要组织相容性复合体(MHC)、抗体、B细胞受体)识别的部分,所述部分足以实现高亲和力结合。一般来说,供识别的线性表位的长度至少为约7个氨基酸,可以是8个氨基酸、9个氨基酸、10个氨基酸或更多。

术语“多表位”是指存在连接在单个多肽链中的两个或更多表位(肽)。

本文使用的“抗原”和“免疫原”及其变体一般可互换使用,是指被免疫系统识别的包含表位的结构。

术语“谷蛋白”或“谷蛋白蛋白”包括α、β、γ和ω麦醇溶蛋白,以及小麦中低和高分子量(LMW和HMW)的麦谷蛋白,大麦中的B、C和D大麦醇溶蛋白,黑麦中的β、γ和ω黑麦醇溶蛋白,以及任选的燕麦中的燕麦谷蛋白(avenin)。“谷蛋白肽”是源自或包含于一种或多种谷蛋白蛋白中的肽。

术语“麦醇溶蛋白”是指谷蛋白特别是(但不仅是)源自小麦(例如普通小麦(Triticum aestivum))的谷蛋白中的水性醇溶级分。

术语“麦谷蛋白”是指谷蛋白特别是(但不仅是)源自小麦(例如普通小麦(Triticum aestivum))的谷蛋白中的水性醇不溶组分。

本文所用的“大麦醇溶蛋白”或“大麦的大麦醇溶蛋白”是指源自大麦(Hordein vulgare)的谷蛋白。

本文所用的“黑麦醇溶蛋白”或“黑麦的黑麦醇溶蛋白”是指源自黑麦(Secale cerale)的谷蛋白。

本文所用的“燕麦谷蛋白”或“燕麦的燕麦谷蛋白”是指源自燕麦(Avena sativa)的谷蛋白。

组织“转谷氨酰胺酶”是乳糜泻中的关键因子,因为它促进谷蛋白特异性的T细胞应答。组织转谷氨酰胺酶引起谷蛋白的选择性脱酰胺,其继而导致产生一系列以高亲和力结合到HLA-DQ2或-DQ8分子的谷蛋白肽。所产生的HLA-DQ2(DQ8)-谷蛋白肽相互作用引发促炎的CD4 T细胞应答。因此,术语“脱酰胺”是指谷氨酰胺转变为谷氨酸,或指天冬酰胺转变为天冬氨酸。本文使用的“脱酰胺”特别地指谷蛋白中的谷氨酰胺转化成谷氨酸,该过程增加了谷蛋白肽活化T细胞的倾向。

术语“人白细胞抗原”和“HLA”在本文定义为人白细胞和血小板上的遗传指纹,其由在应答于外来生物对机体免疫系统进行的活化中起关键作用的蛋白构成。在人和其他动物中,HLA也称为“主要组织相容性复合体”(MHC)。

本文使用的术语“制剂”是指一组肽和/或多核苷酸。所述肽和/或多核苷酸可在同一组合物(例如疫苗)中、在不同组合物中或其组合中(例如,本文定义的第一和第二肽在一个组合物中,而第三肽在另一组合物中)。如果在不同的组合物中,它们会优选紧密的接近,例如在试剂盒中。据此,本发明的方法涉及在单一组合物(疫苗)中或依次在不同组合物中或其组合中提供(例如给受试者施用)本发明制剂的各个组分肽和/或多核苷酸。

术语“受试者”包括特别是个体、患者、靶标、宿主或受者,不管受试者是人或是非人动物,包括哺乳类,也包括禽类。因此,术语“受试者”包括人、非人灵长类(例如,大猩猩、狨猴、非洲绿猴)、牲畜动物(例如,绵羊、牛、猪、马、驴、山羊)、实验动物(例如,大鼠、小鼠、兔、豚鼠、仓鼠)、伴侣动物(例如,狗、猫)、捕获的野生动物(例如,狐、鹿、狩猎动物)和包括家禽鸟类(例如,鸡、鸭、鹅、火鸡)在内的鸟类。然而优选的受试者是人,更优选的是HLA-DQ2+的人。

术语“肽”、“多肽”和“蛋白质”一般可互换使用,并包括生物活性片段、变体(包括同源物)和盐。然而,术语“肽”一般用来指相对短的分子,包括少于50(更优选地,少于25)个氨基酸。

本文定义的每个肽的整体长度可为例如7-50个氨基酸,如7、8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、35、40、45或50个氨基酸。考虑较短的肽(特别是20或更少氨基酸长度的肽)在治疗中可用于减少过敏反应发生的可能性,但较长的具有多个表位的肽在基于功能性T细胞的体外诊断中很可能与多个短肽一样有效。

本文使用的“生物活性片段”由比所定义参考肽(例如,序列SEQ ID NO:13、14或16定义的参考肽)更少的氨基酸组成。优选地,生物活性片段能够在对谷蛋白敏感的受试者中产生与其来源的肽基本等同或更强的T细胞应答。在另一实施方案中,生物活性片段能够在对谷蛋白敏感的受试者中产生其来源肽的至少50%(更优选地,至少75%)的T细胞应答。在一个实施方案中,生物活性片段为14、13、12、11、10、9、8和不少于7个氨基酸长度。特别地,考虑在任何肽的任何一端进行缺失和/或添加。

SEQ ID NO:13提供的肽的生物活性片段的例子是包含PELP(SEQ ID NO:234)(被认为是T细胞识别不可缺少的)的那些。

因此,SEQ ID NO:13的合适的7mer片段包括但不限于:

QPELPYP(SEQ ID NO:235);PELPYPQ(SEQ ID NO:236);PQPELPY(SEQ ID NO:237)和FPQPELP(SEQ ID NO:238)。

SEQ ID NO:13的合适的8mer片段包括但不限于:

PELPYPQP(SEQ ID NO:239);QPELPYPQ(SEQ ID NO:240);PQPELPYP(SEQ ID NO:241);FPQPELPY(SEQ ID NO:242)和PFPQPELP(SEQ ID NO:243)。

SEQ ID NO:13的合适的9mer片段包括但不限于:

PELPYPQPQ(SEQ ID NO:244);QPELPYPQP(SEQ ID NO:245);PQPELPYPQ(SEQ ID NO:246);FPQPELPYP(SEQ ID NO:247);PFPQPELPY(SEQ ID NO:248)和QPFPQPELP(SEQ ID NO:249)。

SEQ ID NO:13的合适的10mer片段包括但不限于:

QPELPYPQPQ(SEQ ID NO:250);PQPELPYPQP(SEQ ID NO:251);PQPELPYPQP(SEQ ID NO:252);FPQPELPYPQ(SEQ ID NO:253);PFPQPELPYP(SEQ ID NO:254);QPFPQPELPY(SEQ ID NO:255)和LQPFPQPELP(SEQ ID NO:256)。

SEQ ID NO:13的合适的11mer片段包括但不限于:

PQPELPYPQPQ(SEQ ID NO:257);FPQPELPYPQP(SEQ ID NO:258);PFPQPELPYPQ(SEQ ID NO:259);QPFPQPELPYP(SEQ ID NO:260)和LQPFPQPELPY(SEQ ID NO:261)。

SEQ ID NO:13的合适的12mer片段包括但不限于:

FPQPELPYPQPQ(SEQ ID NO:262);PFPQPELPYPQP(SEQ ID NO:263);QPFPQPELPYPQ(SEQ ID NO:264)和LQPFPQPELPYP(SEQ ID NO:265)。

SEQ ID NO:13的合适的13mer片段包括但不限于:

PFPQPELPYPQPQ(SEQ ID NO:266);QPFPQPELPYPQP(SEQ ID NO:267)和LQPFPQPELPYPQ(SEQ ID NO:268)。

SEQ ID NO:13的合适的14mer片段包括但不限于:

QPFPQPELPYPQPQ(SEQ ID NO:269)和LQPFPQPELPYPQP(SEQ ID NO:270)。

SEQ ID NO:14提供的肽的生物活性片段的例子是包含QPEQPF(SEQ ID NO:317)(被认为是T细胞识别不可缺少的)的那些。

SEQ ID NO:14的合适的7mer片段包括但不限于:

QPEQPFP(SEQ ID NO:271)和PQPEQPF(SEQ ID NO:272)。

SEQ ID NO:14的合适的8mer片段包括但不限于:

QPEQPFPW(SEQ ID NO:273);PQPEQPFP(SEQ ID NO:274)和FPQPEQPF(SEQ ID NO:275)。

SEQ ID NO:14的合适的9mer片段包括但不限于:

QPEQPFPWQ(SEQ IDNO:276);PQPEQPFPW(SEQ ID NO:277);FPQPEQPFP(SEQ ID NO:278)和PFPQPEQPF(SEQ ID NO:279)。

SEQ ID NO:14的合适的10mer片段包括但不限于:

QPEQPFPWQP(SEQ ID NO:280);PQPEQPFPWQ(SEQ ID NO:281);FPQPEQPFPW(SEQ ID NO:282);PFPQPEQPFP(SEQ ID NO:283)和QPFPQPEQPF(SEQ ID NO:284)。

SEQ ID NO:14的合适的11mer片段包括但不限于:

PQPEQPFPWQP(SEQ ID NO:285);FPQPEQPFPWQ(SEQ ID NO:286);PFPQPEQPFPW(SEQ ID NO:287)和QPFPQPEQPFP(SEQ ID NO:288)。

SEQ ID NO:14的合适的12mer片段包括但不限于:

FPQPEQPFPWQP(SEQ ID NO:289);PFPQPEQPFPWQ(SEQ ID NO:290)和QPFPQPEQPFPW(SEQ ID NO:291)。

SEQ ID NO:14的合适的13mer片段包括但不限于:

PFPQPEQPFPWQP(SEQ ID NO:292)和QPFPQPEQPFPWQ(SEQ ID NO:293)。

SEQ ID NO:16提供的肽的生物活性片段的例子是包含PIPEQPQ(SEQ IDNO:294)(预计是T细胞识别不可缺少的)的那些。

SEQ ID NO:16的合适的8mer片段包括但不限于:

PIPEQPQP(SEQ ID NO:295)和QPIPEQPQ(SEQ ID NO:296)。

SEQ ID NO:16的合适的9mer片段包括但不限于:

PIPEQPQPY(SEQ ID NO:297);QPIPEQPQP(SEQ ID NO:298)和EQPIPEQPQ(SEQ ID NO:299)。

SEQ ID NO:16的合适的10mer片段包括但不限于:

PIPEQPQPYP(SEQ ID NO:300);QPIPEQPQPY(SEQ ID NO:301);EQPIPEQPQP(SEQ ID NO:302)和PEQPIPEQPQ(SEQ ID NO:303)。

SEQ ID NO:16的合适的11mer片段包括但不限于:

PIPEQPQPYPQ(SEQ ID NO:304);QPIPEQPQPYP(SEQ ID NO:305);EQPIPEQPQPY(SEQ ID NO:306)和PEQPIPEQPQP(SEQ ID NO:307)。

SEQ ID NO:16的合适的12mer片段包括但不限于:

PIPEQPQPYPQQ(SEQ ID NO:308);QPIPEQPQPYPQ(SEQ ID NO:309);EQPIPEQPQPYP(SEQ ID NO:310)和PEQPIPEQPQPY(SEQ ID NO:311)。

SEQ ID NO:16的合适的13mer片段包括但不限于:

QPIPEQPQPYPQQ(SEQ ID NO:312);EQPIPEQPQPYPQ(SEQ ID NO:313)和PEQPIPEQPQPYP(SEQ ID NO:314)。

SEQ ID NO:16的合适的14mer片段包括但不限于:

EQPIPEQPQPYPQQ(SEQ ID NO:315)和PEQPIPEQPQPYPQ(SEQ ID NO:316)。

在一个实施方案中,所述制剂或疫苗包含SEQ ID NO:13、14和/或16的多于一个生物活性肽片段。例如,肽SEQ ID NO:13可替换为两个独立的肽,一个被DQ2-α-I(SEQ ID NO:3)特异性T细胞识别,另一个被DQ2-α-II(SEQ ID NO:4)特异性T细胞识别。

已经确定,在T细胞识别不可缺少的SEQ ID NO:13的PELP片段中,必须存在E,或者任选地可以是D。T细胞识别不容许其他替换。因此,SEQ ID NO:13的任何变体或片段必须包含PELP或PDLP区域。

生物活性变体包括与所定义的肽存在一个或多个氨基酸差异的肽,在本领域中也被称为同源物。例如,变体可在任何一个或多个肽中包含一个或多个氨基酸替换。本文使用的“替换的”或“替换”包括氨基酸残基的替换、置换、添加、插入、省略和/或缺失(因为这样的变体也可以是片段)。特别地,这是指这样的肽,其具有保守性替换,而不丧失或显著降低其在本发明的方法中的应用。优选地,生物活性变体能够在对谷蛋白敏感的受试者中产生与其来源的肽基本等同或更强的T细胞应答。在另一实施方案中,生物活性变体能够在对谷蛋白敏感的受试者中产生其来源的肽的至少50%(更优选地,至少75%)的T细胞应答。

所述肽的生物活性变体可如下鉴定:改变每个肽的序列,之后测定所得肽激发免疫应答(例如,T细胞产生)的能力。

在一个实施方案中,与本文定义的肽序列相比,在所定义的肽中,不超过5个,更优选不超过4个,更优选不超过3个,更优选不超过2个,甚至更优选仅1个氨基酸被改变(通过替换、缺失或添加)。

在另一实施方案中,特定序列(变体)与参考序列(本文定义的肽)之间的同一性百分比(percentage identity)为至少约60%或至少约70%或至少约80%或至少约90%或至少约95%或更高(例如至少96%、97%、98%、99%或更高)。同一性百分比可用容易获得的软件包来测定,例如BLAST(www.ncbi.nlm.nih.gov/)和GAP。

在一个实施方案中,第二肽包含氨基酸序列PQQPFPQPEQPFPWQP(SEQ ID NO:320),或其生物活性片段或变体。

在另一实施方案中,第三肽包含氨基酸序列FPEQPIPEQPQPYPQQ(SEQ ID NO:321),或其生物活性片段或变体。

天然氨基酸包括丙氨酸(A)、精氨酸(R)、天冬酰胺(N)、天冬氨酸(D)、半胱氨酸(C)、谷氨酰胺(Q)、谷氨酸(E)、甘氨酸(G)、组氨酸(H)、异亮氨酸(I)、亮氨酸(L)、赖氨酸(K)、甲硫氨酸(M)、苯丙氨酸(F)、脯氨酸(P)、丝氨酸(S)、苏氨酸(T)、色氨酸(W)、酪氨酸(Y)、缬氨酸(V)、羟脯氨酸(O和/或Hyp)、异二酪氨酸(IDT)和二异二酪氨酸(di-IDT)。羟脯氨酸、异二酪氨酸和二异二酪氨酸是翻译后修饰形成的。特别考虑使用天然氨基酸,尤其是20种遗传编码的氨基酸。

替换可以是保守性氨基酸替换,其中替换氨基酸具有与参考序列中对应的氨基酸相似的结构或化学特性。或者,只要保留所需的活性,所述的替换可以是非保守的氨基酸替换。

通过举例,保守性氨基酸替换包括将一个脂肪族或疏水氨基酸(例如,丙氨酸、缬氨酸、亮氨酸和异亮氨酸)替换为另一个;将一个包含羟基的氨基酸(例如,丝氨酸和苏氨酸)替换为另一个;将一个酸性氨基酸残基(例如,谷氨酸和天冬氨酸)替换为另一个;将一个含酰胺的残基(例如,天冬酰胺和谷氨酰胺)替换为另一个;将一个芳香残基(例如,苯丙氨酸和酪氨酸)替换为另一个;将一个碱性残基(例如,赖氨酸、精氨酸和组氨酸)替换为另一个;以及将一个小氨基酸(例如,丙氨酸、丝氨酸、苏氨酸、甲硫氨酸和甘氨酸)替换为另一个。

这样的保守替换显示在表1中“优选替换”的标题下。如果这样的替换未导致功能活性的变化,那么可以引入更显著的替换(表1中在示例性替换中显示),并分析所得变体的功能活性。

表1.氨基酸替换。

可通过诱变或其他化学方法来产生肽变体。丙氨酸扫描是鉴定重要氨基酸的一种有用的技术。在这一技术中,氨基酸残基被Ala替换,并检测其对肽活性的影响。例如,半胱氨酸残基可被替换以使通过二硫键连接的二聚化尽可能少。用这种方式分析肽中的每个氨基酸残基,以来测定肽的重要区域。制备这种肽的手段为本领域熟知。

除天然存在的氨基酸之外,本发明的范围内也考虑非天然存在的氨基酸或修饰的氨基酸。实际上,本文所用的“氨基酸”是指天然存在的氨基酸、非天然存在的氨基酸和氨基酸类似物,和每一种的D或L立体异构体。

可用作天然存在氨基酸的合适替换的非常规的和/或非天然的氨基酸和它们的标准缩写的非限制性的列表列在表2中。

表2.非常规氨基酸

本发明范围中包括包含肽的制剂,所述肽在翻译或合成之中或之后被修饰,例如,通过法尼基化、异戊烯化、豆蔻酰化、糖基化、棕榈酰化、乙酰化、磷酸化(例如磷酸酪氨酸、磷酸丝氨酸或磷酸苏氨酸)、酰胺化、用已知的保护基/封闭基进行衍生化、蛋白水解切割、连接到抗体分子或其他细胞配体等。可应用本领域中已知的众多化学修饰方法中的任何一种,包括但不限于特定的溴化氰化学切割、胰蛋白酶、糜蛋白酶、木瓜蛋白酶、V8蛋白酶、NaBH4、乙酰化、甲酰化、氧化、还原、在衣霉素存在下的代谢合成,等。

本文使用的词语“保护基”和“封闭基”是指为防止肽发生不期望的化学反应(尤其是体内的)而对其进行的修饰。这样的保护基的例子包括羧酸和硼酸的酯、醇和缩醛的醚以及醛和酮的缩酮。合适的基团的例子包括酰基保护基团,例如,呋喃甲酰基、甲酰基、己二酰基(adipyl)、壬二酰基(azelayl)、环庚基(suberyl)、丹磺酰基(dansyl)、乙酰基、噻吩甲基(theyl)、苯甲酰基、三氟乙酰基、琥珀酰基和甲氧基琥珀酰基;芳香族氨基甲酸乙酯保护基,例如苄氧羰基(Cbz);脂肪族氨基甲酸乙酯保护基,例如叔丁氧羰基(Boc)或9-芴基甲氧基羰基(FMOC);焦谷氨酸和酰胺化。提供效力提高、活性延长、易于纯化和/或半衰期增加的很多其他的修饰也将为本领域技术人员所知。

在一个实施方案中,一个或多个肽的一个或多个谷氨酸残基可通过tTG针对肽的活性来产生。在另一实施方案中,该反应在施用后在体内发生。

肽可包含一种或多种修饰,可以为天然的翻译后修饰或人工修饰。修饰可提供化学部分(一般通过对氢的取代,例如C-H键),例如氨基、乙酰基、酰基、羧基、羟基或卤素(例如,氟)基团,或糖基。典型地,修饰位于N端或C端。此外,一种或多种肽可为PEG化的,其中PEG(聚乙烯氧基)提供在血流中提高的半衰期。一种或多种肽也可作为融合物或嵌合蛋白与其他蛋白组合,或与允许靶向到靶细胞特定部分的特定结合剂组合。

