确定性受控的增湿系统的制作方法

文档序号:11440921阅读:272来源:国知局
确定性受控的增湿系统的制造方法与工艺

通过引用结合任何优先权申请

在与本申请一起提交的申请数据表中所指明的任何和所有对国外或国内优先权的申请都根据37cfr1.57通过引用结合在此。本申请要求2014年9月3日提交的临时申请us62/045,358和2015年9月2日提交的us62/213,534的优先权,其中每个临时申请的内容均通过引用将其全文结合。

背景

本披露总体上涉及增湿气体疗法。更具体地说,本披露涉及用于增湿气体疗法的增湿系统。

患有呼吸系疾病例如慢性阻塞性肺病(copd)的患者可能难以进行有效呼吸。这种困难可能是由于多种原因导致的结果,这些原因包括肺组织衰弱、小气道机能障碍、痰过量累积、感染、遗传性障碍、或心功能不全。在患有呼吸系疾病的情况下,提供可以改善患者通气的疗法是有用的。在一些情况下,患者可以配备有呼吸疗法系统,该呼吸疗法系统包括气体源、可以用于将气体传输到患者气道的接口、以及在气体源与接口之间延伸的导管。从气体源递送到患者气道的气体可以有助于促进充分通气。气体源可以包括例如空气和/或适合用于吸气的另一种气体(例如氧气或氧化氮)的容器、能够推进气体通过导管到达接口的机械鼓风机、或者这两者的某种组合。呼吸疗法系统可以包括气体增湿器,该气体增湿器可以对传递通过呼吸疗法系统的气体进行增湿和加热以便改善患者舒适度和/或改善患者的呼吸系疾病的预后。气体增湿器可以包括储水器和用于对储器中的水进行加热的加热元件。在水被加热而温度升高时,形成了可以汇入传递通过气体增湿器的气流的水蒸气。

常规的气体增湿器在减轻感冒不适和干气体疗法中是有用的,但典型地被配置的方式为使得储器中全部的水或者过量的水在生成的蒸气上升至可接受水平之前必须被加热以便于提供充分增湿的气体。在一些情形下,从打开增湿器到开始生成足够的水蒸气可能会花费高达半小时。另外,常规的气体增湿器可能不能够适当地响应于改变输入条件,或者部分地由于储器中水的高热惯性而可能具有受损的响应。

概述

本披露提供水蒸发系统,水蒸发系统不要求对一储器的水或者过量水进行加热。所披露的是允许所希望量的水快速蒸发从而提高对系统或者环境变化的响应时间并且极大减小暖机周期的实施例。

根据本披露的第一方面,一种用于在传递通过气体通路的气体被提供给患者的气道之前向该气体提供增湿的呼吸增湿系统可以包括用于提供受控的液体流的液体流动控制器;加热系统,加热系统包括加热表面,加热系统被配置成位于气体通路中并且向传递通过通路的气体提供增湿,其中加热系统接收受控的液体流,加热系统被配置成使加热表面维持在大约30摄氏度(℃)与大约99.9℃之间的预先确定的温度下;以及一个或多个硬件处理器,一个或多个硬件处理器通过以下方式提供传递通过气体通路的气体的湿度水平的确定性控制:指示液体流动控制器来调节在加热系统处所接收的受控的液体流。

加热系统可以被配置成使加热表面维持在以下预先确定的温度下:大约35℃与大约90℃之间、大约40℃与大约80℃之间、大约45℃与大约70℃之间、大约45℃与大约60℃之间、大约50℃与大约60℃之间、或者大约50℃的预先确定的温度。

液体可以是水。液体流动控制器可以包括计量系统。液体流动控制器可以是泵。泵可以是正排量泵。正排量泵可以是压电泵、隔膜泵或者蠕动泵。液体流动控制器可以是压力供给(诸如重力供给)和控制阀。液体流动控制器可以包括止回阀,止回阀被配置成保持液体流动控制器启动和/或保护系统免受污染。液体流动控制器可以被配置成使用芯吸作用或者毛细作用。呼吸增湿系统可以包括安全阀,用于在液体控制器发生故障时防止液体流动。呼吸增湿系统可以包括储液器。呼吸增湿系统可以包括流动限制装置,流动限制装置定位在储液器与液体流动控制器之间并且被配置成防止重力驱动的流动影响所递送液体流。流动限制装置可以是限制流动路径的弹性突起。液体流动控制器可以是呈开环构型的泵。液体流动控制器是呈闭环构型的与流动传感器串联的泵或者流动致动器。液体流动控制器可以提供在0ml/min至大约10ml/min范围内的连续水流。液体流动控制器可以提供在0ml/min至大约7ml/min范围内的连续液体流。液体流动控制器可以提供在0ml/min至大约5ml/min范围内的连续液体流。液体流动控制器可以提供在大约40μl/min至大约4ml/min范围内、或者大约70μl/min至大约2.5ml/min范围内的连续液体流。液体流动控制器可以提供具有以下精度的受控的液体流:大约±15%的所希望液体流速、大约±10%的所希望液体流速、大约±6.5%的所希望液体流速、或者大约±5%的所希望液体流速。

呼吸增湿系统可以包括流动传感器。流动传感器可以是热质量计量计。流动传感器可以是逐滴供给计数器。流动传感器可以是差压流动传感器。

一个或多个硬件处理器可以基于气体的流速提供湿度水平的确定性控制。一个或多个硬件处理器可以基于水从加热表面的蒸发速率提供湿度水平的确定性控制。一个或多个硬件处理器可以基于加热表面的温度提供湿度水平的确定性控制,其中加热表面的温度被维持在恒定温度下。一个或多个硬件处理器可以基于加热表面的温度提供湿度水平的确定性控制,其中加热表面的温度被控制。一个或多个硬件处理器可以基于入口处的气体的绝对压力或者大气压力提供湿度水平的确定性控制。一个或多个硬件处理器可以基于入口处的气体的露点温度提供湿度水平的确定性控制。一个或多个硬件处理器可以基于由加热表面所提供的热含量提供湿度水平的确定性控制。一个或多个硬件处理器可以基于气体在与加热系统交互之前的温度提供湿度水平的确定性控制。一个或多个硬件处理器可以基于气体在与加热系统交互之前的相对湿度提供湿度水平的确定性控制。一个或多个硬件处理器可以基于加热表面的有效加热表面积提供湿度水平的确定性控制。一个或多个硬件处理器可以基于气体的压力提供湿度水平的确定性控制。一个或多个硬件处理器可以基于气体速度的函数提供湿度水平的确定性控制。一个或多个硬件处理器可以基于受控的液体流中的液体的温度提供湿度水平的确定性控制。呼吸增湿系统可以包括水温度传感器。呼吸增湿系统可以包括气体流速传感器。呼吸增湿系统可以包括位于气体通路的入口处的气体流速传感器。呼吸增湿系统可以包括由模型所确定的液体流速。呼吸增湿系统可以包括由模型所确定的气体流速。呼吸增湿系统可以包括周围压力传感器。呼吸增湿系统可以包括定位在加热表面处或者附近的压力传感器。呼吸增湿系统可以包括加热表面温度传感器。呼吸增湿系统可以包括定位在增湿区上游的周围露点温度传感器或者周围湿度传感器。呼吸增湿系统可以包括定位在气体预加热器上游的周围露点温度传感器。呼吸增湿系统可以包括定位在气体预加热器下游的周围露点温度传感器。呼吸增湿系统可以包括定位在气体预加热器下游的周围露点温度传感器以及位于气体通路入口处的温度传感器。呼吸增湿系统可以包括形成加热系统的一部分的至少一个温度传感器。至少一个温度传感器可以被利用来确定加热器被液体所浸透的比例。呼吸增湿系统可以包括气体预加热器。气体通路入口处的气体的温度经由对预加热器的功率的控制以开环方式被控制。呼吸增湿系统可以包括液体预加热器。加热表面可以包括芯吸表面。热量可以通过具有电阻迹线或者电阻条的pcb供应给加热表面。热量可以通过蚀刻箔或者一个或多个柔性pcb供应给加热表面。热量可以通过电热丝供应。热量可以通过ptc陶瓷供应。热量可以由帕尔帖(peltier)装置或者热电装置供应。加热表面可以被包覆模制并且微通道可以包括在被配置成将水芯吸到加热器上的包覆模具中。可以通过使用加热系统的电阻或者其他特征来至少部分地确定加热表面的表面温度。电阻可以指示平均加热器系统温度。在一些构型中,加热系统被安排成使得在加热器的指定区中提供更高密度的热量,这样使得这些区具有更高的功率密度。更高密度的热量可以接近供水系统的出口。更高密度的热量可以被提供在水预加热区域中。呼吸增湿系统可以包括位于气体通路的出口处的温度传感器。

根据本披露的另一个方面,描述了一种用于向患者提供加热和增湿呼吸气体的高效呼吸增湿系统。呼吸增湿系统可以包括具有入口和出口的呼吸气体通路,其中在操作过程中气体从入口流动到出口;预加热器,预加热器被配置成对气流进行加热;以及加热表面,加热表面与预加热器分离并且位于预加热器下游,加热表面包括被配置成芯吸遍布加热表面的表面的液体的芯吸特征,加热表面进一步被配置成在芯吸过程中和/或在芯吸之后对液体进行加热。呼吸增湿系统可以包括气体流动发生器。预加热器可以是气体加热元件。气体加热元件可以是包括电阻元件(例如,迹线或条)、蚀刻箔膜、加热线圈或者ptc元件等的pcb中的一种。呼吸增湿系统可以包括定位在预加热器下游的温度传感器。可以根据从下游温度传感器所获得的测量结果控制提供给气体加热元件的功率。呼吸增湿系统可以包括定位在预加热器上游的温度传感器。可以根据从上游温度传感器所获得的气体流速和测量结果控制提供给气体加热元件的功率。气体加热元件的特征可以用作温度传感器。可以根据液体从加热表面的蒸发速率设定所希望的下游温度。所希望的下游温度可以被设定以便确保大约全部显热由预加热器供应给气体流。所希望的下游温度可以被设定在0℃与大约5℃之间、高于输出露点温度。所希望的下游温度可以被设定以便获得预先确定的输出绝对湿度。所希望的下游温度可以被设定以便获得给定输出绝对湿度。所希望的下游温度可以被设定成大约25℃至大约43℃、或者大约31℃至大约43℃、或者大约31℃至大约41℃、或者大约31℃至大约37℃、或者大约37℃。呼吸增湿系统可以包括液体流动发生器。呼吸增湿系统可以包括用于对液体流进行预加热的设备。可以通过增加水被引入的电阻条的数量将用于对液体流进行预加热的设备结合到加热表面结构中。用于对液体流进行预加热的设备可以位于供水管线中。芯吸特征部可以是吸收织物或吸收纸张、微通道、亲水性涂覆表面、毛细吸液芯或接触吸液芯、或者薄多孔介质等中的一种或多种。芯吸特征部可以包括被配置成将液体分布到加热表面上的联接件。联接件可以是被粘结或者变成与加热表面或芯吸特征部相接触的一段芯吸介质。联接件可以是与芯吸特征部形成锐角的第二表面。联接件可以是与加热表面或者芯吸特征部相接触的空腔。联接件可以是线源、点源、径向源、或者多条线、多个点以及多个径向源、或者它们的任何组合中的一个或多个。加热表面可以被维持在以下预先确定的温度下:大约30℃与大约99.9℃之间、大约35℃与大约90℃之间、大约40℃与大约80℃之间、大约45℃与大约70℃之间、大约45℃与大约60℃之间、大约50℃与大约60℃之间、或者大约50℃。芯吸特征部可以被机械地配置成定位在液体递送管内。呼吸增湿系统可以被配置成位于用于将气体递送给患者的吸入管内或者作为吸入管的一部分。呼吸增湿系统可以包括过滤器。过滤器可以位于液体递送管线中。过滤器可以定位在泵的下游。过滤器可以定位在通向加热表面的入口处。过滤器可以是生物过滤器。呼吸增湿系统可以包括uv源以实现无菌度。

