抗生素耐受性,尤其是普遍的多药耐药性感染的出现,对于人类健康造成灾难性的风险并且涉及大量成本。因此,急需对抗感染的新的方法。本发明的目的是提供一种在各种感染场合和生理环境中用于治疗人和动物的感染(包括多药耐药性感染)的治疗剂。本发明的目的还在于,提供至少在一些实施方式中能够使目标感染生物体的耐受可能最小化的治疗剂。根据本发明,提供了一种纳米或微米级的治疗剂,包含单独加载或者与一种或多种惰性前体化学物质组合加载的微米和/或纳米颗粒载体,所述载体包封所述一种或多种前体化学物质,这些前体化学物质在感染位置从载体原位释放之后能够通过生理环境激活,形成在人或动物感染的治疗中使用的抗微生物试剂。优选地,所述一种或多种前体化学物质激活后形成氧化性杀微生物剂。由于高度氧化性分子具有高的能量传递能力,通过对细菌细胞施以大量而广泛的散布性损伤,这些分子在微生物上产生有力的杀微生物效果。因此,很少发现对这些化学物质的耐受。这些分子的例子包括:臭氧、次氯酸、次氯酸钠或次溴酸钠、二氧化氯、过酸如过乙酸和过氧化氢。通常,使用这些有力的化学物质用于治疗目的并不实际,但是当包封的前体化学物质以微米和/或纳米颗粒形式直接递送至目标感染生物体时,一直到前体化学物质在感染部位被原位激活之前,例如通过与体液接触而被激活之前,都不会产生这些化学物质。具体说,前体化学物质优选包含一种或多种过氧供体,在释放时即激活以形成过氧化氢。还优选地,在人或动物宿主的身体内,或者在局部应用的情况下在人或动物宿主的身体上,当载体在原位爆裂、降解或改变孔隙率时,发生前体化学物质的释放。有益地,载体随时间推移通过水解降解以提供前体化学物质的受控释放。本发明中使用的合适的微米和/或纳米颗粒载体的例子包括胶束、枝化聚合物、布基球(buckyball)、脂质体、醇质体(ethosome)、介孔二氧化硅、碳纳米管,所有这些物质均能包封其他化学物质。有益的但非必须地,载体是采用热诱导的相分离(TIPS)工艺生产的微米和/或纳米颗粒的形式。该方法使得可能损害所得治疗剂的安全性和有效性的包封工艺中使用的溶剂的残留最小化。此外,在一些情况下优选地,载体在宿主体内可生物降解以产生无害副产物。因此,优选地,载体包含可生物降解的聚合物,例如聚(乳酸-共-乙醇酸)(PLGA),可以通过TIPS方法制备包封前体化学物质的微米和/或纳米颗粒。PLGA是通过两种不同单体——乙醇酸和乳酸的环状二聚体(1,4-二噁烷-2,5-二酮)——的开环共聚的方式合成的共聚物。其在体内水解而产生原来的单体,乳酸和乙醇酸,其在正常生理条件下是体内各种代谢途径的副产物。因此,在本发明中与采用PLGA相关的全身毒性最小。下面将描述这种类型和根据本发明的治疗剂的制备的例子。优选地,前体化学物质还包含一种或多种乙酰基供体,在释放时与过氧供体产生的过氧化氢反应以形成过乙酸和过氧化氢的混合物。一种或多种乙酰基供体可以被包封在与过氧供体相同的载体颗粒之内。因此,优选地,本发明的治疗剂包含微米和/或纳米颗粒载体,其中,至少一定比例的载体各自包封过氧供体和乙酰基供体。可选地或除此以外,乙酰基供体包封在其自身的微米和/或纳米颗粒载体内,本发明的治疗剂包含单独包封一种或多种过氧供体或一种或多种乙酰基供体的微米和/或纳米颗粒载体的组合。过氧化氢在牙髓学中、牙周炎的治疗中以及作为伤口和粘膜的抗菌防腐药得到广泛使用。次氯酸的稀溶液被提倡用于局部消毒,过乙酸则在日常卫生中被广泛用作挤奶和挤奶后的乳头消毒剂。