可获得肽变体,其中的肽已在氨基酸侧链、氨基酸手性和/或肽骨架水平被化学修饰。

可对具有SEQ ID NO:13、14和/或16的肽进行特定改变,从而与亲本肽相比改善对降解的抗性,或优化溶解性特性,或改善生物利用度,因而提供具有相似或改善的治疗、诊断和/或药代动力学特性的肽。优选的此类修饰包括应用N端乙酰基或焦谷氨酸和/或C端酰胺。与具有游离的N和C端的亲本肽相比,这样的修饰(见表5)显著增加肽的半衰期和生物利用度。尽管治疗肽相关的领域中,N端乙酰化和C端酰胺化已被提出,但在诱导免疫耐受的情况下应用N端焦谷氨酸以前尚未被讨论过。预计用于诱导免疫耐受的其他肽也可受益于N端乙酰基或焦谷氨酸和/或C端酰胺,因此,在另一方面中,提供了提高肽的半衰期和/或生物利用度的方法,所述方法包括通过添加N端乙酰基或焦谷氨酸来修饰肽的N端,和通过添加C端酰胺来修饰肽的C端。在一个具体实施方案中,肽包含SEQ ID NO:228、229和/或230中提供的氨基酸序列。

在一个实施方案中,SEQ ID NO:13的肽变体具有序列pyroELQPFPQPELPYPQPQ-酰胺(SEQ ID NO:228;NPL001);或Ac-QLQPFPQPELPYPQPQ-酰胺(SEQ ID NO:231;NPL030)。

在另一实施方案中,SEQ ID NO:14的肽变体具有序列pyroEQPFPQPEQPFPWQP-酰胺(SEQ ID NO:229;NPL002);或Ac-QQPFPQPEQPFPWQP-酰胺(SEQ ID NO:232;NPL031)。

在另一实施方案中,SEQ ID NO:16的肽变体具有序列pyroEPEQPIPEQPQPYPQQ-酰胺(SEQ ID NO:230;NPL003);或Ac-FPEQPIPEQPQPYPQQ-酰胺(SEQ ID NO:233;NPL032)。

术语“pyroE”是指N端焦谷氨酸,而术语“Ac”是指N端乙酰基。

在一个具体实施方案中,制剂或疫苗包含NPL001、NPL002和NPL003。这样的制剂或疫苗在本文中描述为NexVax2。

在另一实施方案中,SEQ ID NO:13的肽变体具有序列:LPYPQPELPYPQ(SEQ ID NO:60;W01-E7)。

在另一实施方案中,任何一个肽中的至少一个谷氨酰胺被谷氨酸所替换。

本文描述的某些肽可以特定的几何或立体异构体形式存在。本发明考虑所有这样的形式,包括落入本发明范围之内的顺式-(Z)和反式-(E)异构体,R-和S-对映体、非对映体,(D)-异构体,(L)-异构体,其外消旋混合物及其他混合物。取代基(如烷基)中可存在额外的不对称碳原子。所有这样的异构体以及它们的混合物都旨在包含于本发明中。

在另一个实例中,为了防止肽酶切割,任何一种或多种肽可以包含不可切割的肽键来代替特定敏感性肽键,以提供更稳定的肽。这样的不可切割的肽键可包括β氨基酸。

例如,在某些实施方案中,任何一个或多个肽可适当地包含官能团来代替例如易断裂肽键,所述官能团有利于抑制丝氨酸型、半胱氨酸型或天冬氨酸型蛋白酶。例如,本发明包括肽基二酮或肽基酮酯、肽卤代烷基酮、肽磺酰氟、肽基硼酸酯、肽环氧化物、肽基重氮甲烷、肽基磷酸酯、异香豆素、苯并恶嗪-4-酮、氨基甲酸酯、异氰酸酯、靛红酸酐(isatoic anhydride)等。这样的官能团已经在其他肽分子中提供,其合成的一般途径是已知的。

变体可以是模拟物。术语“模拟物”意指与其所模拟分子有一定化学相似性并保持特定目的活性(例如,包括耐受)的物质。应用肽模拟物的内在原理是,蛋白质肽骨架的存在主要是将氨基酸侧链取向为有利于分子相互作用(例如T细胞与MHC肽、抗体与抗原、酶与底物或支架蛋白的相互作用)。肽模拟物被设计成可与天然分子相似地进行分子相互作用。模拟物包括烯烃、磷酸酯、氮杂氨基酸类似物等。本领域技术人员可很容易地认识到设计肽模拟物的方法,并可应用这些方法来设计本文定义的肽模拟物。

这些肽可通过亲水性分析法来分析,该法可用于鉴定肽的疏水和亲水区域,因此可协助实验操作中(例如结合实验、抗体合成等)的肽设计。二级结构分析也可用于鉴定肽中采用特定结构基序的区域。操作、翻译、二级结构预测、亲水性和疏水性谱、开放读码框预测和作图以及测定序列同源性可使用本领域中可获得的计算机软件程序来完成。结构分析的其他方法包括但不限于X-射线晶体学、质谱术和气相色谱,也可使用计算机建模、旋光色散(ORD)或圆二色性(CD)。

肽、片段或变体可以是盐的形式,优选可药用盐形式。“可药用盐形式”包括肽的常规无毒盐或季铵盐,例如,由无毒有机或无机酸形成的盐。常规的无毒盐包括,例如,那些源自无机酸(例如盐酸、氢溴酸、硫酸、磺酸、磷酸、硝酸等)的盐和制备自有机酸(例如醋酸、丙酸、琥珀酸、乙醇酸、硬脂酸、乳酸、苹果酸、酒石酸、柠檬酸、抗坏血酸、棕榈酸、马来酸、羟基马来酸、苯乙酸、谷氨酸、苯甲酸、水杨酸、对氨基苯磺酸、2-乙酰氧基苯甲酸、富马酸、甲苯磺酸、甲磺酸、乙烷二磺酸、草酸、2-羟乙磺酸(isothionic acid)等)的盐。

在所述制剂或疫苗中,肽可以作为单独的肽或连接的肽(例如连接在多表位结构中)来提供。在一个实施方案中,肽可以以单个多肽链(多表位串)的形式展示,即,线性或环状排列。在另一实施方案中,肽可以在多抗原展示系统中展示,尤其是基于树状骨架例如多聚赖氨酸。多聚赖氨酸骨架提供非线性的分支排列的表位。与多表位串相比,这一系统提供这样的优势,即肽之间不会彼此干扰,也不会被切割成隐蔽表位(cryptic epitope),并因而能够诱导完全的T细胞应答。

缀合物

可使用标准的方法将一种或多种肽缀合到化合物上。可与肽缀合的化合物的例子包括但不限于放射性同位素、荧光标记、化学发光化合物、酶标记、自由基、亲和素-生物素标记、噬菌体标记、提高肽在受试者体内的半衰期的化合物、佐剂、MHC分子或它们的片段。

该化合物可有利于检测和/或分离或提高所缀合肽的免疫原性。

本文使用的“缀合”意为通过共价键或非共价键偶联。尽管优选共价键,但化合物也可通过复合(而没有共价键)连接到肽上,例如,通过氢键或静电、疏水等相互作用。

典型的放射性同位素包括3H、125I、131I、32P、35S、14C、51Cr、36Cl、57Co、58Co、59Fe、75Se和152Eu。

典型的荧光标记包括异硫氰酸荧光素、罗丹明、藻红蛋白、藻蓝蛋白、别藻蓝蛋白、邻苯二甲醛和荧光胺。

典型的化学发光化合物包括鲁米诺、异鲁米诺、芳香吖啶酯、咪唑类、吖啶盐和草酸酯。典型的生物发光化合物包括荧光素、荧光素酶和水母素。

典型的酶标记包括碱性磷酸酶、β-半乳糖苷酶、葡萄糖-6-磷酸脱氢酶、马来酸脱氢酶、葡萄糖氧化酶和过氧化物酶。

在一个实施方案中,在化合物和它所缀合的肽之间包含非特异性的接头(linker)。这种接头与肽的活性无关。该接头在肽和功能基团之间发挥间隔物的作用。接头的用途包括肽的固定,例如协助纯化或检测。或者,接头可允许将化合物附着到肽上,使得可以在空间上或时间上特异性地将肽递送到特定的靶标,例如细胞或组织。当作为疫苗使用时,一种或多种肽可被偶联到接头上,该接头在肽和免疫原性载体之间起间隔物的作用,或允许改善肽与免疫原性载体之间的连接,并防止形成隐蔽表位。

在一个实施方案中,应用本领域中已知的多种缀合化学中的任何一种,将一种或更多种肽共价偶联到佐剂(免疫原性载体蛋白)上,例如白喉类毒素(DT)、匙孔槭血蓝蛋白(KLH)、破伤风类毒素(TT)或流感病毒核蛋白(NP),以提高其免疫原性。非特异性的接头可存在于肽和免疫原性载体之间,并优选连接到肽上或共合成,以有利于偶联到免疫原性载体和/或作为肽和免疫原载体之间的间隔物。

当作为诊断剂使用时,优选一种或多种肽缀合到之前未用于疫苗接种的免疫原性载体上。当监测到疫苗接种成功时,这防止了诊断剂与针对疫苗的载体部分所形成的抗体发生反应。

在一个实施方案中,化合物是II类MHC分子或其肽结合片段。II类MHC分子可纯化自生物样品。或者,可重组产生II类MHC分子。II类MHC分子的肽结合片段可通过例如对纯化的或重组的完整分子进行酶切割而获得。或者,可重组地产生肽结合片段。在一个优选的实施方案中,化合物为重组的两结构域II类MHC分子。

两结构域的II类MHC分子的最基本形式包括哺乳动物II类MHC分子的α1和β1结构域,其中α1结构域的氨基端共价连接到β1结构域的羧基端,其中所述多肽不包括α2或β2结构域。II类MHC分子的两个结构域通过共价或非共价相互作用与本文所定义的肽相关联。在某些实施方案中,肽共价连接到II类MHC分子β1结构域的氨基端。两结构域的II类MHC分子还可包含检测标记(例如荧光标记)或毒素。其中所述检测标记或毒素以定向的方式(而不是随机附着)共价连接至MHC分子,一般连接到分子的羧基端,以使对连接到氨基端的肽抗原的干扰尽可能小。

在体外,两结构域的II类MHC分子可用于检测和定量T细胞,并调节T细胞的功能。因此,载有选定的肽的这种分子可用于检测、监测和定量对该肽具有特异性的T细胞群。两结构域的II类MHC分子/肽缀合物也可用于诱导谷蛋白特异性T细胞的无反应性,减轻乳糜泻相关的症状。或者,这种分子可缀合毒素,以更直接地杀死引发疾病的T细胞。合适的毒素包括蛋白毒素(例如,蓖麻毒素、白喉毒素和绿脓杆菌毒素)、化学治疗剂(例如,多柔比星、柔红霉素、氨甲蝶呤、细胞毒素和反义RNA)、针对细胞毒T细胞表面分子的抗体、脂酶和发出例如“硬”(例如β)射线的放射性同位素。

设计重组II类MHCβ1α1分子

哺乳动物的II类MHC分子α和β链蛋白的氨基酸序列以及编码这些蛋白的核酸在本领域内是众所周知的,并可从包括GenBank在内的很多来源获得。

一般地,α1结构域被认为包含成熟α链的约1-90位残基。II类MHC蛋白α1和α2结构域之间的天然肽接头区域从α链的约76位氨基酸到约93位氨基酸,这取决于所考虑的具体α链。因此,α1结构域可包括α链的约1-90位氨基酸残基,但本领域技术人员会认识到,这一结构域的C端截止点没有必要必须精确定义,而是例如可存在于α链70-100位氨基酸残基之间的任何点。α1结构域的组成也可根据哺乳动物物种和所涉及的具体α链而在这些参数之外变化。

类似地,β1结构域一般被认为包含成熟β链的约1-90位残基。II类MHC蛋白的β1和β2结构域之间的接头区域从β链的约85位氨基酸到约100位氨基酸,这取决于考虑的特定β链。因此,β1蛋白可包括约1至100位氨基酸残基,但本领域技术人员会认识到,这一结构域的C端截止点没有必要须精确定义,而是例如可存在于β链75-105位氨基酸残基之间的任何点。

在选择包括在重组分子中的特定结构域的序列时,优选包括整个结构域;为确保实现这一点,结构域序列可延伸以包含部分接头,或甚至包含邻近结构域的一部分。α1和β1结构域中氨基酸的精确数目依哺乳动物物种和物种中基因类别之间的不同而变化。维持结构域功能(而不是基于氨基酸数目的精确结构定义)在选择特定结构域的氨基酸序列时至关重要。另外,本领域技术人员会理解,如果应用某种程度上少于所选结构域的整个氨基酸序列,结构域功能也可被维持。例如,α1结构域的氨基或羧基端的很多氨基酸可被省略而不影响结构域的功能。然而,通常从结构域序列任何一端省去的氨基酸的数目不会大于10,更通常不大于5。类似地,只要结构域的功能被维持,与天然存在的形式相比,α1和β1结构域可包括一个或多个氨基酸序列变化。

在载有肽的II类MHCβ1α1分子中可评价特定的选定结构域的功能活性。例如,为检测特定的β1结构域,将其连接到功能性的α1结构域,所产生的II类MHCβ1α1分子肽被装载并检测其结合到和/或抑制抗原特异性T细胞功能(例如T细胞增殖)的能力。

编码这些结构域的核酸分子可通过标准方法生成,例如PCR扩增。可使用设计扩增编码这些结构域的开放读码框的引物的标准方法。适于扩增这些结构域的文库包括例如从目的哺乳动物物种制备cDNA文库,这样的文库可商品化的获得,或可通过标准方法制备。因此,例如编码β1和α1多肽的构建体可通过PCR产生,其中使用四个引物:对应于β1编码区的5’和3’端的引物B1和B2,和对应于α1编码区的5’和3’端的引物A1和A2。PCR扩增α1和β1结构域的编码区之后,这些被扩增的核酸分子的每一个都可被克隆到标准的克隆载体上,或这些分子可被连接到一起,随后克隆进入合适的载体。为便于两个编码区的克隆,可在PCR引物中设计限制性内切酶位点。例如,引物B2和A1各自可包括合适的位点,以使扩增的片段可在扩增并用选定的限制性酶消化后很容易地连接到一起。此外,引物B1和A2可各自包括限制性位点以协助克隆进入选定载体的多接头位点中。连接两个结构域编码区,以使编码区有效连接,即保留开放读码框。其中扩增的编码区分别地克隆,然后可从克隆载体上释放片段并凝胶纯化,准备连接。

在某些实施方案中,肽接头在β1和α1结构域之间提供。通常,这一接头的长度在2到25个氨基酸之间,并起到为结构域之间提供柔性的作用,以使每个结构域自由地折叠成其天然构象。接头序列可方便地通过设计PCR编码接头序列的引物来提供。因此,在上述描述的例子中,接头序列可由B2或A1引物之一或这些引物每一种的组合来编码。

变体MHC结构域多肽可通过操作编码结构域的分子的核酸序列来产生,例如通过定点诱变或PCR来产生。

抗原性肽与II类MHCβ1α1分子的遗传连锁

II类MHCβ1α1分子与本文定义的肽一起使用。II类MHCβ1α1分子可以多种方式被“装载”到肽上,包括通过将肽共价附着至MHC分子。这可通过将编码选定肽的核酸序列有效连接到编码MHC分子的构建体的5’端而方便地实现,使得表达的肽被连接到II类MHCβ1α1分子β1的N端。获得这一结果的方便方法是将编码肽的序列整合到用于扩增MHC编码区的PCR引物中。通常,编码接头肽序列的序列将会包含在编码抗原性肽分子和MHC多肽的分子之间。为了将抗原连接到MHC多肽,接头应当足够长,以允许抗原肽匹配到MHC多肽的肽沟中。

在需要生产很多具有不同抗原肽的MHC分子时,这一将抗原肽连接到MHC分子的遗传系统尤其有用。所述系统允许构建表达载体,其中在MHC编码区的5’端(即,II类MHCβ1α1分子中β1的5’端)包括独特的限制性位点。为了与这一构建体相联合,制作了抗原性肽编码序列的文库,每个抗原编码区的侧翼为选定的限制性酶的位点。然后可简单地通过(a)用选定的限制性酶释放抗原编码区域,(b)用同样的限制性酶切割MHC构建体,和(c)将抗原编码区连接到MHC构建体上,将特定抗原包含在MHC分子中。用这样的方式可产生大量的MHC-多肽构建体并在短时间内表达。

空β1α1和α1α2分子的抗原装载

在II类MHCβ1α1分子以空形式(即,没有连有抗原性肽)表达并纯化时,可应用标准的方法将抗原性肽装载到分子中。这样的方法包括简单地将纯化的肽制剂与纯化的MHC分子共孵育。

例如,空II类MHCβ1α1分子(1mg/ml;40uM)可通过与10倍摩尔过量浓度的肽(1mg/ml;400uM)在室温下孵育24小时而被装载。之后,过量的未结合肽可通过在4℃下以PBS透析24小时而被除去。如本领域所知,结合到II类MHCβ1α1分子的肽可应用放射性标记肽通过硅胶薄层色谱(TLC)进行定量。基于这种定量,可改变装载(例如,通过改变肽的过量摩尔浓度或孵育时间)以获得所需的结果。

多核苷酸

术语“核酸”、“核酸分子”、“核酸序列”和“多核苷酸”一般可互换使用,并包括生物活性片段和变体(包括同源物)。

制剂中每个组分多核苷酸的总长度可为,例如,21到150个核苷酸,例如21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、50、60、70、80、90、100、110、120、130、140、150个核苷酸。

核酸分子的“生物活性片段”由比编码参考肽的多核苷酸序列少的核苷酸组成,长度至少为约21个核苷酸,并且长度可为至少约35个核苷酸。

术语“生物活性变体”和“生物活性片段”具有与本文所定义肽相类似的含义。

“生物活性变体”可包含与编码参考肽的多核苷酸序列具有至少60%同一性的核苷酸序列。同一性百分比可通过使用容易获得的软件包来测定,例如BLAST(www.ncbi.nlm.nih.gov/)和GAP。

作为替代或补充,“生物活性变体”在低严格条件下可与编码参考肽的核苷酸序列(或其互补形式)杂交。在此“低严格”是指杂交时使用至少约0到至少约15%v/v甲酰胺和至少约1M到至少2M的盐,清洗时使用至少约1M到至少约2M的盐。一般来说,低严格是从约25-30℃到约42℃。温度可以改变,并用更高的温度来代替甲酰胺和/或来给出替代性的严格条件。替代性的严格条件(例如中等严格或高严格)可在必要时应用。此处“中等严格”是指杂交时使用至少约16%v/v到至少约30%v/v甲酰胺和至少约0.5M到至少约0.9M的盐,清洗时使用至少约0.5M到至少约0.9M的盐。此处“高严格”是指杂交为至少约31%v/v到至少约50%v/v甲酰胺和至少约0.01M到至少约0.15M的盐,清洗时使用至少0.01M到至少约0.15M的盐。

一般地,清洗在Tm=69.3+0.41(G+C)%下进行。然而,错配碱基对数每增加1%,双链体核酸分子的Tm就降低1℃。在这些杂交条件下,甲酰胺是任选的。

下文定义了特别优选的严格度水平:低严格度为6×SSC缓冲液、0.1%w/v SDS,25-42℃;中等严格度为2×SSC缓冲液、0.1%w/v SDS,20-65℃;高严格度为0.1×SSC缓冲液、0.1%w/v SDS,至少65℃。