根据本披露的另一个方面,一种用于向患者提供加热和增湿呼吸气体的呼吸增湿系统可以包括提供受控的液体流的液体流动控制器;加热系统,加热系统包括加热表面,加热系统被配置成接收受控的液体流并且向传递通过增湿系统的气体提供增湿;一个或多个温度传感器,一个或多个温度传感器测量加热表面的表面温度;一个或多个硬件处理器,一个或多个硬件处理器通过以下方式提供传递通过呼吸系统的气体的湿度水平的确定性控制:指示液体流动控制器调节在加热系统处所接收的受控的液体流并且指示加热系统调节加热表面的表面温度,其中调节加热表面的表面温度提供控制以便产生已知蒸发面积;以及一个或多个液体传感器,一个或多个液体传感器被配置成检测加热表面在至少一个区中是否被浸湿。一个或多个液体传感器可以是至少两个液体传感器,至少两个液体传感器被配置成检测加热表面在加热表面的两个或更多个区处是否被浸湿。至少两个液体传感器可以是两个温度传感器。一个或多个液体传感器可以位于加热表面处、位于加热表面上、邻近加热表面定位、或者位于加热表面近侧。液体可以是水。

液体流动控制器可以是计量系统。液体流动控制器可以包括泵。泵可以是正排量泵。正排量泵可以是压电隔膜泵或者蠕动泵。液体流动控制器可以是压力供给(诸如重力供给)和控制阀。液体流动控制器可以包括止回阀,止回阀被配置成保持液体流动控制器启动和/或减小倒流的可能。液体流动控制器可以被配置成使用芯吸作用或者毛细作用。呼吸增湿系统可以包括安全阀,用于在液体控制器发生故障时防止液体流动。呼吸增湿系统可以包括储液器。呼吸增湿系统可以包括流动限制装置,流动限制装置定位在储液器与液体流动控制器之间并且被配置成防止重力驱动的流动影响所递送液体流。流动限制装置可以是限制流动路径的弹性突起。液体流动控制器可以是呈开环构型的泵。液体流动控制器是呈闭环构型的与流动传感器串联的泵或者流动致动器。泵可以是压电泵。流动传感器可以是热质量计量计。液体流动致动器可以提供在0ml/min至10ml/min范围内的连续水流。液体流动致动器可以提供在0ml/min至7ml/min范围内的连续水流。液体流动致动器可以提供在0ml/min至5ml/min范围内的连续水流。液体流动致动器可以提供在40μl/min至4ml/min范围内、或者70μl/min至2.5ml/min范围内的连续水流。流动控制器可以提供具有以下精度的受控的液体流:大约±15%的所希望液体流速、大约±10%的所希望液体流速、大约±6.5%的所希望液体流速、或者大约±5%的所希望液体流速。

一个或多个硬件处理器可以基于气体的流速提供湿度水平的确定性控制。一个或多个硬件处理器可以基于液体从加热表面的蒸发速率提供湿度水平的确定性控制。一个或多个硬件处理器可以基于加热表面的温度提供湿度水平的确定性控制,其中加热表面的温度被维持在恒定温度下。一个或多个硬件处理器可以基于加热表面的温度提供湿度水平的确定性控制,其中加热表面的温度被控制。一个或多个硬件处理器可以基于入口处的气体的绝对压力或者大气压力提供湿度水平的确定性控制。一个或多个硬件处理器可以基于入口处的气体的露点温度提供湿度水平的确定性控制。一个或多个硬件处理器可以基于由加热表面所提供的热含量提供湿度水平的确定性控制。一个或多个硬件处理器可以基于气体在与加热系统交互之前的温度提供湿度水平的确定性控制。一个或多个硬件处理器可以基于气体在与加热系统交互之前的相对湿度提供湿度水平的确定性控制。一个或多个硬件处理器可以基于加热表面的有效加热表面积提供湿度水平的确定性控制。一个或多个硬件处理器可以基于气体的压力提供湿度水平的确定性控制。一个或多个硬件处理器可以基于气体速度的函数提供湿度水平的确定性控制。一个或多个硬件处理器可以基于受控的液体流中的液体的温度提供湿度水平的确定性控制。呼吸增湿系统可以包括水温度传感器。呼吸增湿系统可以包括气体流速传感器。呼吸增湿系统可以包括位于气体通路的入口处的气体流速传感器。呼吸增湿系统可以包括由模型所确定的液体流速。呼吸增湿系统可以包括由模型所确定的气体流速。呼吸增湿系统可以包括周围压力传感器。呼吸增湿系统可以包括定位在增湿区上游的周围露点温度传感器或者周围湿度传感器。呼吸增湿系统可以包括定位在气体预加热器上游的周围露点温度传感器。呼吸增湿系统可以包括定位在气体预加热器下游的周围露点温度传感器。呼吸增湿系统可以包括定位在气体预加热器下游的周围露点温度传感器以及位于气体通路入口处的温度传感器。呼吸增湿系统可以包括形成加热系统的一部分的至少一个温度传感器。至少一个温度传感器可以被利用来确定加热器被液体所浸透的比例。呼吸增湿系统可以包括气体预加热器。气体通路入口处的气体的温度经由对预加热器的功率的控制以开环方式被控制。呼吸增湿系统可以包括液体预加热器。一个或多个液体传感器可以用于防止液体溢流到加热表面上。一个或多个液体传感器可以由一个或多个硬件处理器使用来调节传递通过呼吸系统的气体的湿度水平的确定性控制。一个或多个液体传感器可以由一个或多个硬件处理器使用来调节加热表面的蒸发面积。一个或多个液体传感器可以是温度传感器。一个或多个液体传感器可以是电阻式传感器或者电容式传感器。

根据本披露的另一个方面,一种用于呼吸增湿系统的加热器板包括以包括微通道的表面包覆模制的印刷电路板(pcb)或者蚀刻箔。表面可以具有仅在单一方向上延伸的微通道。微通道可以包括连接到第二组主通道上的第一组分布通道。分布通道的数量可以小于主通道的数量。微通道可以从单点径向地分布。加热系统可以与在此所描述的任何呼吸增湿系统一起使用。

根据本披露的另一个方面,一种用于在传递通过气体通路的气体被提供给患者的气道之前向气体提供增湿的呼吸增湿系统包括提供受控的液体流的液体流动控制器;加热系统,加热系统包括加热表面,加热系统被配置成接收受控的液体流并且向传递通过增湿系统的气体提供增湿,其中加热表面被配置成芯吸遍布加热表面的表面的液体;以及气体预加热器,气体预加热器被安排在气体通路中、位于加热系统上游。呼吸增湿系统可以包括联接件,联接件被配置成从液体控件接收受控的液体流并且将液体分布到加热表面上。呼吸增湿系统可以被配置成与用于将气体递送给患者的吸入管成一直线。呼吸增湿系统可以被配置成位于用于将气体递送给患者的吸入管内。液体可以是水。呼吸增湿系统可以包括过滤器。过滤器可以位于液体递送管线中。过滤器可以定位在泵的下游。过滤器可以定位在通向加热表面的入口处。过滤器可以是生物过滤器。呼吸增湿系统可以包括uv源以实现无菌度。

液体流动控制器可以包括计量系统。液体流动控制器可以是泵。泵可以是正排量泵。正排量泵可以是压电泵、隔膜泵或者蠕动泵。液体流动控制器可以包括压力供给(诸如重力供给)和控制阀。液体流动控制器可以包括被配置成保持液体流动控制器启动的止回阀。液体流动控制器可以被配置成使用芯吸作用或者毛细作用。呼吸增湿系统可以进一步包括安全阀,用于在液体控制器发生故障时防止液体流动。呼吸增湿系统可以进一步包括储液器。呼吸增湿系统可以进一步包括流动限制装置,流动限制装置定位在储液器与液体流动控制器之间并且被配置成防止重力驱动的流动影响所递送液体流。流动限制装置可以是限制流动路径的弹性突起。液体流动控制器可以是呈开环构型的泵。液体流动控制器是呈闭环构型的与流动传感器串联的泵或者流动致动器。液体流动致动器可以提供在0ml/min至大约10ml/min范围内的连续液体流。液体流动致动器可以提供在0ml/min至大约7ml/min范围内的连续液体流。液体流动致动器可以提供在0ml/min至大约5ml/min范围内的连续液体流。液体流动致动器可以提供在40μl/min至大约4ml/min范围内、或者大约70μl/min至大约2.5ml/min范围内的连续液体流。液体流动控制器可以提供具有以下精度的受控的液体流:大约±15%的所希望液体流速、大约±10%的所希望液体流速、大约±6.5%的所希望液体流速、或者大约±5%的所希望液体流速。

加热系统可以包括加热器板,该加热器板包括以包括微通道的表面包覆模制的印刷电路板(pcb)或者蚀刻箔。表面可以具有仅在单一方向上延伸的微通道。微通道可以包括连接到第二组主通道上的第一组分布通道。分布通道的数量可以小于主通道的数量。微通道可以从单点径向地分布。联接件可以是纤维聚合物、多孔聚合物或者烧结聚合物。加热表面可以被浸入气体流中。加热表面可以包括模块化区。

