本发明涉及心血管医疗器械,尤其涉及一种可用于封堵心脏内或血管内缺损的可吸收封堵器。
背景技术:
房间隔缺损(ASD),室间隔缺损(VSD),动脉导管未闭(PDA)是几种常见的先天性心脏缺损。通过封堵器封堵心脏缺损的介入治疗方法由于创伤轻微、手术安全、近中期疗效确切,是具有心脏缺损适应症的患者的首选治疗方案。
目前,封堵器大多由具有形状记忆功能的金属合金材料制成。封堵器植入体内后,缺损周围的组织向内生长并完成内皮化,封堵器将终身存在于缺损部位。由金属合金材料制成的封堵器,具有产生包括房室传导阻滞、瓣膜损伤、残余分流、心脏磨穿、金属过敏等远期并发症的风险。且封堵器在患者处于儿童期植入,通常被期望使用寿命为患者的一生,但目前临床使用历史只有20年,更远期的安全性需要进一步随访。
可吸收聚合物封堵器作为新一代的封堵器,采用的材料可为生物可降解高分子材料,如聚乳酸(PLA)、聚乙醇酸(PGA)、聚羟基脂肪酸脂(PHA)、聚二氧环己酮(PDO)、聚己内酯(PCL)等。可吸收聚合物封堵器在完成内皮化后可发生降解而被机体吸收,使缺损完全由自身组织修复,从而消除金属合金封堵器永久存留体内造成的远期并发症。目前,组成可吸收聚合物封堵器通常仅由一种聚合物制成,该可吸收聚合物封堵器在降解过程中,通常在某个时间段内集中降解,其降解产物会在该时间段内密集释放,超出组织能吸收的含量,从而导致严重的炎症反应。
技术实现要素:
本发明所解决的技术问题在于,提供一种可吸收聚合物封堵器,避免聚合物降解产物在短时间内密集释放而导致严重的炎症反应。
本发明采用的技术方案如下:一种可吸收封堵器,包括编织网,所述编织网包括一种可降解高分子丝,所述可降解高分子丝材料的多分散系数为3~10,重均分子量范围为20,000Da~800,000Da。
在其中一个实施例中,所述高分子丝总数量为20~200根。
在其中一个实施例中,所述可降解高分子丝材料选自聚乳酸(PLA)、聚乙醇酸(PGA)、聚乳酸-羟基乙酸共聚物(PLGA)、聚羟基脂肪酸脂(PHA)、聚对二氧环己酮(PDO)、聚己内酯(PCL)、聚酰胺、聚酸酐、聚磷酸酯、聚氨酯或聚碳酸酯,或至少两种上述聚合物单体的共聚物。
在其中一个实施例中,所述可降解高分子丝丝径范围为0.05mm~0.50mm。
在其中一个实施例中,所述可降解高分子丝材料结晶度范围为0%~80%。
在其中一个实施例中,所述封堵器还包括阻流膜,所述阻流膜是通过缝合线固定在所述编织网内。
在其中一个实施例中,所述阻流膜材料选自聚对苯二甲酸乙二醇酯(PET)、聚乙烯(PE)、聚乳酸(PLA)、聚乙醇酸(PGA)、聚乳酸-羟基乙酸共聚物(PLGA)、聚羟基脂肪酸脂(PHA)、聚对二氧环己酮(PDO)、聚己内酯(PCL)、聚酰胺、聚酸酐、聚磷酸酯、聚氨酯或聚碳酸酯,或上述聚合物单体中的至少两种的共聚物。
在其中一个实施例中,所述缝合线材料选自聚乳酸(PLA)、聚乙醇酸(PGA)、聚乳酸-羟基乙酸共聚物(PLGA)、聚羟基脂肪酸脂(PHA)、聚对二氧环己酮(PDO)、聚己内酯(PCL)、聚酰胺、聚酸酐、聚磷酸酯、聚氨酯或聚碳酸酯,或上述聚合物单体中的至少两种的共聚物。
在其中一个实施例中,所述编织网远端和近端之间还设置有锁定件,所述锁定件为一端带通孔和内螺纹,另一端无通孔的圆柱体结构,锁定件的一端与 远端相连,另一端可拆卸地与近端相连,当锁定件的另一端与近端吻合时,封堵器的双盘距离即腰高得以固定。
在其中一个实施例中,所述锁定件材料选自聚乳酸(PLA)、聚乙醇酸(PGA)、聚乳酸-羟基乙酸共聚物(PLGA)、聚羟基脂肪酸脂(PHA)、聚对二氧环己酮(PDO)、聚己内酯(PCL)、聚酰胺、聚酸酐、聚磷酸酯、聚氨酯或聚碳酸酯,或上述聚合物单体中的至少两种的共聚物。
多分散系数是表征分子量分散程度的参数,为重均分子量Mw与数均分子量Mn的比值,多分散系数越大,分子量分布越宽。本发明定义多分散系数不大于3时为窄分子量分布,大于3时为宽分子量分布。可降解高分子材料的多分散系数越大,材料的降解周期越长。相比分子量比较集中的窄分子量分布的高分子材料,宽分子量分布的可降解高分子材料降解产物的释放时间相对较长,聚合物在降解周期内平缓降解。
本发明与现有技术相比,具备以下优点:对于采用相同质量的高分子丝制作的封堵器,本发明的编织网包括宽分子量分布的可降解高分子材料,具有更长的降解周期,降低了单位时间段内的降解产物释放浓度,从而避免在某一时间段内集中降解,造成严重的组织炎症反应。