生物学变体包括与参考多核苷酸存在一个或多个核苷酸差异的多核苷酸。例如,变体可包含将一个或多个天然存在的核苷酸替换为类似物(例如,吗啉环)、甲基化的核苷酸、核苷酸间修饰(例如,不带电荷的连接(例如,甲基磷酸酯、磷酸三酯、磷酰胺、氨基甲酸酯,等)、带电荷的连接(例如,硫代磷酸酯、二硫代磷酸酯,等))、突出部分(例如,多肽)、嵌入剂(例如,吖啶、补骨脂素,等)、螯合剂、烷化剂和修饰的连接(例如,α-端基异构的核酸,等)。

编码一种或多种肽的多核苷酸可在载体中提供。

应用本领域中众所周知的技术,可将编码一种或多种本文定义肽的多核苷酸用于肽的重组生产。或者,多核苷酸可用于免疫受试者/使受试者对谷蛋白耐受。

鉴于密码子使用的简并性,本发明中应用的多核苷酸包括可衍生自一种或多种肽的DNA序列。这是本领域公知的,关于不同表达宿主中密码子使用的知识也是公知的,这有助于优化肽的重组表达。

当多核苷酸被用于重组生产一种或多种肽时,所述多核苷酸可仅包含肽编码序列,或者带有与其他编码序列框内融合的肽编码序列,所述其他编码序列例如编码前导或分泌序列、前蛋白或蛋白原或前蛋白原序列、接头肽序列或其他融合肽部分的那些。例如,可以编码有利于融合蛋白纯化的标记序列。在某些实施方案中,标记序列为例如pQE载体(Qiagen,Inc.)中所提供的六组氨酸肽,或为HA标签或为谷胱甘肽-S-转移酶。多核苷酸也可包含非编码的5’和3’序列,例如转录的非翻译序列、剪接和多腺苷酸化信号、核糖体结合位点和稳定mRNA的序列。

抗原呈递细胞

本文定义的制剂和/或肽可通过装载于APC而进行递送,例如用所述第一、第二和第三肽、其一种或多种的生物活性片段或变体和/或编码其中的一种或多种的多核苷酸进行装载。

优选地,APC选自表达与受试者MHC表型共有的II类MHC分子的树突细胞、巨噬细胞、B淋巴细胞和肝窦内皮细胞。例如,APC可表达HLA-DQ2(例如,HLA DQA1*05和HLA DQB1*02)和/或HLA DQ8。用于这一目的的APC可从受试者中分离,在装载后会被递送回该受试者,或可获自异体匹配的受试者。

“装载”APC意为将APC与肽、其一种或多种的生物活性片段或变体或编码其中一种或多种的多核苷酸一起孵育,或用其转染。装载APC可通过用常规的核酸转染方法完成,例如脂质介导的转染、电穿孔和磷酸钙转染。

肽的产生

可用任何合适的方法来制备肽。例如可以重组和/或合成方式产生肽。

可用标准的化学技术合成肽,包括用商业上可获得的肽合成仪的自动程序来合成。一般地,通过固相肽合成法制备肽类似物,该法可包括将每一个受保护的氨基酸残基连接到树脂支持物(优选4-甲基二苯甲胺树脂上,通过用二环己基碳二亚胺活化,获得具有C端酰胺的肽。或者,氯甲基树脂(Merrifield树脂)可用于获得C端具有游离羧酸的肽。最后一个残基被连接之后,用氟化氢处理受保护的肽-树脂以从树脂上切下肽,并对侧链官能团去保护。粗产物可用凝胶过滤、高压液相色谱(HPLC)、分配色谱或离子交换色谱进一步纯化。

如上述描述的那样,如果有需要,在合成或在表达过程中,可向制剂的肽中引入各种基团,其允许连接到其他分子或表面。例如,半胱氨酸可用于产生硫醚,组氨酸用于连接到金属离子络合物,羧基用于形成酰胺或酯,氨基用于形成酰胺,等。

肽也可用无细胞的翻译系统来产生。标准的翻译系统(例如网织红细胞裂解物和小麦胚芽提取物)应用RNA作为模板,而“偶联”和“连接”系统始于DNA模板,被转录成RNA,然后翻译。

或者,肽可通过用表达载体转染宿主细胞来生产,所述表达载体包含编码一种或多种肽的多核苷酸。

为进行重组生产,通过常规方法将包含编码一种或多种肽的序列的重组构建体引入宿主细胞,所述方法例如磷酸钙转染、DEAE-葡聚糖介导的转染、显微注射、阳离子脂质介导的转染、电穿孔、转导、划痕装载、射弹引入或感染。

所述肽的一种或多种可使用常规技术在合适启动子的控制下在合适的宿主细胞中表达,例如,哺乳动物细胞(例如,COS、CHO、BHK、293HEK、VERO、HeLa、HepG2、MDCK、W138或NIH 3T3细胞)、酵母(例如酵母菌属(Saccharomyces)或毕赤酵母属(Pichia))、细菌(例如大肠杆菌(E.coli)、巴斯德毕赤酵母(P.pastoris)、或枯草芽孢杆菌(B.subtilis))、昆虫细胞(例如、Sf9细胞中的杆状病毒)或其他细胞。转化合适的宿主株并将其培养到合适的细胞密度之后,离心收获细胞,用物理或化学方法破碎,保留所得的粗提取物用于进一步纯化肽或其变体。

合适的表达载体包括例如染色体的、非染色体的和合成的多核苷酸,例如SV40衍生物、细菌质粒、噬菌体DNA、酵母质粒、源自质粒和噬菌体DNA之组合的载体、病毒DNA(例如痘苗病毒、腺病毒、腺相关病毒、慢病毒、金丝雀痘病毒、鸡痘病毒、伪狂犬病毒、杆状病毒、疱疹病毒和逆转录病毒)。可通过本领域中已知的常规操作将多核苷酸引入表达载体。

编码一种或多种肽的多核苷酸可有效连接至表达调控序列,即,指导mRNA合成的启动子。这些启动子的代表性实例包括LTR或SV40启动子,大肠杆菌lac或trp,噬菌体λ的PL启动子和其他已知在原核或真核细胞或病毒中调控基因表达的启动子。表达载体也可包含用于翻译起始的核糖体结合位点和转录终止子。

表达载体也可包括复制起点和选择标记,例如大肠杆菌的抗氨苄青霉素基因,以允许筛选转化的细胞,即,表达异源多核苷酸的细胞。编码一种或多种肽的核酸分子可与翻译起始和终止序列框内整合进载体中。

可通过众所周知的方法从重组细胞培养物中(即,从细胞或培养基中)回收和纯化一种或多种肽,所述方法包括硫酸铵或乙醇沉淀、酸提取、阴离子或阳离子交换色谱、磷酸纤维素色谱、疏水相互作用色谱、亲和色谱、羟基磷灰石色谱、凝集素色谱和HPLC。当肽在分离和纯化过程中被变性时,可应用众所周知的重折叠蛋白技术来再生有活性的构象。

优选使用重组技术来生产糖基化肽。为生产糖基化肽,优选将哺乳动物细胞例如COS-7和Hep-G2细胞用于重组技术。

也可通过切割较长的肽(尤其是食品提取物中来源的)来制备肽。

肽的可药用盐可通过常规化学方法合成自包含碱性或酸性部分的肽。一般地,通过使游离碱或酸与化学计算量的或过量的所需的形成盐之无机或有机酸或碱在适合的溶剂中反应来制备盐。

疫苗和施用

本发明也提供疫苗,其包含第一、第二和第三肽,其中一种或多种的生物活性片段或变体,和/或编码其中一种或多种的多核苷酸。也提供了疫苗,其包含本发明的肽和/或本发明的多核苷酸。

本文所用的术语“疫苗”是指组合物,其包含或编码可施用于对谷蛋白敏感的受试者的肽,以调节受试者对谷蛋白的应答。疫苗可降低受试者对谷蛋白的免疫反应性。优选地,疫苗诱导对谷蛋白的耐受。

对受试者施用疫苗可诱导耐受,这是通过谷蛋白特异性效应T细胞群(例如谷蛋白特异性CD4+T细胞)的克隆消除来实现的,或通过使所述T细胞失活(无反应)以使其应答性降低来实现的,优选地,对后续的谷蛋白(或其肽)接触无应答。

作为替代或补充,疫苗的施用可改变受试者的细胞因子分泌谱(例如,导致降低的IL-4、IL-2、TNFα和/或IFNγ,和/或增加的IL-10)。疫苗可诱导抑制性T细胞亚群,例如Treg细胞,以产生IL-10和/或TGFβ,并因此抑制谷蛋白特异性的效应T细胞。

本发明的疫苗可用于预防性处理能够发生谷蛋白敏感的受试者(例如被诊断为携带HLA-DQ2和/或HLA-DQ8基因),和/或治疗对谷蛋白敏感的受试者,例如患有乳糜泻的受试者。大量的动物数据支持免疫优势肽对多种自身免疫病和模式免疫病症(例如,实验性变应性脑炎)的预防活性。

本文所用的术语“治疗”包括消除、抑制、减缓或逆转疾病或病症的发展,或者改善或预防疾病(例如,乳糜泻)或病症的临床症状。

待施用的疫苗(或制剂、肽、多核苷酸和/或APC)量称为“有效量”。术语“有效量”意为当在合适或充分的条件下施用时,足以提供所需的治疗或预防作用的量。可施用单剂量或多剂量。不期望的作用(例如,副作用)有时与所需的治疗作用一起表现出来,因此,执业医师在确定合适的“有效量”时,要平衡潜在的益处和潜在的风险。所需的确切量会随受试者不同而不同,取决于物种、年龄、大小和受试者的一般状况、施用模式等。因此,不可能指定确切的“有效量”。然而,在任何单个情况下,本领域普通技术人员可仅通过常规的实验来确定合适的有效量。

疫苗(或制剂、肽、多核苷酸和/或APC)改变受试者中对小麦、大麦和黑麦(优选以麦醇溶蛋白、黑麦醇溶蛋白、大麦醇溶蛋白、麦谷蛋白和任选的燕麦谷蛋白为代表的小麦、大麦、黑麦和燕麦)的T细胞应答。因此,根据本发明治疗的受试者优选能够至少食用小麦、黑麦、大麦和任选的燕麦,而没有显著的在正常情况下可导致乳糜泻症状的T细胞应答。

本发明制剂中的各个组分可在同一组合物中施用,或在不同组合物或其组合中施用(例如,本文定义的第一和第二肽在一种组合物中,而第三种肽在单独的组合物中)。如果在不同的组合物中,它们可同时或先后施用。

制剂或疫苗可包含可药用载体。术语“可药用载体”是指当施用于受试者时不产生过敏性的、毒性的或其他不良反应的分子实体和组合物,所述受试者尤其指哺乳动物,更尤其指人类。可药用载体可为固体或液体。可药用载体的有用例子包括但不限于不影响本发明活性剂之活性的稀释剂、赋形剂、溶剂、表面活性剂、助悬剂、缓冲剂、润滑剂、佐剂、载剂、乳化剂、吸附剂、分散介质、包衣、稳定剂、保护性胶体、粘合剂、增稠剂、触变剂、穿透剂、掩蔽剂、等张剂和吸收延缓剂。

载体可为任何这些常规使用的载体,并且仅受限于化学-物理的因素(例如溶解度和与所述活性剂不反应)和给药途径。本发明的合适载体包括那些常规使用的载体,例如,水、盐水、葡萄糖水、乳糖、林格氏溶液、缓冲溶液、透明质酸、乙二醇、淀粉、纤维素、葡萄糖、乳糖、蔗糖、明胶、麦芽、米、面粉、白垩、硅胶、硬脂酸镁、硬脂酸钠、单硬脂酸甘油酯、氯化钠、甘油、丙二醇、水、乙醇等。脂质体也可作为载体使用。

制备药物组合物的技术在本领域内是众所周知的,例如在Remington′s Pharmaceutical Sciences,第16版.Mack Publishing Company,1980中。

术语“佐剂“一般是指免疫刺激物,其设计用于增强本文定义的一种或多种肽的免疫原性。优选地,佐剂不产生Th1应答,并且促进免疫耐受和/或降低炎症。合适的佐剂包括1)基于铝的矿物盐佐剂,例如Al(OH)3凝胶或磷酸铝,但也可为钙、铁或锌的盐;和2)地塞米松(Kang等,2008)。

可作为包含常规无毒可药用载体的单位剂型,通过口服、局部(经皮)、肠胃外、通过吸入喷雾剂或直肠进行施用。本文使用的术语“肠胃外”包括静脉内、动脉内、腹膜内、肌内、皮下、结膜下、腔内、透皮和皮下注射、肺部或鼻腔施用的气雾剂、或通过例如等渗泵输注施用。

本发明的活性化合物可为适于口服使用的形式,例如,片剂、糖锭剂、锭剂、水或油混悬剂、可分散粉剂或颗粒剂、乳剂、硬或软胶囊或糖浆剂或酏剂。用于口服的组合物可依据本领域中生产药物组合物的已知方法来制备,这样的组合物可包含选自甜味剂、调味剂、着色剂和防腐剂的一种或多种试剂,以提供药学上合适而可口的制剂。

片剂

包含与可药用赋形剂混合的活性成分的片剂也可用已知的方法制造。所用的赋形剂可为,例如,(1)惰性稀释剂,例如碳酸钙、乳糖、磷酸钙或磷酸钠;(2)造粒剂和崩解剂,例如玉米淀粉或褐藻酸;(3)粘合剂,例如淀粉、明胶或阿拉伯胶,和(4)润滑剂,例如硬脂酸镁、硬脂酸或滑石。片剂可没有包衣,或者可用已知技术包衣,以延缓在胃肠道的崩解和吸收,并因此提供更长时间的持久作用。例如,可采用延时材料,例如甘油单硬脂酸酯或甘油二硬脂酸酯。也可进行包衣以形成用于控制释放的渗透治疗片剂。

在一些情况下,用于口服应用的制剂可为硬明胶胶囊的形式,其中活性成分与惰性固体稀释剂(例如,碳酸钙、磷酸钙或高岭土)混合。它们也可为软明胶胶囊的形式,其中活性成分与水或油介质(例如花生油、液体石蜡或橄榄油)混合。

水混悬剂

水悬浮剂一般包含与适于生产水混悬剂的赋形剂混合的活性物质。这样的赋形剂可包括(1)助悬剂,例如羧甲基纤维素钠、甲基纤维素、羟丙基甲基纤维素、海藻酸钠、聚乙烯吡咯烷酮、西黄蓍胶和阿拉伯胶;或(2)分散剂或润湿剂,例如C2-C18脂肪酸的PEG酯,吐温80或失水山梨醇单油酸酯聚氧化乙烯,Brij或聚氧乙烯醇,曲通-X或聚乙二醇对异辛基苯基醚,曲通-N和曲通A-20或4-(1,1,3,3-四甲基丁基)苯酚,甲醛和环氧乙烷的聚合物、DECON、Tris或2-氨基-2-羟甲基-1,3-丙二醇和Cremophor EL。

水混悬剂也可包含一种或多种防腐剂,例如乙基或正丙基对羟基苯甲酸;一种或多种着色剂;一种或多种调味剂;和一种或多种甜味剂,例如蔗糖、阿斯巴甜或糖精。

油混悬剂

油混悬剂可通过将活性成分悬浮在植物油(例如花生油、橄榄油、芝麻油或椰子油)、包含ω3脂肪酸的鱼油或矿物油(例如液体石蜡)中来制备。油混悬剂可包含增稠剂,例如蜂蜡、硬石蜡或十六醇。可加入甜味剂和调味剂以提供可口的口服制剂。这些组合物可通过加入抗氧化剂(例如抗坏血酸)来保存。

可分散粉剂和颗粒剂

可分散粉剂和颗粒剂适合制备水混悬剂。它们提供与分散剂或润湿剂、助悬剂和一种或多种防腐剂混合的活性成分。合适的分散剂或润湿剂和助悬剂例如上面已经提到那些。也可存在额外的赋形剂,例如前面描述的甜味剂、调味剂和着色剂。

乳剂

药物组合物也可为水包油乳剂的形式。油相可为植物油(例如橄榄油或花生油)或矿物油(例如液体石蜡)或其混合物。合适的乳化剂包括阿拉伯胶、西黄蓍胶、大豆、卵磷脂、失水山梨醇单油酸酯聚氧化乙烯(吐温80)。乳剂也可包含甜味剂和调味剂。

糖浆剂和酏剂

糖浆剂和酏剂可用甜味剂制备,例如甘油、丙二醇、山梨醇、阿斯巴甜或蔗糖。这样的制剂也可包含缓和剂(demulcent)、防腐剂、调味剂和着色剂。

注射剂

药物组合物可为无菌可注射的水或油混悬剂的形式。可根据已知的方法,使用上面提到的这些合适的分散剂或润湿剂和助悬剂来制备这种悬浮剂。无菌可注射制剂可以是无毒肠胃外可接受的稀释剂或溶剂(例如1,3-丁二醇)中的混悬剂。可以使用的可接受的载体有水、林格氏溶液和等张氯化钠溶液。此外,无菌的不挥发性油可常规地用作溶剂或悬浮介质。为此,可应用任何温和的不挥发性油,包括合成的甘油一酯或甘油二酯。此外,在制备注射剂时也可应用脂肪酸(例如油酸)。

适合肠胃外施用的组合物包括但不限于水性和非水性无菌注射溶液。用于皮下施用的合适的递送机制的实例包括但不限于植入物、贮存药剂(depot)、针、胶囊和渗透泵。

持续释放组合物

可制备持续释放组合物。合适的持续释放制剂的例子包括固体疏水聚合物的半通透性基质,所述基质为有形物品的形式,例如,膜或微胶囊。持续释放基质的例子包括聚酯、水凝胶(例如,聚(2-羟乙基-甲基丙烯酸甲酯)或聚乙烯醇)、聚乳酸、L-谷氨酸和γ乙基-L-谷氨酸的共聚物、不可降解的乙烯-乙酸乙烯、可降解的乳酸-乙醇酸共聚物例如LUPRONDEPOTTM(由乳酸-乙醇酸共聚物和醋酸亮丙瑞林构成的可注射微球)和聚-D-(-)-3-羟基丁酸。聚合物(例如乙烯-乙酸乙烯和乳酸-乙醇酸)使得分子的释放能够超过100天,而某些水凝胶在更短的时间内释放蛋白。

活性剂可装入微胶囊中(例如通过凝聚技术制备或通过界面聚合制备的,例如分别为羟甲基纤维素或明胶微胶囊和聚甲基丙烯酸甲酯微胶囊)、装入胶体药物运送系统中(例如,脂质体、白蛋白微球、微乳剂、纳米颗粒和纳米胶囊)或装入大乳剂(macroemulsion)中。

用于持续释放的微胶囊包封已使用人生长激素(rhGH)、干扰素(rhIFN)、白细胞介素-2和MN rgp120成功地进行。由于其生物相容性和宽范围的生物降解特性,将PLGA聚合物用于开发这些蛋白质的持续释放制剂。PLGA、乳酸和乙醇酸的降解产物在人体内可迅速清除。此外,依其分子量和组成的不同,该聚合物的降解能力可以在数月到数年之间进行调节。