根据本披露的另一个方面,一种呼吸增湿系统包括提供受控的液体流的液体流动控制器;加热系统,加热系统包括加热表面,加热系统被配置成位于气体通路中并且对传递通过通路的气体提供增湿,其中加热系统接收受控的液体流,加热系统被配置成使加热表面维持在大约30℃与大约99.9℃之间的预先确定的温度下;并且加热表面可以被配置成被维持在大约30℃与大约99.9℃之间的温度下,并且其中系统的大约80%-99.9%的功率输出被转换成液体中的热量。加热表面可以被配置成被维持在以下温度下:大约35℃与大约90℃之间、大约45℃与大约70℃之间、大约45℃与大约60℃之间、大约50℃与大约60℃之间、或者大约50℃的温度。在一些构型中,系统的大约85%-99.99%的功率输出被转换成液体中的热量,系统的大约90%-99.99%的功率输出被转换成液体中的热量,系统的大约95%-99.99%的功率输出被转换成液体中的热量,或者系统的大约98%的功率输出被转换成液体中的热量。液体可以是水。呼吸增湿系统可以被构造为如在此所描述的任何呼吸增湿系统。

根据本披露的另一个方面,一种用于在传递通过气体通路的气体被提供给患者的气道之前向气体提供增湿的呼吸增湿系统包括用于对气体流进行加热并且定位在增湿区上游的设备;液体流动发生器;加热系统,加热系统包括加热表面,加热系统被配置成位于气体通路中并且向传递通过通路的气体提供增湿,其中加热系统被配置成使加热表面维持在大约30℃与大约99.9℃之间的预先确定的温度下。加热系统被配置成使加热表面维持在大约35℃与大约90℃的预先确定的温度下。加热系统被配置成使加热表面维持在大约40℃与大约80℃的预先确定的温度下。加热系统被配置成使加热表面维持在大约45℃与大约70℃的预先确定的温度下。加热系统被配置成使加热表面维持在大约45℃与大约60℃的预先确定的温度下。加热系统被配置成使加热表面维持在大约50℃与大约60℃的预先确定的温度下。加热系统被配置成使加热表面维持在大约50℃的预先确定的温度下。设备可以是预加热器。预加热器可以包括气体加热元件。气体加热元件可以是包括电阻元件、蚀刻箔膜、加热线圈或者ptc元件等的pcb中的一种。呼吸增湿系统可以包括定位在预加热器下游的温度传感器。可以根据从下游温度传感器所获得的测量结果控制提供给气体加热元件的功率。呼吸增湿系统可以包括定位在预加热器上游的温度传感器。可以根据从上游温度传感器所获得的气流速率和测量结果控制提供给气体加热元件的功率。气体加热元件的特征可以用作温度传感器。可以根据加热表面的蒸发速率设定预加热之后的所希望的下游温度。所希望的下游温度可以被设定以便确保大约全部显热由预加热器供应。所希望的下游温度可以被设定在0℃与大约5℃之间、高于输出温度。所希望的下游温度可以被设定以便获得给定输出相对湿度。所希望的下游温度可以被设定以便获得给定输出绝对湿度。所希望的下游温度可以被设定成大约25℃至大约43℃、或者大约31℃至大约43℃、或者大约31℃至大约41℃、或者大约31℃至大约37℃、或者大约37℃。呼吸增湿系统可以包括用于对液体流进行预加热的设备。可以通过增加液体被引入的电阻加热轨的数量将用于对液体流进行预加热的设备结合到加热结构中。用于对液体流进行预加热的设备可以位于液体供应管线中。

根据本披露的另一个方面,描述了通过控制去往加热源的水流对呼吸增湿系统中的湿度进行确定性控制。湿度水平的确定性控制可以基于气体的流速。湿度水平的确定性控制可以基于水从加热表面的蒸发速率。湿度水平的确定性控制可以基于加热表面的温度,其中加热表面的温度被维持在恒定温度下。湿度水平的确定性控制可以基于加热表面的温度,其中加热表面的温度被控制。湿度水平的确定性控制可以基于入口处气体的绝对压力或者大气压力。湿度水平的确定性控制可以基于入口处气体的露点温度。湿度水平的确定性控制可以基于由加热表面所提供的热含量。湿度水平的确定性控制可以基于气体在与加热系统交互之前的温度。湿度水平的确定性控制可以基于气体在与加热系统交互之前的相对湿度。湿度水平的确定性控制可以基于加热表面的有效加热表面积。湿度水平的确定性控制可以基于气体的压力。湿度水平的确定性控制可以基于气体速度的函数。湿度水平的确定性控制可以基于受控的液体流中的液体的温度。确定性控制可以基于上述输入中两个或更多个的组合,并且以上输入的全部组合是在此披露的范围内。确定性控制可以基于去往加热源的水流和气体流速的控制的组合。确定性控制可以基于去往加热源的水流、气体流速以及入口处气体的露点温度的控制的组合。确定性控制可以基于去往加热源的水流、气体流速以及入口处气体的绝对压力或者大气压力的控制的组合。确定性控制可以基于去往加热源的水流、气体流速、入口处气体的绝对压力或者大气压力、以及入口处气体的露点温度的控制的组合。呼吸增湿系统可以包括水温度传感器。呼吸增湿系统可以包括气体流速传感器。呼吸增湿系统可以包括位于气体通路的入口处的气体流速传感器。呼吸增湿系统可以包括由模型所确定的液体流速。呼吸增湿系统可以包括由模型所确定的气体流速。呼吸增湿系统可以包括周围压力传感器。呼吸增湿系统可以包括定位在加热表面处或者附近的压力传感器。呼吸增湿系统可以包括加热表面温度传感器。呼吸增湿系统可以包括定位在增湿区上游的周围露点温度传感器或者周围湿度传感器。呼吸增湿系统可以包括定位在气体预加热器上游的周围露点温度传感器。呼吸增湿系统可以包括定位在气体预加热器下游的周围露点温度传感器。呼吸增湿系统可以包括定位在气体预加热器下游的周围露点温度传感器以及位于气体通路入口处的温度传感器。呼吸增湿系统可以包括形成加热系统的一部分的至少一个温度传感器。至少一个温度传感器可以被利用来确定加热器表面面积被液体所浸透(或覆盖)的比例。呼吸增湿系统可以包括气体预加热器。气体通路入口处的气体的温度经由对预加热器的功率的控制以开环方式被控制。呼吸增湿系统可以包括液体预加热器。加热表面可以包括芯吸表面。热量可以通过具有电阻迹线或者电阻条的pcb供应给加热表面。热量可以通过蚀刻箔或者柔性pcb供应给加热表面。热量可以通过电热丝供应。热量可以通过ptc陶瓷供应。热量可以由帕尔帖(peltier)装置或者热电装置供应。加热表面可以是包覆模具,包覆模具包括包覆模具中的被配置成传导液体诸如水的微通道。可以通过使用加热系统的电阻或者其他特征至少部分地确定加热表面的表面温度。电阻可以指示平均加热系统温度。在一些构型中,加热系统被安排成使得在加热器的指定区中提供更高密度的热量,这样使得这些区具有更高的功率密度。更高密度的热量可以接近供水系统的出口。更高密度的热量可以被提供在水预加热区域中。呼吸增湿系统可以包括位于气体通路的出口处的温度传感器。

根据本披露的另一个方面,提供了一种呼吸增湿系统,呼吸增湿系统提供内嵌式增湿。内嵌式增湿允许增湿发生在气体流动路径中,这样使得增湿系统可以定位在例如吸入管内、部分定位在吸入管内、或者定位在吸入管的端部处。

根据本披露的另一个方面,提供了呼吸增湿系统,呼吸增湿系统包括气体通道,气体可以流动通过气体通道,气体通道在入口位置与出口位置之间延伸,气体通道包括入口位置与出口位置之间的增湿位置;加热表面,加热表面与气体通道处于流体连通,加热表面被配置成被维持在温度范围内;以及水流动控制器,水流动控制器被配置成控制去往加热表面的水流;其中在使用中,通过控制水流向加热表面的流速确定性地控制出口位置处的气体的湿度水平。

水流动控制器可以包括计量安排。计量安排可以进一步包括泵。泵可以是正排量泵,例如像压电隔膜泵、蠕动泵、微型泵、或者渐进式空腔泵。泵还可以是与控制阀串联的压力供给。压力源可以是重力。呼吸增湿系统可以具有与计量安排处于流体连通的导管,导管被配置成将水携带至计量安排。导管可以具有被配置成保持计量安排启动的止回阀。导管还可以具有被配置成保持泵启动的止回阀。计量安排可以包括采用毛细作用将水可控制地定量供给到芯吸元件和/或加热表面的芯吸结构。导管还可以具有通向计量安排的导管中的安全阀,诸如压力释放阀。呼吸增湿系统可以具有被配置成盛放水的储器。呼吸增湿系统还可以具有流动限制装置,流动限制装置定位在储器与计量安排之间以防止重力驱动的流动影响水流动路径。流动限制装置可以是挤压或者以其他方式限制流动路径的弹性突起。水流动控制器可以是呈开环构型的泵。水流动控制器可以是呈闭环构型的与流动传感器串联的泵或者流动致动器。水流动控制器可以提供在0ml/min至大约5ml/min范围内的连续水流。水流动控制器可以提供在0ml/min至大约7ml/min范围内的连续水流。水流动控制器可以提供在0ml/min至大约5ml/min范围内的连续水流。水流动控制器可以提供在大约40μl/min至大约4ml/min范围内、或者大约70μl/min至大约2.5ml/min范围内的连续水流。水流动控制器可以提供在大约40μl/min至大约4ml/min范围内的连续水流。水流动控制器可以提供在大约70μl/min至大约2.5ml/min范围内的连续水流。水流动控制器可以提供大约±15%精度的水的流速。水流动控制器可以提供大约±10%精度的水的流速。水流动控制器可以提供大约±6.5%精度的水的流速。水流动控制器可以提供大约±5%精度的水的流速。