附图说明
图1为本发明一实施方式制作的封堵器的结构示意图。
图2为本发明一实施方式制作的封堵器的网管结构主视图。
图3为37℃条件下实施例1~4、对比例1中的高分子丝的体外降解趋势图。
图4为实施例1的封堵器植入猪心脏2年后封堵器与周边心肌组织的病理图。
图5为实施例2的封堵器植入猪心脏2年后封堵器与周边心肌组织的病理图。
图6为实施例3的封堵器植入猪心脏2年后封堵器与周边心肌组织的病理图。
图7为实施例4的封堵器植入猪心脏2年后封堵器与周边心肌组织的病理图。
图8为对比例1的封堵器植入猪心脏2年后封堵器与周边心肌组织的病理图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式,但是本发明保护的范围并不局限于此。
在介入医疗领域,定义远端为手术操作时远离操作人员的一端,定义近端为手术操作时靠近操作人员的一端。
按形状分,封堵器通常包括近似“工”字型和近似“T”字型两种结构。所述“工”字型可以理解为包括双盘和一腰部且呈腰小盘大的结构。按适用的心脏缺损部位分类,封堵器主要包括室间隔缺损(VSD)封堵器、房间隔缺损(ASD)封堵器、动脉导管未闭(PDA)封堵器,和卵圆孔未闭(PFO)封堵器。其中,VSD封堵器、ASD封堵器和PFO封堵器具有双盘和一腰部的近似“工”字型结构,PDA封堵器具有单盘和一腰部的近似“T”字型结构。
以下以“工”字型双盘封堵器为例,详细说明本发明提供的封堵器的结构和材质,但是本发明的封堵器并不限于此结构。
如图1所示,本发明一实施方式提供的双盘封堵器100包括编织网110、设置与编织网110内且缝合在编织网110上的阻流膜120以及锁定件160。在圆柱形模棒上将高分子丝自动交替编织成井型网格,形成管状结构,将管状结构近端所有高分子丝收紧在套管内并熔融焊接成栓头140,远端所有高分子丝收紧固定在套管内并熔融焊接成封头150,得到如图2所示的网管;将网管结构置于模具中热定型,冷却之后得到双盘编织网110;采用可降解聚合物制成的缝合线130将可降解聚合物制成的阻流膜120缝合在编织网110上。锁定件160的一端与封头150相连,另一端可拆卸地与栓头140相连,当锁定件160的另一端与栓头140吻合时,封堵器110的双盘距离即腰高得以固定,封堵器110的双盘结构得以定型。锁定件160的材质可选用可降解高分子材料,如选自聚乳酸(PLA),聚乙醇酸(PGA),聚乳酸-羟基乙酸共聚物(PLGA),聚羟基脂肪酸脂(PHA),聚对二氧环己酮(PDO),聚己内酯(PCL),聚酰胺,聚酸酐、聚磷酸酯、聚氨酯、聚碳酸酯中的一种,或至少两种上述聚合物的单体的共聚物。锁定件160的结构及与编织 网110的连接方式并不限于此,可采用本领域通用结构及连接方式,只要能在锁定封堵器的腰高至预定值(即待封堵缺损的深度)即可,不再赘述。
本发明中定义聚合物降解过程中,聚合物的剩余质量与初始质量的比值为聚合物的质量保留率。当质量保留率下降到5%及以下时,为完全降解。聚合物质量保留率在某段时间内下降较快,则称聚合物在该段时间内集中降解。本发明中聚合物质量保留率每2个月下降5%及以上时,可视为聚合物在该2月内集中降解;若质量保留率低于5%以下,则称为聚合物平缓降解。聚合物降解过程中减少的质量视为降解产物的释放量。
本发明为了考察不同分子量分布高分子丝的降解周期、集中降解时间和降解产物的释放情况,以及高分子丝降解6个月后的力学性能,将不同的高分子丝浸泡在37℃的磷酸缓冲盐溶液中进行体外降解实验。
高分子丝体外降解实验进行6个月后,使用万能试验机对可降解高分子丝进行力学性能测试得到高分子丝的弹性模量和断裂伸长率,测试标准和测试条件分别为GB/T228-2010,原始标距10mm,拉伸速度1mm/min。若高分子丝降解6个月后仍具有一定的弹性模量(不低于1GPa)和断裂伸长率(不低于20%),可判断由该种高分子丝构成的封堵器6个月后仍保持稳定的框架结构。
每隔2个月对进行体外降解实验的高分子丝取样称重,测试结果精确到百万分之一克,得到高分子丝的质量下降与时间的关系曲线,即质量保留率随时间变化的趋势曲线,聚合物集中降解的时间区间为聚合物的集中降解时间段。