基因治疗

在另一实施方案中,编码一种或多种本文定义肽的多核苷酸被插入到重组表达载体中以施用于受试者。

术语“重组表达载体”是指经操作而插入或整合了编码一种或多种肽的核酸的质粒、病毒或其他本领域已知的载体。这样的表达载体包含利于在宿主体内有效转录所插入基因序列的启动子序列。表达载体一般含有复制起点、启动子以及允许对转化细胞进行表型选择的特定基因。

在一个实施方案中,病毒载体源自腺相关病毒(AAV)并包含组成型或可调节的启动子,所述启动子能够驱动本文所定义肽有效表达水平。优选地,病毒载体包含AAV的反向末端重复序列,例如WO 93/24641中的描述。在一个优选的实施方案中,病毒载体包含pTR-UF5质粒的多核苷酸序列。pTR-UF5质粒是pTR.sub.BS-UF/UF1/UF2/UFB系列质粒的修饰形式(Zolotukiin等,1996;Klein等,1998)。

可用于本发明的启动子包括如巨细胞病毒立即早期启动子(CMV)、人延伸因子1-α启动子(EF1)、核小RNA启动子(U1a和U1b)、α-肌球蛋白重链启动子、猿猴病毒40启动子(SV40)、劳氏肉瘤病毒启动子(RSV)、腺病毒主要晚期启动子、β-肌动蛋白启动子和包含CMV增强子/β-肌动蛋白启动子的杂合调节元件。这些启动子在广泛的哺乳动物细胞中已被证明有活性。

启动子与编码一种或多种本文定义肽的异源多核苷酸有效连接。“有效连接”是指启动子元件相对于编码序列的位置使得能够实现编码序列的表达。

还考虑用于本发明载体的是诱导型启动子和细胞类型特异性的启动子,例如,Tet诱导型载体(Clontech,Palo Alto,Calif.)和VP 16-LexA(Nettelbeck等,1998)。

也可在载体中包含可提高给定启动子的转录水平的转录增强子元件。增强子一般可置于启动子序列的任何方向,3’或5’。除了天然增强子以外,本发明也可使用合成的增强子,例如可在载体中使用随机装配自Spc5-12衍生元件的合成增强子,包括肌特异性元件、血清应答因子结合元件(SRE)、肌细胞特异性的增强子因子-1(MEF-1)、肌细胞特异性的增强子因子-2(MEF-2)、转录增强子因子-1(TEF-1)和SP-1(Li等,1999;Deshpande等,1997;Stewart等,1996;Mitchell和Tjian,1989;Briggs等,1986;Pitluk等,1991)。

基因治疗方法可通过离体或体内处理患者的细胞或组织而进行。可用本领域中已知的方法将载体引入合适的细胞、细胞系或组织中。病毒颗粒和载体可在体外或体内被引入到细胞或组织中。所考虑的方法包括转染、转导、注射和吸入,例如,可通过直接用载体单独转染、电穿孔或颗粒轰击法,用包含本发明载体的脂质体将载体引入细胞中。

剂量

为了方便施用和制剂的均一性,将活性剂配制成单位剂型是特别有利的。本文使用的“单位剂型”是指合适作为受治者的单一剂量的物理上离散的单位,每个单位包含经计算产生所需治疗作用的预定量的活性剂以及所需的药物载体。单位剂型的规格直接依赖于并决定于活性剂的独特特征和所要实现的特定治疗作用,以及制备这些活性剂用于治疗受试者的领域中的固有限制。或者,组合物可以多剂量形式存在。

剂量单位的例子包括密封的安瓿和小瓶,并可在冷冻干燥条件下储存,仅需在临用前加入无菌的液体载体。

制剂或疫苗也可与使用说明一起包含于容器、包装或分配器中。

实际施用量(或剂量或剂型)和施用的速率和时程将取决于待治疗病症的性质和严重程度。治疗处方(例如,决定剂量、时间、频率等)在普通执业医师或专家(包括人医疗从业者、兽医或医学科学家)的责任之内,一般要考虑所治疗的疾病、受试者的病情、给药位点、施用方法和执业医师已知的其他因素。技术和实验方案的例子可在Remington′s Pharmaceutical Sciences,第18版(1990),Mack Publishing,Company,Easton,PA,U.S.A中找到。剂量、给药频率、时程、施用途径和是否需要维持治疗可以基于其他肽免疫治疗的标准。

有效量可以按每分钟、小时、天、周或月从ng/kg体重到g/kg体重来测算。

当体内施用本发明的制剂或疫苗时,根据给药途径,正常剂量可为每天约10ng/kg到高至100mg/kg哺乳动物体重或更多,优选约1μg/kg/天到10mg/kg/天。文献中提供了特定的剂量和递送方法的指导。

可通过细胞培养或实验动物中的标准药学操作,通过测定IC50和最大耐受剂量来确定制剂或疫苗的毒性和治疗效力。从这些细胞培养测定和动物研究中获得的数据可用于制定适于人类的范围。

诊断和治疗效力

本文定义的肽也可用作诊断剂。

在一个实例中,通过测量从受刺激的细胞(例如接触本文所定义肽的Treg细胞)中分泌的IL-10和/或TGFβ来评估谷蛋白耐受。Treg细胞的特征是能够产生大量的IL-10和/或TGFβ。IL-10被认为是一种与免疫抑制相关的主要细胞因子,抑制的靶标看来是效应细胞中IL-2的转录调控。

在另一个实例中,通过测量从受刺激的细胞(例如谷蛋白特异性CD4+T细胞)中分泌的IFNγ来测定谷蛋白耐受。

可在体外用全血或从其中分离和/或分级分离的细胞进行诊断测试。

在一个实例中,细胞之前暴露于一种或多种肽(单独的,缀合到MHC分子或其片段的,或装载肽的APC)。在另一实例中,通过与肽(单独的,缀合到MHC分子或其片段的,或装载肽的APC)共孵育来体外刺激细胞。

所述制剂的直接T细胞介导的作用可通过使用分离自外周血或组织(例如,小肠)的细胞进行功能测定来进行监测。肽施用对下游对应T细胞的作用可通过使用免疫细胞类型、组织、生物流体(例如血浆、肠分泌物、尿或粪便)来进行评估。

一般地,被对应T细胞识别的肽的生物学作用是促炎作用或致耐受作用,取决于给药方案、给药模式和肽是否被修饰或与其他具有免疫学特性的化合物(例如佐剂)共同施用。选择用于基于肽的治疗性疫苗的这些肽和其他肽一般很短(<29个氨基酸),可溶于水,没有先天免疫作用并可被相当大比例的致病性T细胞识别。基于在T细胞介导疾病的动物模型中和其他人类疾病中的观察,首次施用后将发生对应T细胞的活化。然而,重复施用该制剂预计将诱导T细胞无反应性和/或耐受。进行中的调节肽施用预计将维持对谷蛋白的耐受、抑制小肠中的炎症并在全身范围内抑制促炎的谷蛋白特异性T细胞。

因此,治疗成功的关键标志将是故意摄入谷蛋白后,小肠中没有炎症。可预计摄入谷蛋白后正常或炎症肠组织的代用标志物包括多种测定,其利用纯化的或粗制的免疫细胞混合物、生物流体或组织样品来测定可溶性或细胞相关性蛋白质或与免疫活化、炎症或耐受相关的小分子。这些测定为免疫学家、免疫组织学家和熟悉啮齿类和人类免疫疾病(尤其是乳糜泻)的临床医生所知。更具体地,评价乳糜泻的活动和谷蛋白所诱导免疫的标志物包括小肠组织学、血清IgA和IgG特异性的麦醇溶蛋白(蛋白或肽)和包括tTG在内的多种宿主蛋白。

可适用于监测乳糜泻的肽免疫治疗或用于乳糜泻诊断的通用的和特异性的乳糜泻免疫标志物包括:

(a)可以通过肽刺激的细胞因子释放、T细胞增殖或者测定可在体内改变的CD4+T细胞标志物,离体/在体外对从血液或组织中分离的CD4+T细胞的直接作用进行监测。

(b)对肽或谷蛋白具有特异性的各个CD4+T细胞的频率和表型一般可通过直接细胞计数进行评估,例如通过FACS分析。已知乳糜泻患者口服摄入谷蛋白并正常地继之以无谷蛋白一般会刺激对肽和谷蛋白具有特异性的T细胞。临床测试(例如谷蛋白攻击)可用于评价在血液或其他组织中诱导的T细胞。然后可在新鲜时或在短期体外扩增后评价所分离T细胞的表型。T细胞测定可依赖于MHC-肽复合物、抗原刺激的胞内细胞因子或在抗原活化的T细胞表面诱导的其他细胞表面标志物。CD4+T细胞的功能状态与多种细胞表面和胞内标志物(例如,活化标志物,包括CD25和CD69)或与“耐受”和调节性T细胞的功能(例如GITR和FOXP3)的存在相关。细胞因子(如IFNγ、IL-4、IL-5和IL-13,还有IL-17)的产生对于经典的Th1、Th2或Th17促炎免疫应答而言将被认为是促炎的。相反,IL-10和TGFβ的分泌与致耐受的免疫应答相关。可以预计,促炎免疫应答的标志物将降低和/或致耐受的免疫应答标志物将增强。

(c)肽对CD4+T细胞的作用也可用细胞混合物(例如全血、PBMC、分离自组织的单个核细胞)或与肽一起孵育的组织来测定。能够测定单独或多种蛋白或编码相关的免疫的或疾病相关蛋白(例如细胞因子和趋化因子)的RNA的测定可在与肽短期孵育后评价。在对患者施用谷蛋白或肽本身之前和/或之后用PBMC进行的测定(如IFNγELISpot)或用PBMC进行的趋化因子和细胞因子多重测定能够检测来自患者的肽特异性T细胞的生物学作用。肽的治疗作用将通过与促炎免疫应答相关的标志物转变成免疫耐受相关标志物(例如IL-10)以及促炎标志物(例如IFNγ)的总体减少来指示。

(d)肽对组织的作用可以是实际的;功能测定可以为直接将肽应用到皮肤上来评价延迟型超敏反应,像针对肺结核的Mantoux测试那样,其包括皮内应用PPD(纯化的蛋白衍生物)和24-72小时后评价注射位点红斑的直径。肽也可以同样方式用于其他粘膜和皮肤部位以进行评价。在临床实践中,肽和谷物来源的蛋白质所刺激的免疫应答在乳糜泻中都很重要。例如,预计用选定的肽进行的免疫治疗不仅可导致抑制对肽具有特异性的T细胞所刺激的免疫应答,而且“耐受”可以是“传染性”的,并导致对其他谷蛋白来源的肽和谷蛋白本身的促炎免疫的抑制。因此,也可使用来自多种谷物(小麦、黑麦、大麦)的谷蛋白代替上述描述的检测中的肽,来监测乳糜泻中肽治疗的作用。事实上,已经用这种皮肤测试监测了猫敏感性哮喘的肽治疗,其中应用了全蛋白抗原,该抗原是治疗肽的来源(Oldfield等,2002)。

(e)最终,肽免疫治疗的临床效果通过对接触膳食谷蛋白的组织进行组织学检查来评价,所述组织一般为小肠,但在实验设置中也评价了口腔和直肠粘膜,原则上其他部位(例如食管和结肠)也可进行评价。来自这些部位的组织可通过直接观察进行收集,一般是通过内窥镜活检来收集。内窥镜的直接可视化也已用于根据粘膜的外观来诊断乳糜泻——绒毛萎缩可通过标准方法以及放大和胶囊内窥镜进行评价。因此,肽的致耐受作用可简单地通过检测胃肠道的宏观组织损伤而评价。

(f)对所述肽或其他谷蛋白肽或乳糜泻相关自体抗原具有特异性的免疫球蛋白可提供与疾病活动和调理活性(其可降低肽本身的治疗效果)相关的谷蛋白免疫标志物。

(g)与过敏相关的标志物(例如对肽或谷蛋白具有特异性的IgE或组胺从外周血嗜碱性粒细胞中的释放)也可用于预测肽免疫治疗的并发症以及对调整或终止治疗的需要。

食品测试

本发明也提供确定组合物或食品是否能够引起乳糜泻的方法,该方法包括检测组合物或食品样品中本发明制剂、本发明肽和/或本发明多核苷酸的存在情况。这一般通过结合测定来进行,其中将与一种或多种本文所定义肽结合的一种或多种化合物以特异性方式与组合物相接触,并检测肽/化合物复合物的形成,并用于确定肽的存在。在一个实例中,所述化合物为抗体。可使用任何合适形式的结合测定。通常,所述测定将谷蛋白肽的单克隆抗体用于非竞争性夹层ELISA测定中。可以首先提取食品样品,任选地稀释,然后在测定中进行检测。

组合物或食品一般包括来自表达谷蛋白的植物的材料。这样的材料可以是植物部分,例如收获的产品(例如,种子)。所述材料可以是植物材料加工后的产品,例如,包含谷蛋白的面粉或食品。加工食品材料并用合适的结合测定来测试是常规的(参见例如Kricka,1998)。组合物或食品材料可在接触化合物前用tTG处理。

在一个实施方案中,组合物或食品材料与至少2、3、5、10或更多种抗体接触,这些抗体对本文定义的脱酰胺和/或不脱酰胺形式的肽具有特异性。优选地,所述抗体针对蛋白酶抗性序列,并允许在小麦中检测α、β、γ和ω麦醇溶蛋白以及LMW和HMW麦谷蛋白,在大麦中检测B、C和D大麦醇溶蛋白,在黑麦中检测β、γ和ω黑麦醇溶蛋白,并任选地在燕麦中检测燕麦谷蛋白。

针对本文定义的肽/表位的抗体可以以试剂盒的形式提供,以用于检测和/或定量食品中的谷蛋白的测定。

蛋白酶鉴定

本发明还包括鉴定可切割本文所定义肽的蛋白酶的方法,该方法包括使肽与蛋白酶在使得肽被特异性切割的条件下相接触以产生蛋白水解产物,并检测产生的蛋白水解产物。在一个实例中,使用例如SDS-PAGE、HPLC、ELIZA或Western Blot来检测蛋白水解产物。在另一实例中,肽被融合到荧光供体和猝灭性受体上,使得在荧光供体和猝灭性受体之间能发生分子内共振能量转移。切割后,供体和受体被分开,允许检测供体的荧光发射。通常,所述肽将荧光供体和猝灭受体分开少于约100埃的距离。荧光供体可附着到肽的C端,而猝灭受体可附着到肽的N端,或反之亦然。

实施例

实施例1:测定免疫优势肽

受试者

志愿者是年龄为18-70岁的成人,并严格地无谷蛋白饮食。通过用序列特异性引物混合物对外周血DNA进行的PCR确定,所有志愿者都具有编码HLA DQAB1*05和HLA DQB1*02的基因(Bunce等,1995;Olerup等,1993;Mullighan等,1997)。患有乳糜泻的志愿者依据ESPGAN标准诊断(欧洲儿童胃肠病学和营养学会工作者报告,1990)。进行谷蛋白攻击的乳糜泻受试者采用无谷蛋白饮食至少1个月,并且声明遵从(阳性tTG-IgA或EMA是排除标准)。健康的HLA DQ2受试者(肌内膜IgA阴性)在开始谷蛋白攻击之前遵循4周严格的无谷蛋白饮食。

三天的谷蛋白攻击

小麦攻击:早餐和午餐各2片50g的Sainsbury的“标准白三明治面包”(UK-用来评价试验库)或Baker′s Delight的“白面包块”。

大麦攻击:用珍珠大麦(Ward McKenzie,Altona,Australia)来烹制烩饭(150g干重/天)。将烩饭等分为早、中和晚餐。

黑麦攻击:以松饼的形式在一天中从早餐开始每天摄入100g干重的黑麦面粉。黑麦面粉的来源或是来自Long Ashton Research Station,UK“隔离”生长的黑麦,并然后手工磨制(用来评价试验库),或是来自Biodynamic黑麦面粉(Eden Valley Biodynamic Farm,Dumbleyung,Australia)。

小麦、大麦和黑麦组合攻击:每天吃由25g小麦面粉(White Wings,Goodman Fielder,Australia)、22g大麦面粉(Four Leaf Milling,Tarlee,South Australia)和22g黑麦面粉(Four Leaf Milling,Tarlee,South Australia)组成的两块松饼。

抗原

合成肽(纯度>70%)购自Research Genetics(USA)、Mimotopes(Australia)或Pepscan(Netherlands)。用豚鼠肝tTG(Sigma T5398)进行的脱酰胺以前描述过(Anderson等,2000)。肽(2mg/ml)或麦醇溶蛋白(Sigma G3375)在在碳酸氢铵(pH 8)中10倍过量的糜蛋白酶(Sigma C3142)或胰蛋白酶(Sigma T 1426)中在37℃孵育4小时,或与胃蛋白酶(Sigma P6887)在5%的乙酸(pH 2.5)中孵育4小时,之后用NaOH中和到7,并最终煮沸15分钟。醇溶谷蛋白浓度用BCA法测定(Pierce,USA)。大麦醇溶蛋白和黑麦醇溶蛋白级分制备自与其他谷物分开种植的黑麦和大麦,手工磨制面粉并依据已发表的方法(Tatham,A.S.,Gilbert、S.M.,Fido R.J.和Shewry,R.Extraction,separation,and purification of wheat gluten proteins and related proteins of barley,rye,and oats.:Marsh M编辑,Celiac disease methods and protocols.Totowa:Humana(2000)55-73页)分级分离。

肽文库

根据比对和种系发生来设计小麦、大麦和黑麦谷蛋白肽文库(“试验”库,参见序列表3和4),或将自定义的算法应用于NCBI 2006 Genbank中麦醇溶蛋白、麦谷蛋白、大麦醇溶蛋白和黑麦醇溶蛋白的条目的基因组编码(野生型)序列(“综合”文库),或根据定义的脱酰胺基序(Beissbarth,等,2005)应用于野生型和计算机模拟tTG脱酰胺序列(“验证”文库)。

表3:谷蛋白肽文库

ELISpot检测

如之前描述的那样,使用96孔板(MSIP-S45-10;Millipore、Bedford、MA)的IFNγELISpot测定(Mabtech、Sweden)用外周血单个核细胞(PBMC)进行,所述PBMC来自开始谷蛋白攻击后第6天8点到中午之间抽取的血液。简言之,ELISpot板用无菌俘获抗细胞因子抗体(1∶100浓度稀释于PBS中)包被(50μ/孔),并用锡箔包裹4℃过夜。临用前,每块板用无菌PBS洗3次,并在37℃下通过加入含10%FCS(50μl/孔)的RPMI封闭非特异性结合2小时。将5×浓度的抗原加入到每孔中(25μl),然后加入新分离的悬于完全培养基(100μl)中的PBMC,并在37℃下在5%CO2培养箱中孵育过夜(16-20小时)。然后弃去细胞和培养基,用冷的蒸馏水将板清洗一次,之后用含有0.05%吐温-20(Sigma P2287,St Louis,USA)的PBS清洗三次,并用PBS清洗三次(每次清洗为200μl/孔)。将生物素化的抗细胞因子mAb(1∶1000)(在含有0.5%FCS的PBS中稀释)(50μl/孔)在室温下孵育2小时。用PBS(200μl/孔)清洗6次,并加入链霉亲和素-ALP(1∶1000)(50μl/孔)并在室温下孵育1小时。清洗后,加入BCIP-NBT显色剂底物(50μl/孔)并使点显影。当点第一次可见时用冷水洗三遍终止显影。用计算机辅助视频影像分析系统(AID ELISpot Reader System,AID Autoimmun Diagnostika GmbH,Strassberg,Germany)计数各个孔中的点形成单位(spot-forming unit,SFU)的数目。结核分枝杆菌纯化蛋白衍生物(PPD RT49)(5μg/ml)和/或破伤风类毒素(CSL)(10光形成单位/ml)为阳性对照抗原。