加热表面可以具有流动传感器。流动传感器可以是热质量计量计。流动传感器可以是逐滴供给计数器。流动传感器可以是差压流动传感器。

水流向加热表面的流速控制可以基于气体在气体通道中的流速。水流向加热表面的流速控制可以基于水从加热表面的蒸发速率。水流向加热表面的流速控制可以基于加热表面的温度,其中加热表面的温度被维持在恒定温度下。水流向加热表面的流速控制可以基于加热表面的温度,其中加热表面的温度被控制。水流向加热表面的流速控制可以基于入口位置处或附近的气体的绝对压力或者大气压力。水流向加热表面的流速控制可以基于入口位置处的气体的露点温度。水流向加热表面的流速控制可以基于由加热表面所提供的热含量。水流向加热表面的流速控制可以基于由加热表面所提供的功率水平。水流向加热表面的流速控制可以基于入口位置处的气体的温度。可以通过处理由温度传感器和湿度传感器所提供的信息导出入口位置处的气体的露点温度。水流向加热表面的流速控制可以基于入口位置处的气体的露点温度。水流向加热表面的流速控制可以基于入口位置处的气体的相对湿度水平。水流向加热表面的流速控制可以基于加热表面的有效加热表面积。水流向加热表面的流速控制可以基于气体通道中的气体的压力水平。水流向加热表面的流速控制可以基于气体在气体通道中流动的速度。水流向加热表面的流速控制可以基于水流的温度。呼吸增湿系统可以包括水温度传感器。呼吸增湿系统可以包括气体流速传感器。呼吸增湿系统可以基于模型确定水的流速。呼吸增湿系统可以基于模型确定气体流速。呼吸增湿系统可以包括周围压力传感器。压力传感器可以定位在加热表面处或者附近。呼吸增湿系统可以包括被配置成测量加热表面的温度的温度传感器。呼吸增湿系统可以包括定位在气体通道内、位于增湿位置上游的周围露点温度传感器。呼吸增湿系统可以包括定位在气体通道内、位于增湿位置上游的周围湿度传感器。呼吸增湿系统可以包括气体预加热器。气体预加热器可以被布置在气体通道内、位于入口位置与增湿位置之间。周围露点传感器可以定位在气体通道内、位于气体预加热器上游。周围湿度传感器可以定位在气体通道内、位于气体预加热器上游。周围露点温度传感器可以定位在气体通道内、位于气体预加热器下游。周围湿度传感器可以定位在气体通道内、位于气体预加热器下游。周围露点温度传感器可以定位在气体通道内、位于气体预加热器下游,与定位在气体通道的入口位置处的温度传感器相结合。呼吸增湿系统可以包括被配置成测量加热表面的至少一个温度的至少一个温度传感器。至少一个温度传感器可以被配置成确定加热表面被水所浸透的比例。呼吸增湿系统可以通过以开环方式控制通向气体预加热器的功率水平来控制气体通道的入口位置处的气体温度。呼吸增湿系统可以包括水预加热器。

加热表面可以被配置成被维持在温度范围下。温度范围可以是在大约30℃与大约99.9℃之间。温度范围可以是在大约35℃与大约90℃之间。温度范围可以是在大约40℃与大约80℃之间。温度范围可以是在大约45℃与大约70℃之间。温度范围可以是在大约45℃与大约60℃之间。温度范围可以是在大约50℃与大约60℃之间。加热表面可以被配置成维持大约50℃的温度。加热表面可以包括芯吸表面。加热表面可以包括被配置成向加热表面提供热量的加热元件。加热元件可以是电路板。电路板可以是印刷电路板。电路板可以是柔性电路板。柔性电路板可以由聚合物制成,聚合物可以是硅酮、聚酯或者聚酰亚胺。电路板可以具有多根电阻条(条或迹线)。电阻条可以是铜。加热元件可以是蚀刻箔。加热元件可以是电热丝。电热丝可以是镍铬铁合金。加热元件可以是正热阻抗系数(ptc)陶瓷。ptc陶瓷可以是钛酸钡。加热元件可以是热电装置。热电装置可以是帕尔贴装置。芯吸表面可以由电路板上的包覆模具提供,包覆模具含有微通道。可以至少部分地通过确定加热元件的电阻水平或者其他特性测量加热表面温度。加热元件的电阻水平可以用于指示加热表面的平均温度。加热元件可以被安排成在加热元件的指定区中递送与递送给加热元件的其他区的功率密度相比更高的功率密度。加热元件的指定的更高密度区可以位于水向加热表面的供应出口处。加热元件的指定的更高密度区可以位于加热表面上的水预加热区域处。呼吸增湿系统可以包括位于气体通道的出口位置处的温度传感器。

根据本披露的另一个方面,提供了一种呼吸增湿系统,呼吸增湿系统包括气体通道,气体可以流动通过气体通道,气体通道在入口位置与出口位置之间延伸,气体通道包括入口位置与出口位置之间的增湿位置;气体预加热器,气体预加热器被布置在气体通道内、位于入口位置与增湿位置之间;以及加热表面,加热表面在增湿位置处与气体通道处于流体连通,加热表面具有被配置成将水分布给加热表面的芯吸元件。

呼吸增湿系统可以具有气体流动发生器,气体流动发生器被适配成推进、驱动或者以其他方式致使气体在从气体通道的入口位置到出口位置的一般方向上移动。气体预加热器可以包括气体加热元件。气体加热元件可以是印刷电路板。印刷电路板可以具有电阻元件。气体加热元件可以是蚀刻箔膜。气体加热元件可以是加热线圈。气体加热元件可以是ptc陶瓷。呼吸增湿系统可以具有温度传感器。温度传感器可以定位在气体通道中、位于气体预加热器下游。温度传感器可以定位在气体通道中、位于气体预加热器上游。气体加热元件的特征(例如,电阻)可以用于确定气体的温度。递送到气体加热元件的功率水平的控制可以基于由定位在气体通道中、位于气体预加热器下游的温度传感器所提供的信息。递送到气体加热元件的功率水平的控制可以基于由气体流动传感器以及由定位在气体通道中、位于气体预加热器上游的温度传感器所提供的信息。所希望的气体的下游温度可以基于水从加热表面的蒸发速率来确定。所希望的气体的下游温度可以被设定以便确保大约全部显热由气体预加热器供应。所希望的气体的下游温度可以被设定以便获得出口位置处的气体的所希望相对湿度水平。所希望的气体的下游温度可以被设定在0℃与大约5℃之间、高于出口位置处的气体的所希望温度。所希望的气体的下游温度可以被设定成出口位置处的所希望露点温度。所希望的气体的下游温度可以被设定成大约25℃至大约43℃、或者大约31℃至大约43℃、或者大约31℃至大约41℃、或者大约31℃至大约37℃、或者大约37℃。加热表面可以包括被配置成向加热表面提供热量的加热元件。加热元件可以包括多根电阻条(条或迹线)。呼吸增湿系统可以包括被配置成生成去往加热表面的水流的水流动发生器。水流动发生器可以包括泵。泵可以是正排量泵。正排量泵可以是压电隔膜泵、蠕动泵、微型泵、或者渐进式空腔泵。呼吸增湿系统可以包括用于对水进行预加热的设备。可以通过在加热元件的对应于加热表面上水被引入的区域的一个或多个区域处增加电阻条的密度、并且因此增加递送到加热表面的功率密度将用于对水进行预加热的设备结合到加热元件中。呼吸增湿系统可以包括被配置成将水递送到加热表面的供水管线。用于对水进行预加热的设备可以被结合到供水管线中。

芯吸元件可以包括吸收织物。芯吸元件可以包括吸收纸张。芯吸元件可以包括微通道。芯吸元件可以包括亲水性涂覆表面。芯吸元件可以包括多个毛细/接触吸液芯。芯吸元件可以包括薄的多孔介质,诸如纤维聚合物、多孔聚合物或者烧结聚合物。芯吸元件可以包括联接件或者与联接件相联接,联接件执行某种水向加热表面的分布。联接件可以是被粘结至或者以其他方式变成与芯吸元件或加热表面相接触的一段芯吸介质。联接件可以是多孔聚合物。联接件可以是织物。联接件可以是纸张。联接件可以是亲水性涂覆区段。联接件可以是与芯吸元件形成锐角的第二表面。第二表面可以是玻璃板。联接件可以是与芯吸元件相接触的空腔。联接可以由线源执行。联接可以由多个线源执行。联接可以由点源执行。联接可以由多个点源执行。联接可以由径向源执行。联接可以由多个径向源执行。联接可以由线源、点源和/或径向源的组合执行。加热表面可以被适配成维持大约30℃与大约99.9℃的温度。加热表面可以被适配成维持大约35℃与大约90℃的温度。加热表面可以被适配成维持大约40℃与大约80℃的温度。加热表面可以被适配成维持大约45℃与大约70℃的温度。加热表面可以被适配成维持大约45℃与大约60℃的温度。加热表面可以被适配成维持大约50℃与大约60℃的温度。加热表面可以被适配成被维持在大约50℃的温度下。呼吸增湿系统可以被机械地配置成使得芯吸元件、加热表面以及水流动发生器定位在气体通道内或者结合为气体通道的一部分。呼吸增湿系统可以被机械地配置成使得水流动发生器、联接件、芯吸元件以及加热表面定位在气体通道内或者结合为气体通道的一部分。呼吸增湿系统可以包括过滤器。过滤器可以位于供水管线中。过滤器可以定位在泵的下游。过滤器可以定位在通向加热表面的入口处。过滤器可以是生物过滤器。呼吸增湿系统可以包括多个过滤器。呼吸增湿系统可以包括供水管线中的位于储器与水流动发生器之间的第一过滤器以及供水管线中的位于水流动发生器与加热表面之间的第二过滤器。呼吸增湿系统可以包括电磁辐射发射器以实现无菌度。电磁辐射发射器可以是uv光源。uv光源可以是灯具或者发光二极管(led)。

根据本披露的另一个方面,提供了一种呼吸增湿系统,呼吸增湿系统包括气体通道,气体可以流动通过气体通道,气体通道在入口位置与出口位置之间延伸,气体通道包括入口位置与出口位置之间的增湿位置;水流动计量系统,水流计量系统被配置成以水的流速对水进行定量供给;加热表面,加热表面在增湿位置处与气体通道处于流体连通,加热表面被配置成接收由水流动计量系统所提供的水并且使所接收水蒸发;至少一个温度传感器,至少一个温度传感器被配置成测量加热表面的温度;两个或更多个流体传感器,两个或更多个流体传感器定位在加热表面的一个或多个区处、一个或多个区上、邻近一个或多个区定位或者定位在一个或多个区近侧,两个或更多个流体传感器被配置成检测加热表面在两个或更多个区中是否被浸湿;水流动控制器,水流动控制器被配置成控制水流向加热表面的流速;其中在使用中,呼吸增湿系统通过控制水流向加热表面的流速确定性地控制出口位置处的气体的湿度水平。

水流动计量系统可以包括泵。泵可以是正排量泵。正排量泵可以是压电隔膜泵、蠕动泵、微型泵、或者渐进式空腔泵。泵可以是与控制阀串联的压力供给,诸如重力供给。呼吸增湿系统可以具有与水流动计量系统处于流体连通的导管,导管被配置成将水携带至水流动计量系统。导管可以具有被配置成保持水流动计量系统启动的止回阀。导管可以具有被配置成保持泵启动的止回阀。水流动计量系统可以包括采用毛细作用将水可控制地定量供给给加热表面上的芯吸表面的芯吸结构。导管可以具有通向水流动计量系统的导管中的安全阀,诸如压力释放阀。呼吸增湿系统可以具有被配置成盛放水的储器。呼吸增湿系统可以具有流动限制装置,流动限制装置定位在储器与水流动计量系统之间以防止重力驱动的流动影响水流动路径。流动限制装置可以是挤压或者以其他方式限制流动路径的弹性突起。水流动计量系统可以是呈开环构型的泵。水流动计量系统可以是呈闭环构型的与流动传感器串联的泵或者流动致动器。水流动计量系统可以提供在0ml/min至大约5ml/min范围内的连续水流。水流动计量系统可以提供在大约40μl/min至大约4ml/min范围内的连续水流。水流动计量系统可以提供在大约70μl/min至大约2.5ml/min范围内的连续水流。水流动计量系统可以提供大约±15%精度的水的流速。水流动计量系统可以提供大约±10%精度的水的流速。水流动计量系统可以提供大约±6.5%精度的水的流速。水流动计量系统可以提供大约±5%精度的水的流速。