然而,采用常规方法将这些高度活性的试剂以受控、安全且有效的方式递送至更严重的深处的感染位置在很大程度上是不实际的。本发明通过以下方式克服了上述问题:将前体化学物质包封在载体中,从而只有当载体到达目标并释放前体化学物质,然后通过生理环境与目标接触(例如通过接触体液)激活之后才会产生抗微生物试剂。使用可以在原位激活的惰性前体化学物质克服了活性抗微生物试剂的稳定性和安全性的问题。在本发明中,优选过氧供体与乙酰基过氧的组合用于产生过氧化氢和过乙酸的动态平衡混合物。过氧供体优选包含以下列表A中的化学物质的任一种或其组合。列表A过硼酸钠过碳酸钠过磷酸钠脲过氧化物过酸酯超氧化物二氧化物(Dioxygenyl)臭氧过氧化氢过氧化锂过氧化钡二叔丁基过氧化物过二硫酸铵过硫酸氢钾列表A中过碳酸钠、过碳酸钾、过碳酸铵、过硼酸钠、过硼酸铵、过硫酸铵和脲过氧化物中的任一种或其组合是尤其优选的。存在许多可以在加入水的时候与从过氧供体释放的过氧化氢反应的乙酰基供体。乙酰基供体优选包含以下列表B中的化学物质的任一种或其组合。列表B四乙酰基乙二胺(TAED)甲基纤维素包封的TAED或包封的供体乙酰水杨酸二乙酰基二氧代六氢三嗪(DADHT)四乙酰甘脲乙酰脲二乙酰基脲三乙酰基脲五乙酰葡萄糖(PAG)四乙酰甘脲(TAGU)乙酰磷酸酯乙酰咪唑乙酰辅酶A乙酸酐含有半缩醛基团的化合物乙酸二乙酰吗啉丙酮酸酯乙酰氯乙酰基-己内酰胺N'N'-二乙酰基-N'N'-二甲基脲。尤其优选采用四乙酰基乙二胺(TAED)作为乙酰基供体。过氧供体和乙酰基供体的选择取决于治疗剂使用期间遇到的生理环境。那些降解后产生自然存在或者体内很好耐受的物质的优选体内使用,而另一些则适合外用,例如皮肤感染的局部治疗,或者在空隙、裂隙或内腔内使用如上所述,载体可包含微米颗粒、纳米颗粒或它们的混合物。根据IUPAC(国际纯粹与应用化学联合会(InternationalUnionofPureandAppliedChemistry))定义,微米颗粒是尺寸为1×10-7m至1×10-4m的任意形状的颗粒,而纳米颗粒是尺寸为1×10-9m至1×10-7m的任意形状的颗粒。颗粒尺寸和尺寸分布是微米和纳米颗粒系统最重要的特征。它们决定了载体的体内分布、生物学命运、毒性和靶向能力。此外,它们还影响药物加载、药物释放和载体稳定性。作为药物载体,亚微米尺寸的纳米颗粒相对于微米颗粒具有许多优点,与微米颗粒相比,它们具有更高的细胞内摄取,并且由于其较小的尺寸和相对运动性能够到达更多生物学靶点。然而,在特定情况下,例如当颗粒填塞到空隙、裂隙或内腔内是有益的时,选择和使用微米颗粒比纳米颗粒更优选。可以制备尺寸从大约20×10-3μm直径一直到微米尺寸的基于聚(乳酸-共-乙醇酸)(PLGA)的颗粒。这种颗粒的制备是已知的,例如在WO2008/155558中描述。这些颗粒的制备方法可由于操纵诸如孔隙率率、有效负载效率和药物释放分布等性质。这使得它们尤其适合作为本发明的载体。在颗粒制造过程期间或者制造过程之后,通过已知技术可以实现这些颗粒的前体化学物质的加载。下面将结合附图描述制备根据本发明的治疗剂的方法的例子。图1的照片显示了包封过碳酸钠的PLGA微米和纳米颗粒的扫描电子显微镜的图片。图2的照片显示了图1所示微米颗粒中的一个的扫描电子显微镜的图片,只是放大倍数更大。图3的照片显示了包封脲过氧化氢的PLGA微米和纳米颗粒的扫描电子显微镜的图片。