分离T细胞克隆

在Leucosep管中使用Ficoll-Paque Plus从肝素处理的全血中分离PBMC。固有层单个核细胞(lamina propria mononuclear cell,LPMC)分离自小肠活检,先用PBS中1mM的DTT处理,然后在37℃下于2.4U/ml分散酶II(Dispase II)中孵育30分钟两次。之后将活检切碎并在37℃下在2U/mL Liberease Blendzyme3和RPMI中孵育1小时。PBMC和LPMC用PBS清洗三次。一般地,回收0.5到1×106个LPMC,并与一百五十万到三百万个200拉德辐照过的自体PBMC混合。

按以前的描述(Mannering等,2003;Mannering等,2005)用0.1μM CFSE对PBMC和LPMC染色,并以2×105个细胞/孔置于96孔板中。肽和蛋白抗原分别以32μg/mL和100μg/mL使用。7到10天后,用流式细胞术(FACS Aria,BD)测量CD4+的增殖。将CD4+CFSEdim PI细胞分选到培养基中含有2×105个PBMC(在2000拉德下辐照过)、2×104个JY-EBV(在5000拉德下辐照过)、20U/mL重组人IL-2,、5ng/mL重组人IL-4和30ng/mL抗CD3(OKT3)的96孔板的单孔中。2周中细胞每7天用含有细胞因子的培养基饲喂一次,终浓度为20U/mL IL-2和5ng/mL IL-4。第25天,鉴定生长的克隆并扩增到48孔板中,培养基包含20U/mL IL-2和5ng/mL IL-4。用3H-胸苷增殖测定或IFNγELISpot来测定抗原特异性。特异性克隆的大规模扩增在含有15ml培养基中30ng/mL OKT3、5×107个PBMC(在2000拉德下辐照过)和5×106个JY-EBV(在5000拉德下辐照过)的培养瓶中进行。24小时后,加入IL-2,终浓度50U/mL。第3天,清洗扩增物并重悬于25ml含有50U/mL IL-2的培养基中。第7天,将细胞被一分为二并用12.5ml含有终浓度50U/mL IL-2的培养基补足。第10天,用3H-胸苷增殖测定或IFNγELISpot来检测所扩增细胞的抗原特异性。

T细胞克隆的表征

采用IOTest Beta Mark(Beckman Coulter)来测试所扩增抗原特异性克隆的克隆形成能力。通过TCR Vβ链的PCR证实阴性克隆的克隆性。通过抗HLA-DR(10μg/ml克隆L243)和抗HLA-DQ(10μg/ml克隆SPVL3)的抗体来确定HLA限制。用ELISpot测定来确定对应抗原的克隆的IFNγ、IL-4、IL-5、IL-10、IL-13和IL-17分泌,其中使用来自HLA DQ2+HLA DQ8-供体的辐照过的APC(2000拉德)。在ELISpot或增殖测定中,使用对这些肽具有特异性的克隆对SEQ ID NO:228、229和230(分别为NPL001、NPL002和NPL003)进行赖氨酸扫描。

数据分析

当SFU高于单独培养基的4倍并高于10SFU/孔时,ELISpot应答被认为有显著性。当刺激指数(stimulation index,SI)大于3时,增殖测定被认为具有显著性。通过将SFU或SI表示为反应性最强的所测试肽、肽文库或混合物的百分比,将数据组针对供体之间或克隆之间的变异进行归一化。对反应性的肽和肽文库给予0到100之间的“分数”,其等于应答于至少一种肽或文库的供体的平均归一化应答。

实施例2:使用通过体内谷蛋白攻击诱导的新鲜的多克隆T细胞来确定主要的优势肽

在以前的研究中,已经发现谷蛋白特异性T细胞在HLA-DQ2+乳糜泻供体开始经口谷蛋白攻击后六天在血液中出现峰值。在第六天,来自乳糜泻供体的PBMC针对最佳浓度的经tTG处理的麦醇溶蛋白(500μg/ml)和α-麦醇溶蛋白p57-73 QE65(SEQ ID NO:8)(包括DQ2-α-I(SEQ ID NO:3)和DQ2-α-II(SEQ ID NO:4)表位)的IFNγELISpot应答有显著相关性(r=0.80、p<0.0001)。对17mer的中值IFNγELISpot应答是经tTG处理的麦醇溶蛋白(500μg/ml)的51%(n=17,范围:0-155%)。然而,α-麦醇溶蛋白p57-73 QE65(SEQ ID NO:8)不总是免疫优势的。在3/17的供体中,IFNγELISpot应答相当于经tTG处理的麦醇溶蛋白的少于5%(Anderson等,2005)。

基于这些观察,很清楚,除了α-麦醇溶蛋白p57-73 QE65(SEQ ID NO:8)和包含表位SEQ ID NOs:4和/或5以外的谷蛋白肽也一定对相当一部分通过体内谷蛋白攻击所诱导的T细胞产生刺激。本发明人不认为,使用α-麦醇溶蛋白p57-73 QE65(SEQ ID NO:8)和包含表位SEQ ID NOs:4和/或5的基于肽的免疫治疗本身就一致地靶向足够大部分的疾病相关谷蛋白特异性T细胞群。发明人提出:α-麦醇溶蛋白p57-73 QE65(SEQ ID NO:8)和包含表位SEQ ID NOs:4和/或5的肽是部分激动剂,与SEQ ID NO:8、4和/或5相关的序列可刺激显著更多的T细胞;或者在小麦、大麦或黑麦所表达的谷蛋白中存在包含免疫优势表位的其他肽。

同源性检索

几乎所有对α-麦醇溶蛋白p57-73 QE65(SEQ ID NO:8)的5个核心氨基酸(PELPY(SEQ ID NO:22))的替换都消除了谷蛋白攻击所诱导的外周血T细胞对其的识别。

在SwissProt和Trembl数据库中检索编码带有PELPY(SEQ ID NO:22)序列(等同的野生型序列PQLPY(SEQ ID NO:23))的17mer的谷物基因。发现13个小麦α-麦醇溶蛋白17mer具有PQLPY,1个在位置8-12具有PQLSY(SEQ ID NO:24),但没有一个具有序列PELPY。参照图1,显示了多种具有DQ2-α-I(SEQ ID NO:3)、DQ2-α-II(SEQ ID NO:4和DQ2-α-III(SEQ ID NO:5)T细胞表位的17mer的ELISpot应答,所述表位源自α-麦醇溶蛋白家族蛋白的高度多态性区域。图1显示了来自8个乳糜泻供体(开始小麦谷蛋白攻击后6天)的PBMC对14种天然存在的α-麦醇溶蛋白17mer(每个包含核心序列PQLPY(SEQ ID NO:23)或PQLSY(SEQ ID NO:24))的归一化IFNγELISpot应答。用或不用tTG预处理,或将9位的谷氨酰胺(Q9)替换为谷氨酸(E9),来评价17mer。数据以供体对α-麦醇溶蛋白p57-73 QE65(25μg/ml)的归一化ELISpot应答的均值±SEM表示。

两个与α-麦醇溶蛋白p57-73 QE65(SEQ ID NO:8)区别仅在于C端丝氨酸替换为脯氨酸或亮氨酸的17mer在用tTG预处理或将9位谷氨酰胺替换为谷氨酸时与SEQ ID NO:8一样有活性。包含DQ2-α-II(SEQ ID NO:4)以及DQ2-α-I(SEQ ID NO:3)或DQ2-α-III(SEQ ID NO:5)的17mer活化更多数目的T细胞。这些发现与Arentz-Hansen等,2000报道的一致,其中一组肠T细胞克隆识别11种结构不同的重组α-麦醇溶蛋白中的5种,仅仅是那些包含DQ2-α-I(SEQ ID NO:3)、DQ2-α-II(SEQ ID NO:4)或DQ2-α-III(SEQ ID NO:5)。α-麦醇溶蛋白p57-73的几种其他脱酰胺多态形式有弱活性,其中一个没有在Arentz-Hansen等,2000中研究的(PQPQPFLPQLPYPQPQS(SEQ ID NO:25;W09))几乎与用tTG预处理或具有9位谷氨酸(PQPQPFLPELPYPQPQS(SEQ ID NO:26))的包含DQ2-α-II(SEQ ID NO:4)和DQ2-α-III(SEQ ID NO:5)的17mer一样有活性。基于以前的α-麦醇溶蛋白p57-73 QE65的替换扫描,发明人采用了更宽松的检索来寻找带有核心序列PQ[ILMP][PST](SEQ ID NO:27)(Anderson等,2006)的同源物。

合成了12种麦醇溶蛋白、麦谷蛋白、大麦醇溶蛋白和黑麦醇溶蛋白序列,但仅有一种(ω-麦醇溶蛋白肽AAG17702(141-157))比仅用培养基更有活性。这一ω-麦醇溶蛋白肽PQQPFPQPQLPFPQQSE(SEQ ID NO:28;AAD17702(141-157))在用tTG预处理或9位为谷氨酸时(PQQPFPQPELPFPQQSE(SEQ ID NO:29)),活性为α-麦醇溶蛋白p57-73 QE65的32±6%(25μg/ml;均值±SEM、n=5个供体)。

肠克隆的表位和体内谷蛋白诱导的外周血多克隆T细胞

发明人之后评价了包含已报道的肠T细胞克隆表位的脱酰胺的15mer:GLIA-20PFRpQQPYPQ(SEQ ID NO:30)的脱酰胺形式PFRPEQPYPQ(SEQ ID NO:31)、DQ2-γ-I PQQSFPQQQ(SEQ ID NO:32)的脱酰胺形式PQQSFPEQE(SEQ ID NO:33)、DQ2-γ-II IQPQQPAQL(SEQ ID NO:34)的脱酰胺形式IQPEQPAQL(SEQ ID NO:35)、DQ2-γ-III QQPQQPYPQ(SEQ ID NO:36)的脱酰胺形式EQPEQPYPE(SEQ ID NO:37)、DQ2-γ-IV SQPQQQFPQ(SEQ ID NO:38)的脱酰胺形式SQPEQEFPQ(SEQ ID NO:39)、Glu 5QIPQQPQQF(SEQ ID NO:40)的脱酰胺形式QIPEQPQQF(SEQ ID NO:41)和Glt-156PFSQQQQSPF(SEQ ID NO:42)的脱酰胺形式PFSEQQESPF(SEQ ID NO:43),还有DQ2-γ-V LQPQQPFPQQPQQPYPQQPQ(SEQ ID NO:44)和α-麦醇溶蛋白p31-49LGQQQPFPPQQPYPQPQPF(SEQ ID NO:45)(范围是0.1-100μg/ml)。在8/9的HLA DQ2乳糜泻供体中,检测到了对脱酰胺的麦醇溶蛋白的IFNγELISpot应答(中值23,范围:13-153SFU/百万PBMC)。图2展示7个供体应答于脱酰胺的麦醇溶蛋白p57-73 QE65变体,其17位为亮氨酸QLQPFPQPELPYPQPQL(SEQ ID NO:46),包含DQ2-α-I(SEQ ID NO:3)和DQ2-α-II(SEQ ID NO:4(5μM),还应答于33mer LQLQPFPQPELPYPQPELPYPQPELPYPQPQPF(SEQ ID NO:2;脱酰胺的α2-麦醇溶蛋白56-88)(5μM),其包含重叠的串联重复DQ2-α-I(SEQ ID NO:3)和DQ2-α-II(SEQ ID NO:4)和DQ2-α-III(SEQ ID NO:5)。在最优浓度(50μM)下,所述17mer和33mer刺激的IFNγELISpot应答之间的无显著差异。一个供体对包含脱酰胺的DQ2-γ-IV(SEQ ID NO:39)的15mer有应答,但其他9个表位都不被小麦谷蛋白攻击后6天所收集的PBMC所识别。

发明人得到结论:在多数HLA-DQ2+乳糜泻个体中,包含DQ2-α-I(SEQ ID NO:3)、DQ2-α-II(SEQ ID NO:4)或相关的DQ2-α-III(SEQ ID NO:5)表位的肽对体内谷蛋白的T细胞刺激活性有显著贡献,但很多其他已发表的谷蛋白表位对体内谷蛋白接触后在血液中诱导的CD4+T细胞对肽的识别即便有一致的贡献也非常小。相反,可能具有强T刺激活性的其他序列可能由于仅有少数谷蛋白蛋白在功能检测中被系统地评价而被忽视。需要新的方法来全面评价来源于小麦、黑麦和大麦的候选T细胞表位对与乳糜泻相关的谷蛋白特异性T细胞应答的贡献。

综合的小麦麦醇溶蛋白的肽文库

2001年,在Genbank中有111个小麦α-、γ-和ω-麦醇溶蛋白条目。用跨越每个多肽的具有10-12个氨基酸重叠的15-20mer肽进行的CD4+T细胞表位作图的常规方法会产生不实用于合成和筛选的大文库。但用ClustalW进行的种系发生分析和麦醇溶蛋白序列比对分析表明,在每个麦醇溶蛋白种系发生亚家族之中和之间有显著的序列相似性(Anderson,1991)。多肽的比对和系统的(但非计算机辅助的)设计表明,有12个氨基酸重叠的652个成员的20mer文库足以包括之后显示在Genbank(见表3)中的111个麦醇溶蛋白的条目中独特的12mer。分成用或不用tTG预处理的83个库(最多8个肽)以后,该文库实用于在谷蛋白攻击(每个库一孔)之前和第6天后在过夜IFNγELISpot测定中用来源于100ml血液的PBMC进行筛选。然后可用另一份第7天收集的100ml血液来验证发现并评估阳性库中的各个肽。

T细胞应答对麦醇溶蛋白的肽库的疾病特异性

在最初的研究中,试验麦醇溶蛋白库用过夜ELISpot测定来测量血液中IFNγ分泌性T细胞的频率,所述血液来自经过长期无谷蛋白饮食(GFD)的HLA-DQ2+DQ8-乳糜泻供体(n=9),以及进食GFD四周的健康HLA-DQ2+DQ8-志愿者(n=9),四周的时间足以使谷蛋白攻击能在乳糜泻志愿者中诱导外周血T细胞(Anderson等,2005)。在健康供体中,对83个库中3个的应答提高在谷蛋白攻击后达到统计学显著性(p<0.05、Wilcoxon成对秩和检验),但不一致、弱、而且不受脱酰胺影响(见图3)。

9个乳糜泻受试者中有7个“应答者”,其在开始谷蛋白攻击后第6天至少一个肽库激发了超过10SFU/孔的应答,并高于仅用培养基(“背景”)时所诱导的4倍。在9个乳糜泻供体中,比较第6天和第0天的SFU,显著地诱导了对34个库(包括一个在谷蛋白攻击后也被健康供体弱识别的(库20))具有特异性的T细胞(p<0.05,单尾Wilcoxon成对秩和检验)。在乳糜泻供体中,tTG预处理增加了(p<0.05,单尾Wilcoxon成对秩和检验)识别经糜蛋白酶预处理的麦醇溶蛋白和所测试的11个肽库的外周血T细胞的频率。

为了根据库(或在后边的实验中,是肽)对总体麦醇溶蛋白特异性T细胞群的一致性和相对贡献来定义序位,根据“应答者”的平均值计算出在0和100之的一个分数——将第6天或第7天高于“背景”的IFNγ ELISpot(SFU/孔)应答表示为其对任何库(或肽文库)的最大反应的百分比。

在总计83个tTG处理的库中,18个(22%)在第6天具有超过10的“分数”,全部与第0天和第6天之间应答的显著诱导有关,而5/9和7/12的库在第6天分数分别在5和10之间或1和5之间,与第0和6天之间应答的显著诱导相关。6个其他库也有显著的应答诱导,但分数小于1。在后续的肽文库分析中,“分数”5或更高的库或肽被设置为T细胞应答的任意临界值(arbitrary cut-off),超过这一值被认为是“阳性”并可进一步进行作图。

从这一最初实验中,还很明显的是,应用麦醇溶蛋白肽库相对地效率较低,因为几乎1/4的库是阳性的并要求去卷积。在后续的实验中,评价单个肽,而不是库。为使尽可能多的肽能使用单次收集的300ml血的PBMC进行筛选,所有的肽都是tTG处理的(tTG处理与ELISpot反应的降低无关),并且仅在第6天或第0天筛选库。

在4/7“应答者”中,具有包含DQ2-α-I(SEQ ID NO:3)、DQ2-α-II(SEQ ID NO:4)和/或DQ2-α-III(SEQ ID NO:5)表位的20mer的α-麦醇溶蛋白库10或12最有活性,在其他3个应答者中,ω-麦醇溶蛋白库81最有活性。总体而言,α-麦醇溶蛋白库12的分数最高(78),而下一位是ω-麦醇溶蛋白库81(72)。库7-13、42-53、68和78-82中各个经tTG处理的肽用第7天收集自5/7反应者的PBMC进行评价(见图4)。

在所有的情况下,每个库中有几种肽有反应性。包含DQ2-α-II(SEQ ID NO:4)和DQ2-α-I(SEQ ID NO:3)和/或DQ2-α-III(SEQ ID NO:5)表位的肽被证实是在麦醇溶蛋白20mer文库中最有活性的,但库80和81中4个ω-麦醇溶蛋白20mer的活性为活性最高的α-麦醇溶蛋白20mer的活性的53-65%。所有这4个ω-麦醇溶蛋白20mer均包含与DQ2-α-I(SEQ ID NO:3和/或DQ2-α-II(SEQ ID NO:4)同源的序列:即包含于SEQ ID NO:28中的QPFPQPQQPFPW(SEQ ID NO:47;W03;B01)、PFPQPQQPIPV(SEQ ID NO:48;W04)、QPFPQPQLPFPQ(SEQ ID NO:49;W06),以及三个已报道在脱酰胺成EQPEQPFPQ(SEQ ID NO:51)的DQ2-γ-VII表位QQPQQPFPQ(SEQ ID NO:50)特异性小肠T细胞克隆识别的序列。

图5显示源自小麦攻击后乳糜泻供体的PBMC的IFNγ ELISpot应答,以对脱酰胺的PQQPQQPQQPFPQPQQPFPWQP(SEQ ID NO:52)(以前在WO 2005/105129中描述)的免疫原性区域精细作图。将用组织转谷氨酰胺酶处理的跨越SEQ ID NO:52的15mer表示为每个供体的最有活性的15mer的百分比(均值+SEM,n=8)(A)。SEQ ID NO:52的T细胞刺激活性几乎可完全归功于包含DQ2-α-I(SEQ ID NO:3)和DQ2-α-II(SEQ ID NO:4)同源物的脱酰胺序列QPFPQPQQPFPW(SEQ ID NO:47)。图5B显示源自小麦攻击后乳糜泻供体的PBMC的IFNγ ELISpot应答,按对Q3 El0变体的最大单个供体应答进行归一化(均值+SEM,n=6)。Q10从QPQQPFPQPQQPFPWQP(SEQ ID NO:53)脱酰胺成QPQQPFPQPEQPFPWQP(SEQ ID NO:54)足以传递最适免疫原性,而双脱酰胺序列QPEQPFPQPEQPFPWQP(SEQ ID NO:55;W03-E7)在生物活性上是等同的。图5C显示源自小麦(n=7)、大麦(n=9)或黑麦(n=10)攻击后乳糜泻供体的PBMC的IFNγ ELISpot应答,对单个供体最有活性的赖氨酸替换15mer进行归一化(均值+SEM)。NPL002:pyroEQPFPQPEQPFPWQP-酰胺(SEQ ID NO:229)(32μg/ml)的中心PQPEQPF序列(SEQ ID NO:272)的赖氨酸替换消除了该肽的生物活性。将来自HLA DQA1*05 DQB1*02纯合子的PBMC与具有抗-HLA-DQ(但非DR)的纯合子进行的预赋予消除了对该肽的过夜IFNγ ELISpot应答(数据未显示)。