本发明为了考察封堵器降解的释放产物对炎症异物反应的影响,将不同实施例制作的可降解封堵器植入到猪的心脏内,对动物实验的猪进行随访观察。待植入2年后将猪处死,取出封堵器和周边的心肌组织,做病理切片分析,得到封堵器和周边心肌组织的病理图。
实施例1
本实施例提供的封堵器中,封堵器编织网的整体质量为0.726g。编织网包括96根重均分子量为100,000Da,多分散系数为6.02的聚左旋乳酸(PLLA)丝, 丝径为0.15mm,结晶度为50%。对PLLA丝进行体外降解实验,经6个月降解后测得的弹性模量为2.66GPa,断裂伸长率为70%,这说明本实施例PLLA丝制作的封堵器可保证在植入6个月内具有稳定的框架结构,从而实现内皮爬覆完全;PLLA丝质量保留率随时间延长的变化趋势如图3的曲线1所示,其降解周期约为4~5年,聚合物质量保留率在第6~56个月中每2个月的下降值均小于5%,说明降解产物在第6~56个月平缓释放;将本实施的封堵器植入猪的心脏2年后,对封堵器与周边心肌组织进行病理切片分析,其病理图如图4所示,无明显炎症和异物反应。
实施例2
本实施例提供的封堵器中,封堵器编织网的整体质量为0.726g。编织网包括96根重均分子量为100,000Da,多分散系数为5.12的PLLA丝,结晶度为50%,丝径为0.15mm。对PLLA丝进行体外降解实验,经6个月降解后测得的弹性模量为2.86GPa,断裂伸长率为66%,可这说明本实施例PLLA丝制作的封堵器可保证在植入6个月内具有稳定的框架结构,从而实现内皮爬覆完全;PLLA丝质量保留率随时间延长的变化趋势如图3的曲线2所示,降解周期为4~5年,聚合物质量保留率在第6~52个月中的每2个月的下降值均小于5%,说明降解产物在第6~52个月平缓释放;将本实施例的封堵器植入猪的心脏2年后,对封堵器与周边心肌组织进行病理切片分析,其病理图如图5所示,无明显炎症和异物反应。
实施例3
本实施例提供的封堵器中,编织网包括200根重均分子量为50,000Da,多分散系数为10的聚乳酸-羟基乙酸共聚物(PLGA)丝,丝径为0.50mm,结晶度为80%。对PLGA丝进行体外降解实验,经6个月降解后测得的弹性模量为3.01GPa,断裂伸长率为75%,这说明本实施例PLGA丝制作的封堵器可保证在植入6个月内具有稳定的框架结构,从而实现内皮爬覆完全;PLGA丝在第6~54个月中每2个月的下降值均小于5%,PLGA丝质量保留率随时间延长的变化趋势如图3的曲线3所示,降解产物在第6~54个月平缓释放;将本实施的封堵器植入猪的心脏2 年后,对封堵器与周边心肌组织进行病理切片分析,其病理图如图6所示,无明显炎症和异物反应。
实施例4
本实施例提供的封堵器中,编织网包括20根重均分子量为800,000Da,多分散系数为3的非结晶聚羟基脂肪酸脂(PHA)丝,丝径为0.05mm。对丝进行体外降解实验,经6个月降解后测得的弹性模量为3.54GPa,断裂伸长率为82%,这说明本实施例PHA丝制作的封堵器可保证在植入6个月内具有稳定的框架结构,从而实现内皮爬覆完全;PHA丝在第6~64个月中每2个月的下降值均小于5%,PHA丝质量保留率随时间延长的变化趋势如图3的曲线4所示,降解产物在第6~64个月平缓释放;将本实施的封堵器植入猪的心脏2年后,对封堵器与周边心肌组织进行病理切片分析,其病理图如图7所示,无明显炎症和异物反应。
对比例1
本实施例提供的封堵器中,封堵器编织网的整体质量为0.726g。编织网包括96根重均分子量为100,000Da,多分散系数为1.49的可降解高分子PLLA丝,结晶度为50%,丝径为0.15mm。对PLLA丝进行体外降解实验,经6个月降解后测得的弹性模量为3.08GPa,断裂伸长率分别为63%,本对比例PLLA丝制作的封堵器可保证在植入6个月内具有稳定的框架结构,从而实现内皮爬覆完全;PLLA丝的质量保留率随时间延长的变化趋势如图3的曲线5所示,降解周期为2~3年,高分子丝在第6~20个月集中降解,降解产物在该时间段内集中释放;将本对比例的封堵器植入猪的心脏2年后,对封堵器与周边心肌组织进行病理切片分析,其病理图如图8所示,封堵器植入2年后炎症和异物反应比较严重。
实施例1~2和对比例1的实验结果表明:针对质量相同的封堵器,采用宽分子量分布的高分子丝制成的封堵器,在保证植入早期(6个月)内具有稳定的框架结构的基础上,能够延长封堵器的降解周期,从而可以避免降解产物集中释放,产生严重的炎症反应。