水流向加热表面的流速控制可以基于气体在气体通道中的流速。水流向加热表面的流速控制可以基于水从加热表面的蒸发速率。水流向加热表面的流速控制可以基于加热表面的温度,其中加热表面的温度被维持在恒定温度下。水流向加热表面的流速控制可以基于加热表面的温度,其中加热表面的温度被控制。水流向加热表面的流速控制可以基于入口位置处或附近的气体的绝对压力或者大气压力。水流向加热表面的流速控制可以基于入口位置处的气体的露点温度。水流向加热表面的流速控制可以基于由加热表面所提供的热含量。水流向加热表面的流速控制可以基于由加热表面所提供的功率水平。水流向加热表面的流速控制可以基于入口位置处的气体的温度。可以通过处理由温度传感器和湿度传感器所提供的信息导出入口位置处的气体的露点温度。水流向加热表面的流速控制可以基于入口位置处的气体的露点温度。水流向加热表面的流速控制可以基于入口位置处的气体的相对湿度水平。水流向加热表面的流速控制可以基于加热表面的有效加热表面积。水流向加热表面的流速控制可以基于气体通道中的气体的压力水平。水流向加热表面的流速控制可以基于气体在气体通道中流动的速度。水流向加热表面的流速控制可以基于水流的温度。

呼吸增湿系统可以包括水温度传感器。呼吸增湿系统可以包括气体流速传感器。呼吸增湿系统可以基于模型确定水的流速。呼吸增湿系统可以基于模型确定气体流速。呼吸增湿系统可以包括周围压力传感器。压力传感器可以定位在加热表面处或者附近。呼吸增湿系统可以包括定位在气体通道内、位于增湿位置上游的周围露点温度传感器。呼吸增湿系统可以包括定位在气体通道内、位于增湿位置上游的周围湿度传感器。呼吸增湿系统可以包括气体预加热器。气体预加热器可以被布置在气体通道内、位于入口位置与增湿位置之间。周围露点温度传感器可以定位在气体通道内、位于气体预加热器上游。周围湿度传感器可以定位在气体通道内、位于气体预加热器上游。周围露点温度传感器可以定位在气体通道内、位于气体预加热器下游。周围湿度传感器可以定位在气体通道内、位于气体预加热器下游。周围露点温度传感器可以定位在气体通道内、位于气体预加热器下游,与定位在气体通道的入口位置处的温度传感器相结合。

至少一个温度传感器可以被配置成确定加热表面被水所浸透的比例。呼吸增湿系统可以通过以开环方式控制通向气体预加热器的功率水平来控制气体通道的入口位置处的气体温度。呼吸增湿系统可以包括水预加热器。两个或更多个流体传感器可以用于防止液体从加热表面溢出。水流向加热表面的流速控制可以基于由两个或更多个流体传感器所提供的信息。两个或更多个流体传感器可以用于控制加热表面上的蒸发面积。两个或更多个流体传感器可以专门用于控制加热表面上的蒸发面积。两个或更多个液体传感器可以是温度传感器。两个或更多个流体传感器可以是电阻式传感器或者电容式传感器。

根据本披露的另一个方面,提供了一种用于呼吸增湿系统的加热器板,加热器板具有多根电阻条,加热器板与包括微通道的表面包覆模制在一起。加热器板可以包括印刷电路板(pcb)。加热器板可以包括蚀刻箔。微通道可以包括被配置成在一个方向上引导水流的平行通道的安排。包覆模制表面可以包括连接到一组芯吸通道上的一组分布通道,其中分布通道少于芯吸通道。微通道可以从单点径向地分布。

根据本披露的另一个方面,提供了一种呼吸疗法系统,呼吸疗法系统包括气体通道,气体可以流动通过气体通道,气体通道在入口位置与出口位置之间延伸;气体预加热器,气体预加热器被布置在气体通道内;增湿组件,增湿组件被布置在气体通道内并且与气体通道处于流体连通,增湿组件包括:加热表面,加热表面与气体处于流体连通,加热表面具有被配置成将水分布给加热表面的芯吸元件;联接件,联接件被配置成将水分布给芯吸元件;水流动控制器,水流动控制器与联接件处于流体连通,水流动控制器被配置成将水定量供给到联接件,水流动控制器包括泵和流动传感器,水流动控制器被配置成控制水的流速,其中在使用中,芯吸元件将已计量水分布给加热表面的至少一部分,并且加热表面致使已分布水蒸发成气体。加热表面可以具有由电路板所提供的热量。电路板可以是印刷电路板。电路板可以具有多根电阻条。电阻条可以是铜。芯吸表面可以由电路板上的包覆模具提供。包覆模具中可以具有微通道。包覆模具可以是热塑性材料。加热表面可以具有模块化区。加热表面可以具有被配置成对水进行预加热的第一区以及被配置成使水蒸发的第二区。

水流动控制器可以包括计量安排。计量安排可以进一步包括泵。泵可以是正排量泵,例如像压电隔膜泵、蠕动泵、微型泵、或者渐进式空腔泵。泵还可以是与控制阀串联的压力供给,诸如重力供给。呼吸增湿系统可以具有与计量安排处于流体连通的导管,导管被配置成将水携带至计量安排。导管可以具有被配置成保持计量安排启动的止回阀。导管还可以具有被配置成保持泵启动的止回阀。计量安排可以包括采用毛细作用将水可控制地定量供给到芯吸元件和/或加热表面的芯吸结构。导管还可以具有通向计量安排的导管中的安全阀,诸如压力释放阀。呼吸增湿系统可以具有被配置成盛放水的储器。呼吸增湿系统还可以具有流动限制装置,流动限制装置定位在储器与计量安排之间以防止重力驱动的流动影响水流动路径。流动限制装置可以是挤压或者以其他方式限制流动路径的弹性突起。水流动控制器可以是呈开环构型的泵。水流动控制器可以是呈闭环构型的与流动传感器串联的泵或者流动致动器。水流动控制器可以提供在0ml/min至大约5ml/min范围内的连续水流。水流动控制器可以提供在大约40μl/min至大约4ml/min范围内的连续水流。水流动控制器可以提供在大约70μl/min至大约2.5ml/min范围内的连续水流。水流动控制器可以提供大约±15%精度的水的流速。水流动控制器可以提供大约±10%精度的水的流速。水流动控制器可以提供大约±6.5%精度的水的流速。水流动控制器可以提供大约±5%精度的水的流速。

加热表面可以被配置成被维持在温度范围下。温度范围可以是在大约30℃与大约99.9℃之间。温度范围可以是在大约35℃与大约90℃之间。温度范围可以是在大约40℃与大约80℃之间。温度范围可以是在大约45℃与大约70℃之间。温度范围可以是在大约45℃与大约60℃之间。温度范围可以是在大约50℃与大约60℃之间。加热表面可以被配置成维持大约50℃的温度。加热表面可以包括芯吸表面。加热表面可以包括被配置成向加热表面提供热量的加热元件。加热元件可以是电路板。电路板可以是印刷电路板。电路板可以是柔性电路板。柔性电路板可以由聚合物制成。聚合物可以是硅酮、聚酯或者聚酰亚胺。电路板可以具有多根电阻条。电阻条可以是铜。加热元件可以是蚀刻箔。加热元件可以是电热丝。电热丝可以是镍铬铁合金。加热元件可以是正热阻抗系数(ptc)陶瓷。ptc陶瓷可以是钛酸钡。加热元件可以是热电装置。热电装置可以是帕尔贴装置。芯吸表面可以由电路板上的包覆模具提供,包覆模具含有微通道。可以至少部分地通过确定电阻水平或者加热元件的其他特性测量加热表面温度。加热元件的电阻水平可以用于指示加热表面的平均温度。加热元件可以被安排成在加热元件的指定区中递送与递送给加热元件的其他区的功率密度相比更高的功率密度。加热元件的指定的更高密度区可以位于水向加热表面的供应出口处。加热元件的指定的更高密度区可以位于加热表面上的水预加热区域处。呼吸增湿系统可以包括位于气体通道的出口位置处的温度传感器。

呼吸增湿系统可以具有气体流动发生器,气体流动发生器被适配成推进、驱动或者以其他方式致使气体在从气体通道的入口位置到出口位置的一般方向上移动。气体预加热器可以包括气体加热元件。气体加热元件可以是印刷电路板。印刷电路板可以具有电阻元件。气体加热元件可以是蚀刻箔膜。气体加热元件可以是加热线圈。气体加热元件可以是ptc陶瓷。呼吸增湿系统可以具有温度传感器。温度传感器可以定位在气体通道中、位于气体预加热器下游。温度传感器可以定位在气体通道中、位于气体预加热器上游。气体加热元件的特征(例如,电阻)可以用于确定气体的温度。递送到气体加热元件的功率水平的控制可以基于由定位在气体通道中、位于气体预加热器下游的温度传感器所提供的信息。递送到气体加热元件的功率水平的控制可以基于由气体流动传感器以及由定位在气体通道中、位于气体预加热器上游的温度传感器所提供的信息。所希望的气体的下游温度可以基于水从加热表面的蒸发速率来确定。所希望的气体的下游温度可以被设定以便确保全部显热由气体预加热器供应。所希望的气体的下游温度可以被设定以便获得出口位置处的气体的所希望相对湿度水平。所希望的气体的下游温度可以被设定在0℃与大约5℃之间、高于出口位置处的气体的所希望温度。所希望的气体的下游温度可以被设定成出口位置处的所希望露点温度。所希望的气体的下游温度可以被设定成大约25℃至大约43℃、或者大约31℃至大约43℃、或者大约31℃至大约41℃、或者大约31℃至大约37℃、或者大约37℃。

呼吸增湿系统可以包括过滤器。过滤器可以位于供水管线中。过滤器可以定位在泵的下游。过滤器可以定位在通向加热表面的入口处。过滤器可以是生物过滤器。呼吸增湿系统可以包括多个过滤器。呼吸增湿系统可以包括供水管线中的位于储器与水流动发生器之间的第一过滤器以及供水管线中的位于水流动发生器与加热表面之间的第二过滤器。呼吸增湿系统可以包括电磁辐射发射器以实现无菌度。电磁辐射发射器可以是uv光源。uv光源可以是灯具或者led。