在最初实验中观察到的肽序位通过单独评价试验麦醇溶蛋白文库中所有652个个体20mer来进行验证,其中使用从另外13个HLA-DQ2+8-供体中小麦攻击后6天收集的PBMC(见图4)。同样,包含DQ2-α-II(SEQ ID NO:4)和DQ2-α-I(SEQ ID NO:3)和/或DQ2-α-III(SEQ ID NO:5)的20mer之间没有明显的活性差异,提示新鲜的多克隆T细胞很少存在对DQ2-α-I(SEQ ID NO:3)有特异性而对DQ2-α-III(SEQ ID NO:5)无特异性的情况,或相反的情况。

将来自6个HLA-DQ2+8+乳糜泻供体小麦攻击开始后第6天的PBMC用于筛选试验麦醇溶蛋白文库中652种单个20mer中的每一个(见图4)。在HLA-DQ2+8-乳糜泻供体中最有活性的α-麦醇溶蛋白肽也在谷蛋白攻击后的4个HLA-DQ2+8+乳糜泻供体中最有活性。

将来自6个HLA-DQ2+8+乳糜泻供体3天纯黑麦攻击开始后第6天的PBMC用于筛选试验麦醇溶蛋白文库中652种单个20mer中的每一个(见图4)。T细胞刺激性麦醇溶蛋白20mer的序位与小麦攻击后观察到的序位存在明显差别(见图4)。在黑麦攻击后血液中通过过夜IFNγ ELISpot测定测得的T细胞很少识别包含DQ2-α-I(SEQ ID NO:3)、DQ2-α-II(SEQ ID NO:4)或DQ2-α-III(SEQ ID NO:5)表位的20mer。相反,包含QPFPQPQQPFPW(SEQ ID NO:47)和QPFPQPQQPIPV(SEQ ID NO:48)的ω-麦醇溶蛋白20mer是免疫优势的。

这一观察提示,尽管在体外针对抗脱酰胺的小麦谷蛋白或麦醇溶蛋白产生的T细胞克隆在其识别免疫优势麦醇溶蛋白肽时经常是混杂的(如Vader等,2003报道的),但通过体内谷蛋白攻击产生的新鲜的多克隆T细胞确实会区分密切相关的序列。因此,Vader等,2003的结论,即来自大麦和黑麦的大麦醇溶蛋白和黑麦醇溶蛋白的T细胞刺激活性基本归功于PFPQPQQPF(SEQ ID NO:9)和PQPQQPFPQ(SEQ ID NO:11)序列的脱酰胺变体(与DQ2-α-I(SEQ ID NO:3)和DQ2-α-II(SEQ ID NO:4)同源),并未用来自体内黑麦攻击后的乳糜泻供体的新鲜PBMC得到证实。另外,很明显,体内黑麦攻击诱导的对优势序列QPFPQPQQPFPW(SEQ ID NO:47)和PFPQPQQPIPV(SEQ ID NO:48)具有特异性的T细胞中很大一部分并不识别DQ2-α-I(SEQ ID NO:3)、DQ2-α-II(SEQ ID NO:4)或DQ2-α-III(SEQ ID NO:5)表位。

另外,与对免疫优势的α-和ω-麦醇溶蛋白肽具有特异性的T细胞相比,对很多针对麦醇溶蛋白特异性T细胞克隆报道的表位具有特异性的T细胞对小麦攻击后第6天在血液中呈现总体麦醇溶蛋白特异性T细胞群的没有或几乎没有贡献(见图2)。因此,发明人得到结论,以前针对体外肠T细胞系和克隆报道的免疫优势性和谷蛋白表位相关性经常与新分离自体内谷蛋白攻击后乳糜泻供体的多克隆T细胞过夜测定不一致。

之后,发明人寻求在HLA-DQ2+8-乳糜泻供体中证实T细胞刺激性肽的序位并扩展至所有面包用小麦(T.aestivum)、大麦和黑麦的谷蛋白肽。为了应对NCBI Genbank中数目不断增加的谷蛋白并设计LMW麦谷蛋白、HMW麦谷蛋白、大麦醇溶蛋白和黑麦醇溶蛋白的肽文库,发明人开发了新的算法来设计尽可能小的可容纳所有独特序列的自制文库,例如更长肽(例如20mer)中的12mer。Beissbarth,T.等人2005。包括所有独特12mer的20mer文库允许用来自两份300ml血液样品中的PBMC来评价小麦谷蛋白,而对于大麦醇溶蛋白和黑麦醇溶蛋白,各自只用一份300ml血液。设计并合成了综合的20mer文库,作为筛选等级Pepset(见表3),其包括2003年6月Genbank中多肽条目中的所有独特的12mer,其中小麦的麦醇溶蛋白(108条,721种20mer,包括4465种独特的12mer候选表位)、LMW麦谷蛋白(77条,645种20mer,3945种12mer候选)和HMW麦谷蛋白(55条,786种20mer、4799种12mer候选),大麦的麦醇溶蛋白(59条,416种20mer、2672种12mer候选)、和黑麦的黑麦醇溶蛋白(14条,155种20mer,957种12mer候选)。

HLA-DQ2+8-乳糜泻供体中三天小麦攻击开始后第6天收集的PBMC用于筛选经tTG处理的麦醇溶蛋白文库和一半LMW麦谷蛋白文库(n=20),以及另一半LMW麦谷蛋白文库和HMW麦谷蛋白文库(n=26)。将开始大麦攻击后6天21名乳糜泻供体的PBMC用于筛选大麦醇溶蛋白文库,而开始黑麦攻击后6天另外19名供体的PBMC用于筛选黑麦醇溶蛋白文库。小麦攻击后,对经tTG处理的Pepset文库的肽的IFNγ ELISpot应答在27/46供体中高于背景水平,而大麦攻击后为12/21,黑麦攻击后为8/19。

为了选择在“第二轮”文库中用于精细作图的20mer,发明人修改了用于分析微阵列数据的预期最大化(expectation maximization,EM)法(Beissbarth等(2005))。所有单独的供体数据库用EM算法分析,以得到变量λ和p来描述对每个20mer的IFNγ ELISpot应答。变量λ描述IFNγELISpot应答的相对强度,而变量p描述供体应答的比例。如果λp的乘积至少为每种谷物活性最高的第一轮文库肽的5%,将每个这样的第一轮文库20mer在第二轮文库中精细作图。

第二轮库通过将选取的20mer减少到9个重叠的12mer来设计。如果任何12mer包含7位谷氨酰胺,并与tTG定义的脱酰胺基序(QX1PX3或QX1X2[F,Y,W,I,L,V]、其中X1和X3不是脯氨酸)一致,那么设计16mer,其中7位有谷氨酰胺的12mer的侧翼为-1位和13位的天然残基以及-2位和14位的甘氨酸。这种策略允许中间潜在的脱酰胺谷氨酰胺残基容纳在任何潜在的9mer HLA-DQ2-肽结合序列中4、6或7位的锚着位点。如果选取的20mer不包括任何7位有谷氨酰胺的12mer序列,那么合成两个12个残基重叠的16mer。还合成了一些带有易被tTG介导脱酰胺的中央谷氨酰胺残基的第二轮16mer,其中用谷氨酸替换谷氨酰胺(计算机模拟脱酰胺)。

小麦第二轮文库由551个16mer(包括113谷氨酸替换的16mer)组成,用小麦攻击后34个乳糜泻供体(包括26个应答者)来源的PBMC测试。大麦文库有89个16mer,其中包括9个谷氨酸替换的,用大麦攻击后10个乳糜泻供体(包括8位反应者)的PBMC测试。而黑麦文库有64个16mer,其中包括11个谷氨酸替换的,用黑麦攻击后11位乳糜泻供体(包括11位反应者)的PBMC测试。

明确地展示了每种谷物的刺激性肽的序位(见图6)。在组合的麦醇溶蛋白试验文库中的652个20mer和综合文库中的2723个20mer中,34个(1%)的分数≥30,300(9%)分数≥5,而2111个分数为0。300个分数≥5的经tTG处理第一轮20mer中的171个(57%)产生了分数≥5的第二轮经tTG处理16mer,而在这些第二轮16mer中有89个特有序列(见图7)。这89个在二轮中证实的T细胞刺激性序列包括32个源自麦醇溶蛋白的,1个来自LMW麦谷蛋白的,4个来自HMW麦谷蛋白的,30个来自大麦醇溶蛋白的和29个来自黑麦醇溶蛋白的,5个是两种谷物的醇溶谷蛋白家族中共有的,一个是三种谷物中的醇溶谷蛋白家族中共有的。

所有89种已证实的T细胞刺激性16mer均包含脯氨酸和/谷氨酰胺。

第二轮肽在通过tTG脱酰胺后,生物活性与将预计易受tTG作用的谷氨酰胺残基替换为谷氨酸的合成肽的活性相同(数据未显示)。

要求脱酰胺的例外是密切相关但不经常被识别的HMW麦谷蛋白16merW21 QGQQGYYPISPQQSGQ(SEQ ID NO:91)、W22 QGQPGYYPTSPQQIGQ(SEQ ID NO:92)、W24 PGQGQSGYYPTSPQQS(SEQ ID NO:95),和W29 GQGQSGYYPTSPQQSG(SEQ ID NO:104),和麦醇溶蛋白W36 QYEVIRSLVLRTLPNM(SEQ ID NO:116)。对于特定的乳糜泻供体,如果肽在该供体中诱导出每个文库中最有活性的肽的至少70%应答,则该肽被认为是“优势”的。在小麦、黑麦和大麦第二轮中,10个16mer和31个12mer及其相应的谷氨酸替换序列(SEQ ID NO:47、48、56、57、58、59、60、61、62、63、64、65、66、67、68、75、76、77、78、79、80、81、89、90、91、92、95、102、103、104、116、117、118、119、120、121、122、123、124、125、126、127、128、129、130、131、132、133、136、169、170、171、172、173、174、177、178、179、180、183、184、187、188、189、190、191、192、209、210)在至少一个供体中是优势的,只有4个16mer和21个12mer(及其对应的谷氨酸替换变体)在超过10%的供体中是优势的(SEQ ID NO:47、48、56、57、58、59、60、61、62、63、64、80、81、119、120、121、122、123、124、125、126、127、128、129、130、131、132、133、136、169、170、171、172、173、174、179、180、183、184、187、188、191、192)。分数最高的第二轮来自小麦谷蛋白、大麦醇溶蛋白和黑麦醇溶蛋白的16mer在超过50%中是优势的,总共被超过80%的供体识别。

刺激性肽的序位和优势性根据所食用谷物的不同而显著不同(见图8)。具有序列基序QQPFPQPEQP(F,I)P(W,L,Y,Q)(Q,S)的肽的刺激能力对任何谷物都不是特异性的,ω-麦醇溶蛋白17mer W03-E7 QPEQPFPQPEQPFPWQP(SEQ ID NO:55)一直是本家族中最有活性的,并且是谷蛋白中通用的优势T细胞刺激性肽。其他的肽几乎都仅对一种谷物有优势。例如,α-麦醇溶蛋白17mer QLQPFPQPELPYPQPQP(SEQ ID NO:225;包含SEQ ID NO:62(W02-E7),后者包含DQ2-α-I(SEQ ID NO:3)和DQ2-α-II(SEQ ID NO:4))仅在小麦谷蛋白攻击后有优势性,大麦醇溶蛋白16mer B08-E7 PQQPIPEQPQPYPQQP(SEQ ID NO:318;包含SEQ ID NO:127(B06-E7))仅在大麦谷蛋白攻击后有优势性,而黑麦醇溶蛋白序列QPFPQQPEQIIPQQ(SEQ ID NO:323;包含SEQ ID NO:190(R11-E7))仅在黑麦谷蛋白攻击后有优势性。其他包含基序QPFP(W,L,Y,V,I)QPEQPFPQ的肽在大麦或黑麦攻击后引发比小麦谷蛋白攻击更强的应答。优势T细胞刺激肽的“谷物特异性”提供了对T细胞识别冗余度的功能定义,有助于基于T细胞克隆测定交互反应性的常规测定方法。

T细胞克隆是针对优势脱酰胺肽从乳糜泻供体的肠活检或PBMC中产生的。T细胞克隆的细胞因子谱是Th1或Th0,均为HLA-DQ2限制性。最小核心序列是用亲本肽的酪氨酸扫描测定的。针对NPL001(SEQ ID NO:228)产生的T细胞克隆对DQ2-α-I(SEQ ID NO:3)或DQ2-α-II(SEQ ID NO:4)有特异性,而针对NPL002(SEQ ID NO:229)产生的则对DQ2-ω-I PFPQPEQPF(SEQ ID NO:10)或DQ2-ω-II PQPEQPFPW(SEQ ID NO:15)有特异性。针对NPL003(SEQ ID NO:230)产生的单个T细胞克隆对DQ2-Hor-I PIPEQPQPY(SEQ ID NO:17)和完全脱酰胺变体SEQ ID NO:189、pyroEQPFPEQPEQIIPQQP-酰胺(SEQ ID NO:226;NPL004)(核心9mer未测定,DQ2-SEC-I)有特异性。另一个针对脱酰胺的麦醇溶蛋白产生的克隆对W11-E7 QAFPQPEQTFPH(SEQ ID NO:74)(9mer核心未测定)有特异性。每个克隆都针对第二轮经tTG处理的麦醇溶蛋白/麦谷蛋白、大麦醇溶蛋白和黑麦醇溶蛋白文库进行筛选,并进一步地针对验证18mer文库进行筛选(见表3),该文库包含小麦的麦醇溶蛋白、大麦的大麦醇溶蛋白和黑麦的黑麦醇溶蛋白的野生型序列和计算机模拟脱酰胺(根据tTG脱酰胺进行,用谷氨酸替换谷氨酰胺)所编码的全部独特10mer。优势刺激性肽的克隆几乎没有交叉反应性,但对很多亚优势谷蛋白肽的肽识别有显著的冗余。总共,对DQ2-α-I(SEQ ID NO:3)、DQ2-α-II(SEQ ID NO:4)、DQ2-ω-I(SEQ ID NO:10)、DQ2-ω-II(SEQ ID NO:15)、DQ2-Hor-I(SEQ ID NO:17)和DQ2-Sec-I(SEQ ID NO:226)(存在于4个优势T细胞刺激肽,W02-E7、W03-E7、B08-E2E7和R11-E4E7中,分别为SEQ ID NO:分别为62、55、319、322)这六个表位有特异性的11个克隆识别了图7中被证实为刺激性肽的22/37的麦醇溶蛋白/麦谷蛋白、26/30的大麦醇溶蛋白和22/29的黑麦醇溶蛋白。

用谷蛋白攻击后HLA-DQ2+乳糜泻供体中收集的PBMC进行IFNγ ELISpot测定,所述谷蛋白攻击应使用小麦、大麦和黑麦面粉的等量混合物制成的松饼进行,该检测用于比较对W02-E7、W03-E7、B08-E2E7和R11-E4E7(分别为SEQ ID NO:62、55、319、322)和非典型的稀有优势麦醇溶蛋白肽W36(SEQ ID NO:116)和燕麦的燕麦谷蛋白同源物Av-α9A QYQPYPEQEQPILQQ(SEQ ID NO:323;见图9A)具有特异性的T细胞的相对频率。对最佳浓度的W02-E7、W03-E7、B08-E2E7(SEQ ID NO:62、55、319;鸡尾酒2)等摩尔混合物的应答与6种肽的混合物没有不同,但明显地高于W02-E7(SEQ ID NO:62)和/或W03-E7(SEQ ID NO:55)。当在小麦、大麦或黑麦谷蛋白攻击后评价混合物2(50μM)时,其刺激的IFNγ ELISpot应答等于最佳浓度的经tTG处理的麦醇溶蛋白、大麦醇溶蛋白或ω-黑麦醇溶蛋白(320μg/ml)分别刺激的反应的至少三分之二(见图9B,C和D)。

为提高化学稳定性并提高对外源肽酶的抗性,肽被合成为“加帽的”N-焦谷氨酸、C-酰胺的乙酸酯形式:NPL001(SEQ ID NO:228)、NPL002(SEQ ID NO:229)和NPL003(SEQ ID NO:230)15mer或16mer,在预测可被tTG脱酰胺的位点具有谷氨酸。事实上,加帽延长了肽的半衰期,从游离肽NPL033、NPL038和NPL034(SEQ ID NO:13、320和321)在成体大鼠中皮内推注0.9mg/0.1ml后的10到12分钟延长到具有N-焦谷氨酸和C-酰胺(SEQ ID NO:228、229和230)之形式的26至28分钟,或延长到具有N-乙酰和C-酰胺(SEQ ID NO:231、232和233)之形式的19至24分钟(见表4)。通过曲线下面积分析测量的生物利用度在添加N-焦谷氨酸或N-乙酰基和C-酰胺加帽后也显著增加高达34倍。

表4.衍生的T细胞刺激肽的药代动力学情况

皮内推注0.1ml盐水中0.9mg NPL001+2+3、NPL033+38+34或NPL030+31+32的等摩尔混合物后的T1/2半衰期和AUC曲线下面积(生物利用度)

发明人的发现支持这一观念:包含NPL00l(SEQ ID NO:228)、NPL002(SEQ ID NO:229)和NPL003(SEQ ID NO:230)中所存在表位的肽是优势的、非冗余的并一致地贡献了谷蛋白T细胞刺激活性的一大部分。这3个肽或它们中的表位因此可在设计可一致用于HLA-DQ2相关性乳糜泻的基于肽的治疗性疫苗或功能诊断剂中起关键作用。

这些发现强调,依赖于扩增稀有抗原特异性T细胞的体内方法经常不一定得到急性疾病反应后的体内相关表位。事实上,在本研究中鉴定的大多数非冗余的优势T细胞刺激肽没有在以前应用T细胞克隆和细胞系的功能研究中描述过。因为使用病原性抗原体内诱导的T细胞进行的综合表位作图以前尚未进行过,所以本研究提供了对人类免疫疾病相关表位体外作图的第一次真实测试。现有技术并未描述这种方式:即选择非冗余的优势T细胞刺激性表位用于基于肽的免疫治疗,以使靶向最多患者的T细胞数目尽可能多,同时也使肽的数目尽可能小,以简化制备。

然而,额外的肽很可能增加T细胞刺激能力和小麦、大麦或黑麦攻击后供体T细胞对该混合物的应答的一致性。“分数”最高但不被DQ2-α-I(SEQ ID NO:3)、DQ2-α-II(SEQ ID NO:4)、DQ2-ω-I(SEQ ID NO:10)、DQ2-ω-II(SEQ ID NO:15)、或DQ2-Hor-I(SEQ ID NO:17)特异性的T细胞克隆所识别的谷蛋白肽最可能进一步提高混合物的T细胞刺激能力。提高被肽混合物一致靶向的谷蛋白特异性T细胞的比例,这很可能改进其治疗或诊断HLA-DQ2+8-乳糜泻的应用,但也可使制备复杂化、降低化学稳定性并增加不良反应的可能性。