图4的照片显示了图3所示微米颗粒中的一个的扫描电子显微镜的图片,只是放大倍数更大。图5显示了23℃每1毫升水中含有20mg图1和2所示的颗粒的超纯水的样品随时间的平均pH的图。图6显示了23℃每1毫升水中含有20mg图3和4所示的颗粒的超纯水的样品随时间的平均pH的图。在一种制造方法中,本发明的治疗剂通过热诱导的相分离(TIPS)工艺,采用包含活性前体化学物质的PLGA溶液制备。然而,本领域技术人员应理解其他制造方法也是可能的。TIPS工艺从在高温下制备PLGA溶液以产生均质溶液开始。前体化学物质溶解在合适的溶剂中,然后掺混入PLGA溶液中。采用另一种不混溶的冷却液体通过快速冷却到生物模型溶解度曲线以下除去热能可引发均质PLGA溶液相分层形成包括富含PLGA相和少PLGA相的多相体系。然后,相分离的PLGA溶液通过冷冻干燥处理以除去溶剂,产生本发明的微米和/或纳米颗粒。具体说,为了制备包封过碳酸钠的微米和纳米颗粒的样品,将聚(DL-乳酸-共-乙醇酸)(例如荷兰科比尔基团(CorbionGroupNetherlandsBV)以商品名PDLGIVo.68dl/g销售的产品)溶解在碳酸二甲酯中以制备4wt%的溶液,磁力搅拌24小时后备用。通过涡旋将过碳酸钠以100mg/ml的浓度溶解在超纯水中,然后静置24小时。然后,通过涡旋混合之前,在10ml有盖的玻璃试管中将833μl过碳酸钠溶液加入7.5mlPLGA溶液中。然后,采用常规微米包封机,例如尼斯科工程有限公司(NiscoEngineeringAG.)生产的包封机VAR-D设备,制备TIPS微米和纳米颗粒。制备的颗粒收集到液氮中,然后转移至冷冻干燥机冻干。所得颗粒如图1和2所示。类似的方法也可用于制备包封脲过氧化氢的微米和纳米颗粒,只是使用脲过氧化氢代替过碳酸钠并且以100mg/ml的浓度溶解在甲醇中。所得颗粒如图3和4所示。上述方法制备载药浓度为278mg相关前体化学物质/克PLGA的微米和纳米颗粒。预期如果需要的话,也可实现较高的浓度一直到用量大致加倍。如图1和3所示,制备的微米和纳米颗粒具有TIPS颗粒典型的多皱和多孔表面。两组颗粒的表面显示无定形材料的沉积,很可能包含加载的前体化学活性成分。许多微米颗粒的表面上可见大孔,这也是TIPS微米和纳米颗粒的特征性特征。同样,前体化学物质被PLGA载体包封,以干形式包含在颗粒内,溶剂已通过冷冻干燥去除。理想地,去除制造工艺中使用的溶剂或者溶剂仅以极少量存在,因为它们会增加颗粒的毒性。而且,如果前体化学物质以溶液包封,则其随时间的稳定性下降。TIPS制备方法倾向于最大程度降低或者甚至消除溶剂残留,还具有更好地控制微米和纳米颗粒的孔隙率率的优点,这也决定了前体化学物质从颗粒的受控释放时间。也可以通过类似的TIPS方法制备采用乙腈作为TAED的溶剂的包封TAED乙酰基供体的微米和纳米颗粒。同样,观察前体化学物质从微米和纳米颗粒的释放以模拟在人或动物感染的治疗中使用时的潜在功效。上文所述包封过碳酸钠和脲过氧化氢的颗粒用于测试在7天的测试周期内在初始pH为6.01的超纯水中产生pH变化的能力。将颗粒样品各自置于2ml聚丙烯螺纹盖微管中,加入超纯水以制备每1ml水20mg微米和纳米颗粒的最终浓度。颗粒通过涡旋混合10秒,然后在23℃孵育。在预定的时间间隔测定样品的pH。将pH电极插入样品中2分钟后记录各次测量。