根据本披露的另一个方面,提供了一种呼吸增湿系统,呼吸增湿系统被配置成使水蒸发,呼吸增湿系统被配置成输出功率,其中输出功率被转换成水中的热量。呼吸增湿系统可以被配置成使得大约80%与大约99.9%之间的功率输出被转换成水中的热量。呼吸增湿系统可以被配置成使得大约85%与大约99.9%之间的功率输出被转换成水中的热量。呼吸增湿系统可以被配置成使得大约90%与大约99.9%之间的功率输出被转换成水中的热量。呼吸增湿系统可以被配置成使得大约98%的功率输出被转换成水中的热量。加热表面可以被适配成维持大约30℃与大约99.9℃的温度。加热表面可以被适配成维持大约35℃与大约90℃的温度。加热表面可以被适配成维持大约40℃与大约80℃的温度。加热表面可以被适配成维持大约45℃与大约70℃的温度。加热表面可以被适配成维持大约45℃与大约60℃的温度。加热表面可以被适配成维持大约50℃与大约60℃的温度。加热表面可以被适配成维持大约50℃的温度。

根据本披露的另一个方面,提供了一种呼吸增湿系统,呼吸增湿系统包括气体通道,气体可以流动通过气体通道,气体通道在入口位置与出口位置之间延伸,气体通道包括入口位置与出口位置之间的增湿位置;气体预加热器,气体预加热器被布置在气体通道内、位于入口位置与增湿位置之间;加热表面,加热表面在增湿位置处与气体通道处于流体连通;水流动发生器,水流动发生器与加热表面处于流体连通,水流动发生器被配置成将水定量供给到加热表面。

加热表面可以被适配成维持大约30℃与大约99.9℃的温度。加热表面可以被配置成维持大约35℃与大约90℃的温度。加热表面可以被配置成维持大约40℃与大约80℃的温度。加热表面可以被配置成维持大约45℃与大约70℃的温度。加热表面可以被配置成维持大约45℃与大约60℃的温度。加热表面可以被配置成维持大约50℃与大约60℃的温度。加热表面可以被适配成维持大约50℃的温度。

呼吸增湿系统可以具有气体流动发生器,气体流动发生器被适配成推进、驱动或者以其他方式致使气体在从气体通道的入口位置到出口位置的一般方向上移动。气体预加热器可以包括气体加热元件。气体加热元件可以是印刷电路板。印刷电路板可以具有电阻元件。气体加热元件可以是蚀刻箔膜。气体加热元件可以是加热线圈。气体加热元件可以是ptc陶瓷。呼吸增湿系统可以具有温度传感器。温度传感器可以定位在气体通道中、位于气体预加热器下游。温度传感器可以定位在气体通道中、位于气体预加热器上游。气体加热元件的特征(例如,电阻)可以用于确定气体的温度。递送到气体加热元件的功率水平的控制可以基于由定位在气体通道中、位于气体预加热器下游的温度传感器所提供的信息。递送到气体加热元件的功率水平的控制可以基于由气体流动传感器以及由定位在气体通道中、位于气体预加热器上游的温度传感器所提供的信息。所希望的气体的下游温度可以基于水从加热表面的蒸发速率来确定。所希望的气体的下游温度可以被设定以便确保全部显热由气体预加热器供应。所希望的气体的下游温度可以被设定以便获得出口位置处的气体的所希望相对湿度水平。所希望的气体的下游温度可以被设定在0℃与大约5℃之间、高于出口位置处的气体的所希望温度。所希望的气体的下游温度可以被设定成出口位置处的所希望露点温度。所希望的气体的下游温度可以被设定成大约25℃至43℃、或者大约31℃至43℃、或者大约31℃至41℃、或者大约31℃至37℃、或者大约37℃。加热表面可以包括被配置成向加热表面提供热量的加热元件。加热元件可以包括多根电阻条。

水流动发生器可以包括泵。泵可以是正排量泵。正排量泵可以是压电隔膜泵、蠕动泵、微型泵、或者渐进式空腔泵。呼吸增湿系统可以包括用于对水进行预加热的设备。可以通过在加热元件的对应于加热表面上水被引入的区域的一个或多个区域处增加电阻条(迹线或条)的密度、并且因此增加递送到加热表面的功率密度将用于对水进行预加热的设备结合到加热元件中。呼吸增湿系统可以包括被配置成将水递送到加热表面的供水管线。用于对水进行预加热的设备可以被结合到供水管线中。

根据本披露的另一个方面,提供了一种呼吸增湿系统,呼吸增湿系统包括气体通道,气体可以流动通过气体通道,气体通道在入口位置与出口位置之间延伸;加热表面,加热表面与气体通道处于流体连通;以及水流动控制器,水流动控制器被配置成控制水被递送到加热表面的水的流速;其中在使用中,通过控制水的流速来确定性地控制出口位置处的气体的湿度水平。呼吸增湿系统可以包括水流动传感器。水的流速控制可以基于气体在气体通道中的流速。水的流速控制可以基于水从加热表面的蒸发速率。水的流速控制可以基于加热表面的温度,其中加热表面的温度被维持在恒定温度下。水的流速控制可以基于加热表面的温度,其中加热表面的温度被控制。水的流速控制可以基于入口位置处或附近的气体的绝对压力或者大气压力。水的流速控制可以基于入口位置处的气体的露点温度。可以通过处理由温度传感器和湿度传感器所提供的信息导出入口位置处的气体的露点温度。水的流速控制可以基于由加热表面所提供的热含量。水的流速控制可以基于由加热表面所提供的功率水平。水的流速控制可以基于入口位置处的气体的温度。水的流速控制可以基于入口位置处的气体的相对湿度水平。水的流速控制可以基于加热表面的有效加热表面积。水的流速控制可以基于气体通道中气体的压力水平。水的流速控制可以基于气体在气体通道中流动的速度。水的流速控制可以基于水流的温度。呼吸增湿系统可以包括水温度传感器。呼吸增湿系统可以包括气体流速传感器。呼吸增湿系统可以基于模型确定水的流速。呼吸增湿系统可以基于模型确定气体流速。呼吸增湿系统可以包括压力传感器。呼吸增湿系统可以包括周围压力传感器。压力传感器可以定位在加热表面处或者附近。呼吸增湿系统可以包括被配置成测量加热表面的温度的温度传感器。呼吸增湿系统可以包括定位在气体通道内、位于增湿位置上游的周围露点温度传感器。呼吸增湿系统可以包括定位在气体通道内、位于增湿位置上游的周围湿度传感器。呼吸增湿系统可以包括气体预加热器。气体预加热器可以被布置在气体通道内、接近入口位置。周围露点温度传感器可以定位在气体通道内、位于气体预加热器上游。周围湿度传感器可以定位在气体通道内、位于气体预加热器上游。周围露点温度传感器可以定位在气体通道内、位于气体预加热器下游。周围湿度传感器可以定位在气体通道内、位于气体预加热器下游。周围露点温度传感器可以定位在气体通道内、位于气体预加热器下游,与定位在气体通道的入口位置处的温度传感器相结合。呼吸增湿系统可以包括被配置成测量加热表面的至少一个温度的至少一个温度传感器。至少一个温度传感器可以被配置成确定加热表面被水所浸透的比例。呼吸增湿系统可以通过以开环方式控制通向气体预加热器的功率水平来控制气体通道的入口位置处或者附近的气体温度。呼吸增湿系统可以包括水预加热器。

根据本披露的另一个方面,提供了一种增湿系统,增湿系统定位在呼吸疗法系统的吸入管内。

附图简要说明

现在将参考附图仅通过说明性实例来描述本披露的不同实施例。在附图中,类似的元件具有相同的参考数字。

图1a-1e是呼吸疗法系统的不同实施例的示意图。

图2a是根据本披露的实施例的整体控制系统的功能框图。

图2b是根据本披露的实施例的入口和预加热控制子系统的功能框图。

图2c是根据本披露的实施例的水流动控制子系统的功能框图。

图2d是根据本披露的实施例的受热表面控制子系统的功能框图。

图2e是根据本披露的实施例的整体控制器的功能框图。

图3a是根据本披露的一个实施例的示例性集成增湿系统的示意性透视图。

图3b是示出了图3a的增湿系统的空气流动的示意性竖直截面图。

图3c是示出了图3a的增湿系统的水流动的示意性竖直截面图。

图3d是图3a的增湿系统的示意性水平截面图。

图3e-3f示出了被安装以用于与流动生成系统一起使用的增湿系统300。

图4a是根据本披露的实施例的印刷电路板加热元件的示意性透视图。

图4b是根据本披露的实施例的印刷电路板加热元件的示意性俯视图。

图4c是根据本披露的实施例的印刷电路板加热元件的局部示意性俯视图。

图4d示出了根据本披露的实施例的蚀刻箔加热元件的示意性俯视图。

图4e示出了呈轧制构型的蚀刻箔加热元件的实施例。

图5a是示出了根据本披露的实施例的网格结构化的微通道水分布图案的示意图。

图5b是示出了根据本披露的实施例的径向微通道水分布图案的示意图。

图6a是根据本披露的实施例的呼吸增湿系统的包括联接件的实例的一部分的示意性透视轴向截面图。

图6b是包括示例性联接件的图6a的呼吸增湿系统的示意性透视截面侧视图。

图6c是包括示例性联接件的图6a的增湿系统的示意性侧视图。

图6d是图6a的增湿系统的组装而成的示意性透视轴向图。

图7是根据本披露的实施例的卷绕在加热表面的边缘上的分布管联接件的示意性透视图。

图8是根据本披露的实施例的多孔介质联接件的示意图。

图9a是根据本披露的实施例的径向联接件的示意性透视图。

图9b是图9a的径向联接件的示意性透视截面图。

图10a是根据本披露的实施例的多层联接件的示意性透视图。

图10b是图10a的多层联接件的示意性透视截面图。

图10c是根据本披露的实施例的附接到增湿外壳上的图10a的多层联接件的示意性截面图。

图10d是根据本披露的实施例的附接到增湿外壳上的图10a的多层联接件的示意性截面图,该增湿外壳包括印刷电路板加热元件。

图11a是根据本披露的实施例的呼吸增湿系统的露点温度精度的绘图。

图11b是根据本披露的实施例的呼吸增湿系统的空气流速上的露点温度误差的绘图。

图12a是根据本披露的实施例的增湿系统的替代实施例的示意性透视图。

图12b是图12a的增湿系统的示意性截面图。

图12c是示出了图12a的增湿系统的顶层的示意性截面图。

图12d是示出了图12a的增湿系统的底层的示意性截面图。

图13是根据本披露的一个实施例的内嵌式增湿系统的示意图。

详细描述

以下描述本质上仅仅是说明性的,而决非意图限制本披露、本披露的应用或用途。出于简洁的目的,相同的参考数字将用于附图中以便标识类似的元件。然而,为方便起见,在本披露的一些图示中存在或者标注有一些图示中的参考数字的某些特征在本披露的其他图示中未示出或者在其他图示中未由参考数字标注。除非上下文以其他方式明确要求,这些省略不应当被解读为意味着从一个图示的绘图省略的特征可能未被同等地合并或者实现在涉及或体现在其他图示中的所披露方法、设备以及系统的构型中。相反,除非上下文以其他方式明确要求,不应当假设本披露的一些图示中某些特征的存在意味着涉及或者体现在此类图示中的所披露方法、设备以及系统必然必须包括这些特征。