另一方面,NPL001(SEQ ID NO:228)可替换为单个肽,例如,包括序列LPYPQPELPYPQ(SEQ ID NO:60;W01-E7),其可被DQ2-α-I(SEQ ID NO:3)特异性的T细胞克隆和DQ2-α-II(SEQ ID NO:4)特异性T细胞克隆所识别。或者,NPL001(SEQ ID NO:228)可替换为两个独立的肽,一个被DQ2-α-I(SEQ ID NO:3)特异性的T细胞克隆识别,而另一个被DQ2-α-II(SEQ ID NO:4)特异性的T细胞识别。相同的原理可应用于NPL002(SEQ ID NO:229)和NPL003(SEQ ID NO:230)。这对改善制备和稳定性有利。

实施例3:小鼠模型中的NexVax2

当食用谷蛋白时,基于肽的治疗性疫苗诱导谷蛋白临床耐受并减轻乳糜泻的最佳施用和剂量方案尚不知晓。然而,任何基于肽的治疗的必要特征将是其在靶器官内体内激活相应T细胞的能力。

已通过开发在抗原呈递细胞(APC)上表达功能性HLA-DR3和-DQ2(但不是鼠II类MHC分子)的转基因Black-6小鼠而建立了NPL001(SEQ ID NO:228)与其相应T细胞的体内相互作用的模型,所述APC被转移3×106个CFSE标记的对NPL001具有特异性的CD4+T细胞(Chen Z.等,2006)。供体小鼠(HH8-1)由于转基因而在T细胞上表达NPL001特异性T细胞受体和人CD4,还在APC上表达HLA-DR3DQ2。HH8-1小鼠中,总共96%的CD4+T细胞是克隆的,并对NPL001有特异性(结果未显示)。

在50μl盐水中皮下施用NPL001、NPL002和NPL003的等摩尔混合物后四天(在后脚跗关节),收集脾、肠引流肠系膜淋巴结(MLN)和局部引流腘淋巴结(PLN)。将分离的单个核细胞对hCD4染色,并在HH8-1 NPL001特异性T细胞上表达T细胞受体α-和β链(Vα8和Vβ8)。转移的CFSE标记细胞的增殖通过发生一次或多次分裂的CFSE+细胞的百分比来测算,如稀释CFSE染色所示的那样。图10显示,在皮下施用0.9到30μg后观察到NPL001特异性T细胞的剂量依赖性增殖,5μg时达到最大应答的一半。尽管T细胞具有Th1表型并在NPL001刺激下分泌IFNγ,但这些剂量和高至900μg的剂量下未观察到临床毒性。

这一小鼠模型使得可以证明施用NexVax2治疗性疫苗(盐水中NPL001、NPL002和NPL003的等摩尔混合物)后诱导耐受的(i)原理论证(proof-of-principle),(ii)作用机制和(iii)给药方案的优化。在以前的小鼠研究中,发明人已证明,单剂量的NexVax2或相关肽组分NPL001在体内有生物活性。以要在Ib期临床试验中施用的最高剂量施用NPL001时,在过继转移模型中诱导了HH8-1麦醇溶蛋白特异性T细胞的增殖。随后测定活化转基因的NPL001特异性T细胞的剂量应答。基于这一初步数据,NexVax2治疗性疫苗调节麦醇溶蛋白特异性T细胞应答的能力和作用机制可在生物学上相关的小鼠模型中解决。

本研究的目标是确定使用设计用于诱导免疫耐受的重复方案施用治疗性疫苗NexVax2是否能够在麦醇溶蛋白特异性TCR-Tg小鼠模型中调节麦醇溶蛋白特异性T细胞应答。

标识动物、分配到实验组并按如下的表5处理。

表5.将动物分配到实验组

选择皮内/皮下途径施用是因为这是要在人体中施用的途径。剂型选择成覆盖从在过继转移模型中导致刺激所有麦醇溶蛋白特异性T细胞的剂量应答范围(10μg)到在前述研究中(Nexpep3)不导致CFSE标记的麦醇溶蛋白特异性TCR-Tg T细胞增殖的低剂量(0.3μg)。

所有的肽都是GMP级的。制剂由Nexpep Pty Ltd制备,肽的浓度按纯度调节。NexVax2由3种肽(NPL001、NPL002和NPL003)组成,各为6mg/ml盐水。

所述剂量是每种肽在NexVax2中的量,而非总的肽浓度(即,10μg NexVax2包含10μg NPL001、10μg NPL002和10μg NPL003)。NPL001以6mg/ml盐水提供。注射前肽储存于-80℃。

动物和管理

所有实验均经过墨尔本大学动物伦理委员会(AEC,注册号No0707287)的批准。

使用了14只C57BL/6背景的雌性HH8-1和4hCD4.IAE-/-.DR3.DQ2转基因小鼠。所有小鼠都在墨尔本大学微生物学和免疫学系动物中心饲养。以Specialty Feeds Pty Ltd,Perth Western Australia提供的无谷蛋白饮食(SF07-036)饲养小鼠。根据动物中心操作规程,每只动物耳部打孔编号,对应于动物的编号,用于在研究中对动物进行标识。在不锈钢格顶和硬底笼中单独或4只小鼠一组饲养。木屑用作垫料,棉纸用作絮窝材料。每笼都提供装有酸化水的水瓶和装有无谷蛋白鼠粮的食槽。室内维持在21℃到24℃。相对湿度为37-58%。运行12小时昼夜循环(白昼时间为0700-1900),每小时最少换气15次。

将NexVax2用无菌盐水稀释到200μg/ml,分装并保存在-80℃备用。对于每次处理,解冻一份并用无菌盐水稀释。在雌性HH8-1小鼠(n=2)的肋部皮下注射50μl含有稀释在盐水中的剂量递增的NexVax2(10μg、3μg、1μg和0.3μg)或单独的盐水。每天注射小鼠,共14天。一只小鼠在治疗方案的最后一天接受10μg单剂量的NexVax2。

每天监测小鼠注射部位的肿胀或刺激性、不良全身应答的症状(弓背或竖起的外观、嗜睡、震颤、垂死)。记录任何迹象的发生、强度和持续时间。

施用肽之前,在球后窦取血,并在完成实验时在CO2麻醉后心脏穿刺取血。血液储存于4℃过夜,除去凝块,离心后收集血清。血清存储于-80℃,用于将来的必要分析。

最后一次施用肽后3天,通过CO2麻醉处死小鼠并收集脾。通过70μm尼龙细胞筛网来制备单细胞悬液。通过Tris氯化铵裂解从脾中除去红细胞。用CD4+细胞分离试剂盒(Miltenyi Biotech)根据厂商的说明书,通过负消耗分离CD4+细胞。从4只初次接受实验的HH8-1小鼠的脾中应用相同的实验方案富集麦醇溶蛋白特异性T细胞。从三只hCD4.IAE-/-.DR3-DQ2转基因小鼠的脾中制备APC。如上述制备单细胞悬液。在作为APC使用之前,用γ射线辐照(2,200拉德)脾细胞。

用抗体染色和FACS分析来显现细胞表型。通过用TCR Vα8.3和人CD4染色和用抗CD25和抗GITR的单克隆抗体进行表面染色,来鉴定麦醇溶蛋白特异性CD4+T细胞。根据厂商的说明书,用FoxP3染色试剂盒(eBiosciences)检测细胞内FoxP3的表达。用FACS固定液(1%多聚甲醛、2%葡萄糖的PBS溶液)固定样品,并在LSR II(BD Bioscience)中用流式细胞术分析。PMA/伊屋诺霉素刺激后,用胞内细胞因子染色来鉴定产生IFNγ和IL-10的T细胞。

简言之,将所处理小鼠中的1×106个脾细胞在完全DMEM培养基(DMEM,补充10%热灭活的胎牛血清、2mM谷氨酰胺、非必需氨基酸、50μM 2-巯基乙醇、青霉素和链霉素)和5μg/ml布雷菲德菌素A(加入或不加入50ng/ml PMA和500ng/ml伊屋诺霉)中培养6小时。之后染色细胞表面分子(TCR Vβ8.3和人CD4),清洗,然后用1%多聚甲醛固定30分钟,清洗两次并与PBS稀释的含有0.2%皂苷的抗IFNγ和抗-IL-10抗体一起孵育。用LSR II(BD Bioscience)对样品进行流式细胞术分析,对TCR Vβ8.3+、人CD4+淋巴细胞设置门控。

在37℃/5%CO2下,在存在或不存在2μg/ml NPL001的情况下,在圆底96孔板板中以含有3×105个经γ射线辐照的APC的完全DMEM培养基一式三份培养纯化自每只小鼠的2×104个T细胞。培养72小时后,收集上清液并储存在-80℃以分析细胞因子的分泌。

根据厂商的说明书,通过细胞珠阵列flexset(CBA、BD Bioscience)测试样品中小鼠IL-2、IL-4、IL-5、IL-6、IL-10、IL-12p70、TNFα和IFNγ的存在。用FACS Canto(BD Biosciences)对样品进行流式细胞术分析,用FCAP阵列软件(BD Bioscience)分析数据。

不稀释或1∶10稀释后检测来自培养的脾细胞的上清液。根据提供的2500-10pg/ml稀释的标准品来测定细胞因子的浓度。

将从NexVax2处理的HH8-1小鼠中纯化的2×104个CD4T细胞与辐照过的同基因脾细胞(2,200拉德、3×105个/孔)共培养,在0、0.02、0.2、2或10μg/ml NPL001肽存在下,一式三份。为进行抑制检测,在亚最佳浓度的NPL001肽(0.2μg/ml)和APC存在下,将2×104个幼稚HH8-1 CD4T细胞(应答者)与等数量(1∶1)的来自NexVax2处理小鼠的CD4+T细胞、递增量的NPL001肽和经辐照的同基因脾细胞(2,200拉德、3×105个/孔)一起培养。在另一测定中,在亚最佳浓度的NPL001肽(0.2μg/ml)和APC存在下,将幼稚应答者与来自NexVax2处理小鼠的CD4+T细胞以应答者:抑制者为1∶1、3∶1和9∶1的比例一起培养。

在96小时培养的最后24小时,通过加入1μCi 3H-胸苷来测量T细胞增殖。以每分钟的计数(cpm)来记录结果,对每个一式三份的均值作图,误差线代表标准差。

根据厂商的说明书,用RNAeasy plusTM RNA提取试剂盒(QIAGEN)从5×105-2×106个纯化自NexVax2处理小鼠的T细胞中提取RNA。RNA存储于-80℃,用于将来需要的分析。

处理后,每天监测小鼠的任何明显的不良反应。在观察期间,未发现非预期的死亡。观察期中,任何动物中没有观察到全身性不良迹象。所有小鼠保持表观健康,没有可观察到的活动性和外观的衰退。在用盐水中肽或单独盐水免疫的小鼠的注射部位未观察到局部炎症。

表型分析

肽免疫治疗与诱导外周耐受有关,所述耐受是通过诱导胸腺来源的或从头合成的CD4+CD25+FoxP3+调节性T(Treg)细胞来介导的。此外,这种诱导与IL-10分泌肽诱导的Treg细胞的生成有关。测定了重复施用NexVax2对脾麦醇溶蛋白特异性T细胞的数目和表型的影响。通过TCRVβ8.3和CD4的表达来鉴定脾中麦醇溶蛋白特异性的T细胞。在淋巴细胞门控中,检测了麦醇溶蛋白特异性T细胞的比例和每个脾中的总数。参见图11,其中显示了重复施用NexVax2导致脾中麦醇溶蛋白特异性CD4+T细胞比例(A)和数目(B)的减少。每天给HH8-1麦醇溶蛋白特异性的T细胞转基因小鼠皮下注射指定量的NexVax2,共14天。最后一次注射后3天,收获脾,加工并用抗体染色以鉴定转基因的T细胞(Vβ8.3和hCD4)。从总脾细胞计数来计算转基因T细胞的总数。点表示单个小鼠。

最高测试剂量(10μg)下的多剂量NexVax2处理导致麦醇溶蛋白特异性T细胞比例和数目的明显降低约50-65%,提示或是抗原诱导的细胞死亡,或是细胞被招募离开脾。

为了确定重复施用的NexVax2是否诱导了Treg细胞群,通过TCR Vβ8.3和CD4的表达来鉴定麦醇溶蛋白特异性T细胞,并测定其中表达CD25和FoxP3(见图12A)或CD25或GITR(见图12B)的比例。图12显示,重复施用NexVax2导致Treg细胞的诱导。给HH8-1麦醇溶蛋白特异性TCR转基因小鼠每天皮下注射规定量的NexVax2,共14天。最后一次注射后3天,收获脾,加工并用TCR Vα8.3、CD4、CD25、FoxP3和GITR的抗体染色。显示了麦醇溶蛋白特异性CD4淋巴细胞表达CD25和FoxP3(A)或者CD25和GITR(B)的FACS图。10μg或3μgNexVax2的多剂量处理导致脾中麦醇溶蛋白特异性Treg细胞比例剂量依赖式的增加。糖皮质激素诱导的TNF受体(GITR)主要在CD25+Treg细胞上表达。染色揭示,麦醇溶蛋白特异性T细胞的CD25+细胞群共表达GITR。GITR+细胞百分比的增加与施用NexVax2后CD25的表达成比例。

检测了能够应答于非特异性活化而离体直接产生IFNγ或IL-10的麦醇溶蛋白特异性T细胞的比例。在布雷菲德菌素A存在下培养脾细胞,加或不加PMA/伊屋诺霉素。用流式细胞术测定麦醇溶蛋白特异性T细胞的IFNγ和IL-10产生。图13显示,重复施用NexVax2离体直接导致产生IFNγ和IL-10的细胞的比例增加。HH8-1小鼠每天接受皮下施用溶于盐水的10、3、1或0.3μg NexVax2或单独盐水,共14天,或在第14天单次施用10μg NexVax2。最后一次注射后3天,处死小鼠,通过胞内细胞因子染色以及在存在或不存在PMA/伊屋诺霉素的情况下孵育6小时后的流式细胞术来测定表达IFNγ(A)或IL-10(B)的脾TCR Vβ8.3/hCD4+细胞的比例。点代表单个小鼠,而点线表示初次接受实验的HH8-1小鼠中细胞因子阳性细胞的比例。

重复施用10μg NexVax2导致产生IFNγ的麦醇溶蛋白特异性T细胞比例的增加,和产生IL-10的麦醇溶蛋白特异性T细胞比例的小而持久的增加。在每组测试的2只小鼠中的1只中,重复施用1或3μg NexVax2导致产生IFNγ的T细胞的频率的增加。

对肽的增殖性应答

重复施用NexVax2后检测了麦醇溶蛋白特异性T细胞的增殖能力,以确定这些细胞是否具有无变应性的表型。无法体外增殖是CD25/FoxP3+Treg细胞和肽诱导的产生IL-10的Treg细胞的共同特征。向培养基中加入IL-2可逆转增殖能力的降低。

在来自hCD4.IAE-/-.DR3.DQ2转基因小鼠的经γ射线辐照过的APC和梯度浓度的对应肽NPL001存在下,培养纯化的CD4+脾T细胞。通过在4天培养的最后24小时中的3H胸苷掺入来检测增殖(见图14A)。图14A显示重复施用NexVax2后,麦醇溶蛋白特异性T细胞对对应抗原的增殖能力减低,在IL-2的存在下恢复。HH8-1小鼠每天接受皮下施用溶于盐水的10、3、1或0.3μg NexVax2或单独盐水,共14天,或第14天单次施用10μg NexVax2。最后一次注射后3天,处死小鼠,纯化CD4+T细胞并在存在和不存在10U/ml IL-2的情况下与NPL001肽和辐照过的APC一起培养。72小时后,用1μCi 3H-胸苷冲击孔24小时,收获平板并计数。

A.用指定剂量的NexVax2处理的小鼠对0.2μg/ml NPL001肽的增殖性应答。

B.初次和重复施用10μg NexVax2对NPL001的增殖性剂量应答。

误差线代表一式三份培养的标准差。

来自未接受抗原的盐水处理小鼠的T细胞应答于NPL001而增殖良好,而来自NexVax2处理小鼠的T细胞应答于NPL001的能力显著降低,在亚最佳浓度(0.2μg/ml)时尤其明显。重复施用10μg NexVax2导致对0.2μg/ml NPL001的增殖性应答降低90-97%。增殖的降低是剂量依赖的,在亚最佳肽浓度下,即使最低剂量施用(0.3μg)也导致增殖20-37%的降低。向培养基中加入10U/ml IL-2,这在不存在肽时诱导低水平的增殖(约背景的两倍),而在肽存在时,来自NexVax2处理小鼠的T细胞的不应答状态被逆转,这样,肽处理小鼠的应答与盐水处理的对照等同。

在一系列剂量(见图14B)中观察到了无法应答于NexVax2给药而增殖。这在施用最高剂量的NexVax2(10μg)后尤其明显,而用较低NexVax2剂量治疗后有效性较低,尤其是对最大肽刺激的应答(数据未显示)。

抑制幼稚HH8-1T细胞的活化

观察到的无法增殖可能是无变应性表型的结果,其中T细胞本身对抗原刺激的敏感性降低,或者是因为存在Treg细胞群。因此,在体外培养中,评价NexVax2处理产生Treg群的能力,所述Treg群能够抑制幼稚麦醇溶蛋白特异性T细胞对NPL001肽的增殖性应答的。

图15展示,来自NexVax2处理小鼠的T细胞能够抑制幼稚麦醇溶蛋白特异性T细胞的增殖。HH8-1小鼠接受每天皮下施用溶于盐水的10、3、1或0.3μg NexVax2或单独盐水,共14天,或在第14天一次施用10μg NexVax2。最后一次注射后3天,将来自处理小鼠(抑制者)的纯化的CD4+T细胞与未处理HH8-1小鼠(应答者)的T细胞、NPL001肽和辐照过的APC共培养。72小时后,用1μCi 3H-胸苷冲击孔24小时,收获平板并计数。在图15A中,将来自10μg NexVax2×14处理小鼠(左图)或盐水处理小鼠(右图)的T细胞与等数量的幼稚HH8-1 CD4+T细胞和浓度递增的NPL001肽共培养。图15B中,将恒定数量的幼稚HH8-1 T细胞(2×104)与数目递增的NexVax2处理的T细胞(2×10000、6.6×1000、2.2×1000)和0.2μg/ml NPL001共培养。从每个处理组的2只小鼠中计算对幼稚应答者增殖的平均抑制。误差线表示一式三份培养的标准差。

将来自NexVax2处理小鼠的纯化T细胞与在递增剂量的NPL001(见图15A)存在下与HH8-1麦醇溶蛋白特异性T细胞以1∶1的比例共培养,或者在0.2μg/ml NPL001存在下(见图15B)以应答者∶抑制者比例为1∶1、3∶1或9∶1的比例共培养。在一系列刺激肽的浓度下,以应答者∶抑制者比例1∶1重复施用10μg或3μg NexVax2后,观察到了对应答者细胞增殖的抑制。这一结果表明调节细胞群的存在。由于表型显示,麦醇溶蛋白特异性Treg细胞比例仅在10或3μg的NexVax2处理的小鼠中增加,并且Treg细胞占总麦醇溶蛋白特异性细胞群的7到18%,所以观察到的幼稚HH8-1T细胞增殖的抑制是在意料之中的。