结果如图5和6所示,来自四个重复样品的测量结果以平均值绘图并显示平均值标准差。可见整个孵育期间过碳酸钠产生的pH升高以及脲过氧化氢产生的pH下降,即使以24小时的时间间隔更换浸没颗粒的水。颗粒产生的pH值的变化对应于仅活性成分溶解在超纯水中的溶液的pH值,如下表1所示。表1280mg/ml140mg/ml70mg/ml35mg/ml17.5mg/ml重量%28%14%7%3.5%1.75%过碳酸钠10.7410.8310.8710.8910.83脲过氧化氢4.976.386.96.927.90应理解,颗粒孵育后观察到的pH的变化表明,随着颗粒的降解前体化学物质能够维持从颗粒的释放以在延长的时间范围内产生本发明的治疗剂。当包封聚合物降解时发生释放,对于PLGA聚合物而言是通过水解。预期通过调节用于制备微米和纳米颗粒的聚合物的组成可以调节释放动力学(速率和持续时间)。因此,本发明并不限于使用基于聚(乳酸-共-乙醇酸)(PLGA)的微米和纳米颗粒。可以采用使用各种合成和突然聚合物的微米和纳米颗粒。这种聚合物的例子包括:聚盐酸(烯丙胺)、聚(二烯丙基甲基氯化铵)、聚乙烯亚胺(PEI)、聚乙烯吡咯烷酮、聚L鸟氨酸、聚L精氨酸、鱼精蛋白、壳聚糖、藻酸盐、聚苯乙烯磺酸盐/酯、聚(丙烯酸)、聚(甲基丙烯酸)、聚乙烯基磺酸盐/酯、聚磷酸、聚L谷氨酸、藻酸盐和硫酸葡聚糖。纳米胶束载体也可以由例如聚环氧乙烷/聚环氧丙烷二嵌段和三嵌段共聚合物、磷脂或前体表面活性剂制成。这些载体可用于代替或者补充其他微米或纳米颗粒载体。载体也可以用辅助工艺处理,例如用聚乙二醇处理,通常设计的PEG化,以保护生理环境中的颗粒,并且例如实现在血流中延长的循环时间。可选地或除此以外,载体可以用靶向配体处理以提高靶向特异性。例如,载体可以通过生物传感器如单克隆抗体靶向。本发明的治疗剂的一些其他例子描述如下。1.载有10%的过碳酸钠的直径为200×10-3μm的基于聚(乳酸-共-乙醇酸)(PLGA)的纳米颗粒载体。2.载有过碳酸钠至加载效率80%的直径为20×10-3μm至100×10-3μm的基于聚(乳酸-共-乙醇酸)(PLGA)的纳米颗粒载体。3.单独载有或组合载有过碳酸钠和四乙酰乙烯二胺至加载效率为0.1%至50%的基于聚(乳酸-共-乙醇酸)(PLGA)的纳米颗粒载体。4.单独载有或者组合载有过硫酸钠和乙酰水杨酸至组合加载效率为65%的聚乙烯亚胺(PEI)载体。5.载有脲过氧化物至加载效率75%的直径为100μm至1000μm的基于聚(乳酸-共-乙醇酸)(PLGA)的纳米颗粒载体。6.载有过碳酸钠的PEG化的纳米颗粒载体,颗粒直径为20×10-3μm至300×10-3μm(包括端值),加载效率为40%。7.加载效率为50%至80%(包括端值)的直径约为300μm的载有过碳酸钠的基于聚(乳酸-共-乙醇酸)(PLGA)的微米颗粒载体。8.载有过碳酸钠的基于壳聚糖的纳米颗粒与载有四乙酰乙烯二胺的PLGA颗粒的混合物,其中,过碳酸盐与TAED的比例约为2:1。因此,本发明将很好研究和广泛使用的高水平环境抗微生物试剂与其包封在靶向微米或纳米级载体内的生物惰性前体结合起来。其他化学物质受到保护免于宿主的免疫应答并且不会导致宿主组织不可接受的损伤或副作用。因此,本发明提供了一种治疗安全且有效的靶向和杀死感染微生物(包括多药耐药微生物)的方法,能够靶向各个身体部位,包括血流、肺、肝、肾、肠、尿道和皮层。当前第1页1 2 3