本披露的某些特征、方面以及优点包括呈开环和确定性构型的按需增湿器的实现,其中必须量的水(或者其他增湿流体)被定量供给到受热表面上,被蒸发并且与预加热气体源混合以便产生所希望的湿度水平。有利地,与立即对整个流体供应系统进行加热或者对另外过量体积的液体(诸如一室液体)进行加热相反,通过采用所披露的增湿控制系统、装置以及方法,已分配的水可以在按需基础上被沉积到与气体通道处于流体连通的加热元件上。说明性地,通过测量入口气体流速、入口气体露点温度、和/或气体通道压力水平,可以确定并控制液体流向加热表面的流体流速以便实现将要递送给患者的气体的所希望的输出湿度和温度水平(或者出口露点温度)。

参考图1a,示出了呼吸疗法系统100的非限制性示例性构型。在所示的构型中,呼吸疗法系统100包括流动发生器120。流动发生器120可以具有例如鼓风机121,该鼓风机被适配成推进气体通过呼吸疗法系统100。使用鼓风机121推进的气体可以例如包括从呼吸疗法系统100的外部环境所接收的空气(例如,“周围空气”或者“周围气体”)和/或来自与呼吸疗法系统100连通的气体容器(参见例如图1e中的气体储器137)的气体。来自流动发生器120的气体被引导到和/或引导通过呼吸增湿系统101,该呼吸增湿系统被适配成向气体添加水分。呼吸增湿系统101包括气体通道102(该气体通道=在此还可以被称为“呼吸管”或者“吸入管”),该气体通道被适配成接收来自流动发生器120和/或另一个气体源的气体并且使气体通向出口,诸如患者接口122。如使用(或者图1a顶部处的向量)所指示,在使用中,气体一般可以在下游方向上从流动发生器120流动到呼吸增湿系统101(例如通过气体通道102),并且从呼吸增湿系统101移动到出口或者患者接口122(例如通过气体通道102)。

进一步参考图1a所示的非限制性示例性构型,呼吸增湿系统101包括流体储器106,该流体储器在使用中容纳流体。在此上下文中,“流体”可以是指适合用于对呼吸气体进行增湿并且可以包括例如水的液体或者液态实体。流体可以是含有比水更易挥发的添加剂的水。流体储器106被流体地或者以其他方式物理地链接到计量安排(在此还被称为液体流动控制器或者水流动控制器)110上。计量安排110被配置成将流体从流体储器106定量供给到增湿外壳115,该增湿外壳位于气体通道102中,或者位于气体通道102外部但与气体通道102处于气动连通。计量安排110可以进一步包括泵。泵可以是正排量泵,例如像压电隔膜泵、蠕动泵、微型泵、或者渐进式空腔泵。泵还可以是与控制阀(例如,如图1d所示和以下所描述)串联的压力供给,诸如重力供给。计量安排可以包括采用毛细作用将水可控制地定量供给到芯吸元件和/或加热表面的芯吸结构。

计量安排110可以由水流动控制器控制。水流动控制器可以是呈开环构型的泵。水流动控制器可以是呈闭环构型的与流动传感器串联的泵或者流动致动器。在一些构型中,因为更简易并且只需要一个零件(泵),被配置为呈开环构型的泵的水流动控制器是优选的。然而,呈开环构型的泵可能不能够精确地递送水,但是在精度并非关键的条件下可能仍是有用的。因此,在希望更大精度的其他构型中,可以使用呈闭环构型的与流动传感器串联的泵或者流动致动器。在此构型中,泵的选择由于未必精确而可以是不太重要的,并且专用流动传感器用于控制精度。与流动传感器串联的呈闭环构型的泵或者流动致动器的另一个优点在于,泵或者流动致动器提供两个独立的流动指示(泵设置和经感测的流动),从而为系统增加一层安全性(例如,泵和传感器可以彼此对比以便核实它们正在正确地操作)。

水流动控制器可以提供在0ml/min至大约10ml/min范围内的连续水流。水流动控制器可以提供在0ml/min至大约7ml/min范围内的连续水流。水流动控制器可以提供在0ml/min至大约5ml/min范围内的连续水流。水流动控制器可以提供在大约40μl/min至大约4ml/min范围内的连续水流。水流动控制器可以提供在大约70μl/min至大约2.5ml/min范围内的连续水流。水流动控制器可以提供大约±15%精度的水的流速。水流动控制器可以提供大约±10%精度的水的流速。水流动控制器可以提供大约±6.5%精度的水的流速。水流动控制器可以提供大约±5%精度的水的流速。

包括计量系统110的水流动控制器可以被配置成确保加热元件114的表面被完全浸湿(浸透)。完全浸湿的表面可以允许改善的湿度的确定性控制。浸湿表面还意味着当水在潮湿表面上比在干燥表面上更迅速地行进时湿度可以更迅速地增加。

任何正排量泵可以用于水控制器或者计量安排110。正排量泵通过置换固定体积的水进行工作并且一般产生良好的精度。多种正排量泵中的任一种是适合的,例如,蠕动泵、隔膜泵、叶轮泵、活塞泵等,并且这些中的绝大多数可以按比例缩放以便以在此所预期的流速进行工作。然而,压电微泵(使用压电元件作为致动器的小型隔膜泵)和蠕动泵(蠕动泵使用滚轮来以恒定速率挤压水通过管)可以是特别有利的,原因是许多压电微泵和蠕动泵已经商业上可获得适合用于在此所描述的系统的大小、价格、操作范围以及功率等。另外,与控制阀串联(参见图1d)的压力供给(诸如重力供给)和/或芯吸作用/毛细作用可以用于代替泵。在一些构型中,可以使用电泵/磁流体动力学泵。

当水流动控制器包括流动传感器时,在一些构型中,流动传感器可以是热质量仪。这些传感器通过对液体进行加热并且测量加热所需的功率(例如,受热流珠)或引入的温度梯度或者关于它们的某种变型进行工作。可替代地,流动传感器可以由以下各项替代或补充:逐滴供给(例如,正如测量iv液滴中的流量的常见方法的对液滴进行计数);差压传感器,这些差压传感器测量跨节流口(restriction)的压降以计算流量;和/或正排量传感器,这些正排量传感器使用与正排量泵相同的原理来感测流动。通过非限制性实例,适合的泵是可购自巴特尔斯显微技术公司(bartelsmikrotechnik)的mp6微泵。示例性液体流动传感器是可购自盛世瑞恩(sinsiron)的lg16,lg16的数据单在http://www.sensirion.com/fileadmin/user_upload/customers/sensirion/dokumente/liquidflow/sensirion_liquid_flow_lg16_datasheet_v3.pdf可获得并且通过引用结合在此。

流体储器106经由第一流体导管108连接到计量安排110上。第一导管108可以具有被配置成保持计量安排启动的止回阀。第一导管108还可以具有被配置成保持泵启动的止回阀。第一导管108还可以具有位于通向计量安排的导管中的安全阀,诸如压力释放阀,用于在泵或者水控制器发生故障的情况下防止液体流动。呼吸增湿系统101还可以具有流动限制装置,该流动限制装置定位在储器106与计量安排110之间以防止重力驱动流影响水流动路径。流动限制装置可以是挤压或者以其他方式限制流动路径的弹性突起。计量安排110通过第二流体导管112将流体定量供给到增湿外壳115。具体地说,计量流体可以通过入口116进入增湿外壳115而到达增湿外壳115。

加热装置114可以存在于增湿外壳115中、增湿外壳115处或者增湿外壳115附近。加热装置114可以具有被配置成将计量的流体分布给加热装置114的芯吸元件。在一些构型中,芯吸元件被配置成跨加热装置114的表面均匀地芯吸计量的流体。加热装置114可以被配置成使计量的流体蒸发,这样使得计量的流体变得夹带在供呼吸疗法系统100使用的气体流中。加热装置114可以被配置成使加热表面维持在某一温度范围下。温度范围可以是在大约30℃与大约99.9℃之间。温度范围可以是在大约35℃与大约90℃之间。温度范围可以是在大约40℃与大约80℃之间。温度范围可以是在大约45℃与大约70℃之间。温度范围可以是在大约45℃与大约60℃之间。温度范围可以是在大约50℃与大约60℃之间。加热表面可以被配置成维持大约50℃的温度。“大约”在此应当被理解为处于指定程度的可接受公差内,例如像±3℃。加热表面可以包括芯吸表面。加热表面可以包括被配置成向加热表面提供热量的加热元件。加热元件可以是电路板。电路板可以是印刷电路板(例如,如以下参考图4a-4c所示和描述)。电路板可以是柔性电路板。柔性电路板可以由铝-聚酰亚胺制成。电路板可以具有多根电阻条。电阻条可以是铜。加热元件可以是蚀刻箔(例如,如以下参考图4d-4e所示和描述)。加热元件可以是电热丝。电热丝可以是镍铬铁合金。加热元件可以是正热阻抗系数(ptc)陶瓷。ptc陶瓷可以是钛酸钡。加热元件可以是热电装置。热电装置可以是帕尔贴装置。芯吸表面可以由电路板上的包覆模具提供,该包覆模具具有微通道。可以至少部分地通过确定加热元件的电阻水平或者其他特性来测量加热表面温度。加热元件的电阻水平可以用于指示加热表面的平均温度。加热元件可以被安排成在加热元件的指定区中递送与递送给加热元件的其他区的功率密度相比更高的功率密度(例如,如参考图4c所解释)。加热元件的指定的更高密度区可以位于水向加热表面的供应出口处。加热元件的指定的更高密度区可以位于加热表面上的水预加热区域处。

呼吸增湿系统101的呼吸疗法系统100的部件可以包括控制器118,该控制器可以控制呼吸疗法系统100或者呼吸增湿系统101的部件的操作,这些部件包括但不限于流动发生器120、计量安排110、和/或加热装置114。