体外培养后的细胞因子谱

免疫调节可改变应答者细胞的细胞因子谱。例如,鼻内施用肽被证明产生分泌IL-10的肽诱导的Treg细胞。在存在或不存在2μg/ml NPL001和辐照过的同源APC的情况下,检测了来自通过重复施用梯度量NexVax2进行处理的麦醇溶蛋白特异性TCR转基因小鼠的CD4+T细胞的细胞因子产生谱。收集第3天培养上清液并评价Th1相关细胞因子(IL-2、IFNγ、IL-12和TNFα)的产生和Th2相关细胞因子(IL-4、IL-5、IL-6和IL-10)的产生(见图16)。图16显示了体外细胞因子的产生。CD4+T细胞纯化自HH8-1小鼠的脾,所述小鼠接受每天皮下施用溶于盐水的10、3、1或0.3μg NexVax2或单独盐水14天,或在第14天一次施用10μgNexVax2。在存在2μgNPL001(■)或没有肽(□)的情况下,将3×104个CD4 T细胞与3×100000个γ射线辐照过的APC一起孵育。在72小时收获上清液并用细胞珠阵列(cytometric bead array)检测Th1细胞因子(IL-2、IFNγ、IL-12和TNFα)和Th2细胞因子(IL-4、IL-5、IL-6和IL-10)的产生。结果显示了处理组中两只小鼠平均细胞因子产生。在培养上清液中未检测到IL-12、IL-4或IL-5。从接受重复施用10μg NexVax2的小鼠的培养物中观察到了IL-2、IFNγ和TNFα产生的显著降低。这种细胞因子产生的减少密切地反映了对NPL001肽的增殖性应答的降低。此外,体外肽刺激后,来自接受重复注射10μg NexVax2的小鼠的T细胞产生了IL-10量的3.5倍的增长,提示在这些小鼠中有向产生IL-10的Treg表型倾斜的潜力。

这些实验被设计用于确定治疗性疫苗NexVax2的重复施用(利用设计用于诱导免疫耐受的给药方案)是否能够在麦醇溶蛋白特异性T细胞受体转基因小鼠模型中调节麦醇溶蛋白特异性的T细胞应答。连续14天以皮下注射的方式施用溶于盐水的NexVax2的肽。这一处理首先导致脾中麦醇溶蛋白特异性T细胞明显减少。剩余的T细胞表现出对对应抗原增殖性应答的降低,这在IL-2存在下被逆转,提示“无变应性的”表型或存在Treg细胞群。这种减少的增殖性应答伴有培养物中Th1细胞因子量的减少和IL-10产生的增加。离体直接观察到了麦醇溶蛋白特异性的产生IL-10的细胞的增加,伴有FoxP3+、GITR+ Treg细胞总数和比例的增加。在共培养实验中,来自处理小鼠的T细胞能够抑制幼稚麦醇溶蛋白特异性T细胞对NPL001肽的增殖性应答。

在测试的最高剂量(10μg/天,连续14天)下,NexVax2的重复施用显示了来自经处理的麦醇溶蛋白特异性T细胞受体转基因小鼠中麦醇溶蛋白特异性T细胞应答的调节。

使用生物学上相关的TCR转基因小鼠模型,该结果提供了皮下施用溶于盐水的NexVax2肽能够调节对免疫优势的麦醇溶蛋白肽的T细胞应答的证据。

实施例4:人乳糜泻的NexVax2疫苗

NexVax2疫苗已以GMP形式制备,用于施用给乳糜泻人患者。

I期研究,以确定NexVax2在长期严格无谷蛋白饮食的HLA-DQ2+乳糜泻志愿者中的安全性、耐受性和生物利用度。

目的

本研究的第一个目的是:

·评价每周皮内注射施用NexVax2(共三周)的安全性和耐受性。

本研究的另一个目的是:

·通过测量T细胞应答(通过T细胞频率和细胞因子释放来评估)来确定三周给药后乳糜泻志愿者中NexVax2的生物利用度。

·通过测量谷蛋白攻击后的全身性反应来确定三周给药后乳糜泻志愿者中NexVax2的生物利用度。

测定乳糜泻志愿者中单次皮内注射后NexVax2的药代动力学。

测量乳糜泻志愿者中三周给药后特异性针对NexVax2的抗体的诱导。

研究设计

在乳糜泻志愿者中每周皮内注射施用NexVax2的安全性、耐受性和生物活性的I期、单中心、安慰剂对照的剂量递增研究。

乳糜泻患者被要求参加9次门诊就诊。这包括三个8小时的就诊以接受皮内注射NexVax2(超过3周)和三次6小时的就诊以进行标准的谷蛋白攻击。

从第一次注射的的日期开始,志愿者参与研究约25天。

研究群体

根据欧洲儿科胃肠病学、肝病学和营养学会的诊断标准(Walker-Smith等,1990)诊断为乳糜泻并遵从严格的无谷蛋白饮食的个体,具有编码HLA-DQ2(DQA1*05和DQB1*02)而非HLA-DQ8(DQA1*03和DQB1*0302)的基因。

NexVax2的测试制剂

注射用NexVax2包含溶于0.9%无菌生理盐水溶液的NPL001、NPL002和NPL003的等摩尔(0.159μmole/100μl,约3mg/ml)混合物,由Nexpep Pty Ltd提供。

安慰剂制剂

由Nexpep Pty Ltd提供的0.9%无菌生理盐水。

研究处理

组1:包含2个哨兵(sentinel),一个皮内注射9μg NexVax2,另一个给以安慰剂,另外6名受试者中,第1、8和15天,5个给以9μg NexVax2,1个给以安慰剂。

组2:与组1一样,但受试者给以30μg NexVax2

组3:与组1一样,但受试者给以90μg NexVax2

组4:与组1一样,但受试者给以60μg NexVax2

给药、饮食和采血的日程安排

药物施用前一天晚上从半夜开始禁食,给药、饮食、药物动力学评价、谷蛋白攻击和血液收集(假定给药时间为08:00时)的日程安排见图17。评价

·监测静息心率、半卧位收缩压/舒张压、呼吸频率和体温:在筛选时,名义上在第1、8和15天接受治疗前07:00时和给药后4小时进行,而在第22、23和24天接受谷蛋白攻击,第25天结束研究。

·用于计数NexVax2特异性T细胞的频率的PBMC IFNγ ELISpot测定的血样在第1、6、15、20和25天(结束研究)收集。

·用于测定PBMC应答于NexVax2的细胞因子释放的Bioplex分析的血样在第1、6、15、20和25天(结束研究)收集。

·在第1、6、15、20和25天(结束研究)收集PBMC并冷冻,以后检测T细胞功能。

·在第1和20天收集血清以评价NexVax2特异性的抗体。

·在第15天给药前和给药后15、30、45、60、75、90分钟、2小时和3小时收集用于药代动力学采样的血液样本。

·进行临床实验测量(生化、尿分析和血液学):在筛选时,在第1、8和15天给药前和给药后4小时;第20和22天谷蛋白攻击前,和谷蛋白攻击后和第25天(结束研究)。

·妊娠(尿)测试在在筛选时,第1、8和15天给药前和第20、21和22天谷蛋白攻击前和研究结束时(第25天)进行。

·滥用药物尿液检验在筛选时和第1、8和15天给药前进行。

·ECG:在筛选时;一般在第1、8和15天接受治疗前0700时和给药后4小时;在第20、21和22天接受谷蛋白攻击前和在研究结束的第25天进行。

数据分析

筛选、顺应性和安全性数据

人口统计数据被制表并总结。将列出基线和随访的体检(包括身高和体重)以及用药/手术史的数据。每个受试者的所有临床安全性和耐受性数据都会被列出。

实验室的正常范围之外的实验值会被单独列出,并伴有对其临床意义的评论。相关的重复值会被一起列出。生命体征检测(静息心率、半卧位收缩压/舒张压、呼吸频率和体温)和ECG参数会被列表并总结。

耐受性数据

治疗的紧急不良事件会被列出并总结。本研究中报告的所有的不良事件将会用MedDRA编码。

免疫学测定

发明人认为,单次NexVax2测量会增加PBMC中NexVax2特异性T细胞的频率,并会增加单个核细胞的细胞因子和趋化因子的分泌。

发明人认为,与测量前相比,重复(每周3次)注射NexVax2后抽取的PBMC会有更低的NexVax2特异性T细胞频率。

发明人认为,与安慰剂治疗的乳糜泻志愿者相比,在开始3天的用小麦面包口服谷蛋白攻击后6天收集的PBMC中,重复(每周3次)注射NexVax2会降低NexVax2特异性T细胞频率以及NexVax2所刺激细胞因子的分泌。

用单尾成对Wilcoxon秩和检验分析序数数据。正态分布的数据将用成对t检验分析。p值<0.05将被认为有显著性。

本领域中的技术人员将会理解,在不偏离被广泛描述的本发明精神或范围前提下,可对具体实施方案中展示的本发明进行多种变化和/或修改。因此,本发明的实施方案在各个方面都应被认为是举例而非限制。

本申请要求来自US 61/118,643的优先权,其全部内容通过引用并入本文。

所有部位讨论和/或体积的出版物均通过引用并入本文。

本说明书中包含的文献、作用、材料、设备、物品的任何讨论只是为了提供本发明的背景。并不被认为是承认任何的或所有的这些事物构成在先技术基础的一部分或是与本发明相关的本领域中通用的一般知识,它们在本申请的每项权利要求的优先权日之前已存在。

以下内容对应于母案申请中的原始权利要求书,现作为说明书的一部分并入此处:

1.制剂,其包含

i)第一肽,其包含氨基酸序列LQPFPQPELPYPQPQ(SEQ ID NO:13),或其生物活性片段或变体,

ii)第二肽,其包含氨基酸序列QPFPQPEQPFPWQP(SEQ ID NO:14),或其生物活性片段或变体,和

iii)第三肽,其包含氨基酸序列PEQPIPEQPQPYPQQ(SEQ ID NO:16),或其生物活性片段或变体。

2.项1的制剂,其中所述第二肽包含氨基酸序列PQQPFPQPEQPFPWQP(SEQ ID NO:320)或其生物活性片段或变体,和/或所述第三肽包含氨基酸序列FPEQPIPEQPQPYPQQ(SEQ ID NO:321)或其生物活性片段或变体。

3.项1或项2的制剂,其中所述第一、第二和/或第三肽包含N端的乙酰基或焦谷氨酸基和/或C端的酰胺基。

4.项3的制剂,其中所述第一、第二和/或第三肽包含N端的焦谷氨酸基和C端的酰胺基。

5.项1至4中任一项的制剂,其中所述第一、第二和/或第三肽与化合物缀合。

6.项5的制剂,其中所述化合物为佐剂或MHC分子或其结合片段。

7.项1至6中任一项的制剂,其中所述第一、第二和第三肽或其中一种或多种生物的活性片段或变体中的两种或三种位于单个多肽链上。

8.项1至7中任一项的制剂,其包含一种或多种额外的肽,所述额外的肽包含选自以下的氨基酸序列:SEQ ID NO:47、48、56、57、58、59、60、61、62、63、64、65、66、67、68、75、76、77、78、79、80、81、89、90、91、92、95、102、103、104、116、117、118、119、120、121、122、123、124、125、126、127、128、129、130、131、132、133、136、169、170、171、172、173、174、177、178、179、180、183、184、187、188、189、190、191、192、209、210,或其中任何一种或多种的生物活性片段或变体。

9.制剂,其包含一种或多种多核苷酸,所述多核苷酸编码:

i)第一肽,其包含氨基酸序列LQPFPQPELPYPQPQ(SEQ ID NO:13),或其生物活性片段或变体,

ii)第二肽,其包含氨基酸序列QPFPQPEQPFPWQP(SEQ ID NO:14),或其生物活性片段或变体,

iii)第三肽,其包含氨基酸序列PEQPIPEQPQPYPQQ(SEQ ID NO:16),或其生物活性片段或变体,和

iv)任选地,一种或多种额外的肽,其包含选自以下的氨基酸序列:SEQ ID NO:47、48、56、57、58、59、60、61、62、63、64、65、66、67、68、75、76、77、78、79、80、81、89、90、91、92、95、102、103、104、116、117、118、119、120、121、122、123、124、125、126、127、128、129、130、131、132、133、136、169、170、171、172、173、174、177、178、179、180、183、184、187、188、189、190、191、192、209、210,或其中任何一种或多种的生物活性片段或变体。

10.制剂,其包含

i)项1中定义的第一肽或其多核苷酸,

ii)项1中定义的第二肽或其多核苷酸,和

iii)项1中定义的第三肽或其多核苷酸。

11.基本纯化的和/或重组的肽,其包含SEQ ID NO:16、69、73、75、78、80、87、91、92、95、96、98、100、104、107、113、116、117、123、138、144、147、149、153、155、156、159、161、163、165、179、181、185、187、189、195、196、198、202、204、205、207、209、215、223中任何一个或多个所示的氨基酸序列,或其中任何一种或多种的生物活性片段或变体。

12.分离的和/或外源的多核苷酸,其编码项11的至少一种肽。

13.疫苗,其包含项1-10中任一项的制剂、项11的肽和/或项12的多核苷酸,以及可药用载体。

14.项13的疫苗,其包含佐剂。

15.分离的抗原呈递细胞,其包含项1-10中任一项的制剂、项11的肽和/或项12的多核苷酸。

16.项15的抗原呈递细胞,其为树突细胞、巨噬细胞、B-淋巴细胞或肝窦内皮细胞。

17.在对谷蛋白敏感的受试者中调节对谷蛋白肽的T细胞应答的方法,所述方法包括向该受试者施用有效量的项1-10中任一项的制剂、项11的肽、项12的多核苷酸、项13或项14的疫苗,和/或项15或项16的抗原呈递细胞。

18.在对谷蛋白敏感的受试者中诱导对谷蛋白肽的免疫耐受的方法,所述方法包括向该受试者施用有效量的项1-10中任何一项的制剂、项11的肽、项12的多核苷酸、项13或项14的疫苗,和/或项15或项16的抗原呈递细胞。

19.治疗乳糜泻的方法,所述方法包括向对谷蛋白敏感的受试者施用有效量的项1-10中任何一项的制剂、项11的肽、项12的多核苷酸、项13或项14的疫苗,和/或项15或项16的抗原呈递细胞。

20.在对谷蛋白敏感的受试者中调节细胞因子分泌的方法,所述方法包括向该受试者施用有效量的项1-10中任何一项的制剂、项11的肽、项12的多核苷酸、项13或项14的疫苗,和/或项15或项16的抗原呈递细胞。

21.项20的方法,其中白细胞介素-2(IL-2)、干扰素γ(IFNγ)和/或肿瘤坏死因子α(TNFα)的分泌被降低。

22.项20或项21的方法,其中白细胞介素-10(IL-10)的分泌被提高。

23.项1-10中任一项的制剂、项11的肽、项12的多核苷酸、项13或项14的疫苗和/或项15或项16的抗原呈递细胞用于生产药物的用途,所述药物用于在对谷蛋白敏感的受试者中调节T细胞应答、诱导免疫耐受、治疗乳糜泻和/或调节细胞因子分泌。

24.在受试者中诊断乳糜泻的方法,所述方法包括将来自该受试者的样品与项1-10中任何一项的制剂、项11的肽和/或项13或项14的疫苗相接触,并体外测定所述肽中的一种或多种是否与所述样品中的T细胞结合,其中所述肽中的一种或多种与T细胞的结合表明该受试者患有或易感于乳糜泻。

25.项24的方法用于监测乳糜泻发展的用途。

26.项24的方法用于测定项17-22中任一项之方法的效力的用途。

27.用于实施项24的方法的试剂盒,所述试剂盒包含项1-10中任一项的制剂、项11的肽和/或项13或项14的疫苗,以及检测所述肽中一种或多种与T细胞之结合的装置。

28.生产项15或项16的抗原呈递细胞的方法,所述方法包括

i)获得抗原呈递细胞,和

ii)在体外将所述细胞与项1-10中任一项的制剂、项11的肽、项12的多核苷酸和/或项13或项14的疫苗相接触。

29.项1-10中任一项的制剂、项11的肽、项12的多核苷酸、项13或项14的疫苗和/或项15或项16的抗原呈递细胞在诊断或治疗中的用途。

30.制备项13或项14的疫苗的方法,所述方法包括将所述第一、第二和第三肽以及任选的一种或多种额外的肽与可药用载体和任选的佐剂相组合,所述额外的肽包含选自以下的氨基酸序列:SEQ ID NO:47、48、56、57、58、59、60、61、62、63、64、65、66、67、68、75、76、77、78、79、80、81、89、90、91、92、95、102、103、104、116、117、118、119、120、121、122、123、124、125、126、127、128、129、130、131、132、133、136、169、170、171、172、173、174、177、178、179、180、183、184、187、188、189、190、191、192、209、210,或其中任何一种或多种的生物活性片段或变体。

31.测定组合物或食品是否能够导致乳糜泻的方法,所述方法包括检测组合物或食品样品中项1-10中任一项的制剂、项11的肽和/或项12的多核苷酸的存在情况。

32.鉴定能切割项1-11中任一项中所定义肽的蛋白酶的方法。所述方法包括将所述肽与蛋白酶在引起该肽的特异性切割的条件下相接触以产生蛋白水解产物,并检测所产生的蛋白水解产物。

33.提高肽在施用于受试者时的半衰期和/或生物利用度的方法,所述方法包括修饰所述肽的N端以使其包含N端的乙酰基或焦谷氨酸基,并修饰所述肽的C端以使其包含C端的酰胺。

34.项33的方法,其中所述肽用于施用给受试者以诱导免疫耐受。

参考文献

Anderson,Plant MoL Biol.(1991)16:335-337

Anderson等,Nature Medicine(2000)6:337-342

Anderson等,Gut(2005)54:1217-1223

Anderson等,Gut(2006)55:485-91

Arentz-Hansen等,J.Exp.Med.(2000)191:603-612

Beissbarth等,Bioinformatics(2005)21 Suppl.1:i29-37

Briggs等,Science(1986)234:47-52

Bunce等,Tissue Antigens(1995)46:355-367

Chen等,J.Immunol.(2006)168(6):3050-6

Deshpande等,J.Biol.Chem.(1997)272(16):10664-10668

Li等,Nat.Biotechnol.(1999)17(3):241-245

Kang等,J.Immunol.(2008)180:5172-6

Kricka,Biolumin.Chemilumin.(1998)13:189-93

Klein等,Exp.Neural.(1998)150:183-194

Mannering等,J.Immunol.Methods(2003)283:173-83

Mannering等,J.Immunol.Methods(2005)298:83-92

Mitchell和Tjian,Science(1989)245:371-378

Mullighan等,Tissue Antigens(1997)50:688-692

Nettelbeck等,Gene Ther.(1998)5(12)1656-1664

等,Lancet(2002)360:47-53

Olerup等,Tissue Antigens(1993)41:119-134

Pitluk等,J.Virol.(1991)65:6661-6670

Stewart等,Genomics(1996)37(1):68-76

Vader等,Gastroenterology(2003)125:1105-1113

Walker-Smith等,Arch.Dis.Child(1990)65:909-911

Working Group of European Society of Paediatric Gastroenterology and

Nutrition(Report of),Arch.Dis.Child(1990)65:909-11

Zolotukiin等,J.Virol.(1996)70(7):4646-4654

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1