计量安排110可以被配置成以提高传递通过气体通道102的气体的含水量的计量速率将流体定量供给到或者分配给增湿外壳115和/或加热装置114,这样使得气体达到表示使用呼吸增湿系统101的患者所需或所希望的气体增湿水平的预先确定的、经计算的或者估计的湿度水平,同时注意降低或者消除气体通道102中的过量水分聚集的可能性。为了实现这样的目的,在一个实例中,控制器118可以基于以下各项控制计量安排110的计量速率:(a)传递通过气体通道102的气体的经测量流速,(b)对应于增湿外壳115的上游气体的湿度的经测量水分,(c)对应于气体通道102中的压力水平的经测量压力水平,或者(d)它们的组合。控制器118可以基于经测量输入(a)–(c)中的一个或多个的组合来控制计量安排110的计量速率,诸如基于(a)传递通过气体通道102的气体的经测量流速和(b)对应于增湿外壳115的上游气体的湿度的经测量水分值,或者(a)传递通过气体通道102的气体的经测量流速和(c)对应于气体通道102中的压力水平的经测量压力水平。

在一些构型中,计量安排110的计量速率可以由控制器118直接计算得出。说明性地,通过非限制性实例,如果传递通过流动通道102的气体的流速被确定为20l/min并且离开呼吸增湿系统101的气体的所希望输出湿度被确定为44mg/l,那么如果要假设进入系统的气体的湿度为零(也就是说,如果气体是完全干燥的),将需要向气体通道102中的气体添加0.88g/min的流体(20l/min*0.044g/l)。随后可计算出对应于进入呼吸增湿系统101的气体的(假设的、估计的、计算出的或者经测量的)湿度的校正因子。因此,尤其是当流体可以被迅速蒸发时,计量安排110的计量速率可以被设定成0.88g/min,由根据增湿外壳115的上游气体或者存在于呼吸疗法系统100外部的周围气体的假设的、估计的、计算出的或者经测量的湿度导出的校正因子进行调节。

气体的所希望输出湿度(例如,相对湿度(rh)=100%或者绝对湿度(ah)=44mg/l)和/或所希望输出温度(例如,37℃或者98.6°f)可以由呼吸增湿装置101的用户通过例如位于呼吸疗法系统100的外壳103上的用户接口105或者使用远程控制模块进行输入。用户接口105可以包括例如一个或多个按钮、旋钮、转盘、键盘、开关、杠杆、触摸屏、扬声器、显示器、和/或其他输入或输出模块,使得用户可能使用来查看数据和/或输入命令以便控制呼吸疗法系统100或者呼吸增湿系统101的部件。

呼吸疗法系统100或者呼吸增湿系统101可以包括确定性控制或者开环控制。以下将参考图2a-2e更详细地描述不同控制系统。一般地,确定性控制可以通过控制某些输入变量,例如通过控制去往加热表面的水流来允许进行按需增湿。在一些构型中,水流向加热表面的流速控制可以基于气体在气体通道中的流速。水流向加热表面的流速控制可以基于水从加热表面的蒸发速率。水流向加热表面的流速控制可以基于加热表面的温度,其中加热表面的温度被维持在恒定温度下。水流向加热表面的流速控制可以基于加热表面的温度,其中加热表面的温度被控制。水流向加热表面的流速控制可以基于入口位置处或附近的气体的绝对压力或者大气压力。水流向加热表面的流速控制可以基于入口位置处的气体的露点温度。水流向加热表面的流速控制可以基于由加热表面所提供的热含量。水流向加热表面的流速控制可以基于由加热表面所提供的功率水平。水流向加热表面的流速控制可以基于入口位置处的气体的温度。可以通过处理由温度传感器和湿度传感器所提供的信息导出入口位置处的气体的露点温度。水流向加热表面的流速控制可以基于入口位置处的气体的露点温度。水流向加热表面的流速控制可以基于入口位置处的气体的相对湿度水平。水流向加热表面的流速控制可以基于加热表面的有效加热表面积。水流向加热表面的流速控制可以基于气体通道中的气体的压力水平。水流向加热表面的流速控制可以基于气体在气体通道中流动的速度。水流向加热表面的流速控制可以基于水流的温度。如以下参考图1e所示和描述,呼吸疗法系统100和/或它的部件(包括呼吸增湿系统101)可以包括用于测量这些变量的多个传感器。

所示构型不应当被认为是限制性的,并且考虑了呼吸疗法系统100和它的部件(包括呼吸增湿系统101)的许多其他构型。以下描述了呼吸疗法系统100的部件的构型的附加细节。

第一流体导管108和第二流体导管112可以被配置成将流体输送到呼吸增湿系统101的不同部件。如图1a所示,第一流体导管108可以被配置成将流体从流体储器106流体地输送到计量安排110,并且第二流体导管112可以被配置成将流体从计量安排110流体地输送到增湿外壳115。在一些构型中,第一流体导管108和/或第二流体导管112是任选的。例如,如果流体储器106与计量安排110处于直接流体连通,第一流体导管108不需要存在。同样地,如果计量安排110与增湿区115处于直接流体连通,第二流体导管112不需要存在。

如图1e所示,第一流体导管108和/或第二流体导管112可以另外包括一个或多个过滤器128,该一个或多个过滤器被配置成从自流体储器106传递的流体去除污染物、杂质或者其他不希望的材料。过滤器128可以包括被配置成进行此类行为的任何结构,包括定位在第一导管108和/或第二导管112的流体流动路径中和/或被配置用于在微量过滤、超滤或者反渗透中使用的可渗透膜或半透膜。第一导管108和/或第二导管112中一个或多个过滤器128的存在可以有助于向呼吸增湿系统101的用户保证引入增湿外壳115中的流体的质量处于可接受水平。如果过滤器128中的一个或多个已经被使用过长时间段,过滤器128和/或第一导管108和/或第二导管112可以被替换。过滤器128的使用时限可以通过例如位于第一导管108和/或第二导管112中或上的化学变色指示器向用户指示,或者过滤器128的颜色由于长时间暴露于气体和/或流体而可以随时间改变。过滤器218可以用作增湿液体的初步分布器。

如上所述,计量安排110可以用来将流体从流体储器106定量供给到增湿外壳115。计量安排110可以包括例如流体正排量泵,该流体正排量泵可以沿着例如第一导管108和/或第二导管112将流体从流体储器106主动传送到增湿外壳115。在某些实施例中,计量安排110可以反向运行或者作用来从增湿外壳115抽吸流体。流体排量泵可以包括例如正排量泵,诸如压电隔膜泵、蠕动泵、微型泵、或者渐进式空腔泵。

如图1b所示,系统可以体现为内嵌式增湿器。在此实施例中,增湿系统101可以是呼吸电路的附加装置以用于与任何流动发生系统一起使用或者该增湿系统可以是使用周围空气并且依赖于正常患者呼吸来生成气体流的独立式增湿器。

如图1c所展示,在一些构型中,加热装置114可以定位在气体通道102外部。例如,加热装置114可以存在于单独隔室124中。隔室124可以被物理链接到气体通道102上但是可以与气体通道102流体隔离。可以通过使用定位在隔室124与气体通道102之间的半透膜126使隔室124与气体通道102流体隔离。在一些构型中,半透膜126可能不会允许流体传递通过但是可以允许已蒸发流体传递通过(并且由此允许已蒸发流体汇入传递通过气体通道102的气体)。用于与半透膜一起使用的适合材料的实例包括全氟化聚合物或者具有细孔的聚合物,并且包括诸如用于2001年5月8日提交并且标题为“呼吸回路的呼气局限(expiratorylimitforabreathingcircuit)”的共同拥有的美国专利6,769,431以及2010年12月22日提交并且标题为“用于医疗回路的部件(componentsformedicalcircuits)”的美国专利申请号13/517,925中描述的导管中的那些的材料,这两个专利通过引用以其全文结合在此。在使用中,可以通过出口116将流体定量供给到隔室124,使用加热装置114(该加热装置另外可以定位在隔室124中)使流体蒸发,并且已蒸发流体被迫使通过半透膜126以便汇入传递通过气体通道102的向下游移动的气体。使出口116与气体通道102流体隔离可以例如降低气体通道102中存在液态水的可能性。

应当理解,计量安排110未必需要包括泵并且可以仅仅包括被配置成以预先确定的、所希望的或者规定的量将流体分配给增湿外壳115的结构。例如,并且如图1d所展示,流体储器106可以高于气体通道102和/或增湿外壳115竖直地悬置。流体储器106可以与机电阀150连通,该机电阀可以响应于由控制器118所生成的信号部分地或者完全地打开或关闭以便控制流体从流体储器106通过第二流体导管112到达增湿外壳115的传递。

在一些构型中,第二流体导管112可能不存在并且流体储器106可以与机电阀150协作来将流体直接传送到增湿区115(和/或加热装置114处或者附近的位置)。流体流动传感器(诸如但不限于微机电系统或者mems传感器)可以用于确定通过机电阀150或者第二流体导管112的流体流动。来自流体流动传感器的信号或者根据这些信号导出的值可以用于例如通过闭环控制来控制机电阀150的操作。尽管在图1d中流体储器106被示出为在竖直方向上高于气体通道102,在一些构型中,流体储器106可以与气体通道102处于相同水平或者低于气体通道102。其他力可以作用于流体储器106上以便结合机电阀150对流体进行定量供给。例如,呼吸增湿系统101可以被配置成使得使用气体传递通过呼吸疗法系统100和/或呼吸增湿系统101的力从储器106推进流体。在一些构型中,气体可以直接作用于流体储器106中的流体上。在一些构型中,流体储器106可以由从流体储器106迫出流体的流体填充袋(由例如来自流动发生器120或者来自单独气体源的气体填充)加压。可以使用由例如弹簧或者其他机械安排所生成的偏置力来控制由袋所施予的压力。

在一些实施例中,加热装置114可以被配置成将热量传送到被定量供给到加热装置114上或者附近的流体,以便激励流体蒸发并且夹带到流动通过气体通道102的气体流中。加热装置114的特定形式并未被限制并且可以设想许多种加热装置用于与呼吸增湿系统101一起使用。在一些构型中,加热装置114可以包括可以在应用电能时通过电阻加热的加热板或者加热元件。电阻加热板可以由导电金属材料构造而成,但是也可以由导电塑料制成。

控制器118可以包括微处理器或者被配置成引导系统100、101的可控制部件的操作的某种其他体系结构。在一些构型中,一个控制器118可以控制呼吸疗法系统100和/或呼吸增湿系统101的每个可控制部件的操作,该每个可控制部件包括但不限于计量安排110、加热装置114、和/或流动发生器120。控制器118可以物理上存在于呼吸疗法系统100的部件中、上或者附近,该部件包括但不限于流动发生器120、呼吸增湿系统101、外壳103、和/或气体通道102。在一些构型中,控制器118可以与呼吸疗法系统100物理上分离。例如,控制器118可以位于远程计算机、平板电脑、移动电话、智能手表或者另一个装置上,并且控制器118可以远程引导呼吸疗法系统100的可控制部件的操作。在一些构型中,多个控制器可以用于控制呼吸疗法系统100和/或呼吸增湿系统101的可控制部件的操作。多个控制器可以各自被引导来互斥控制系统100、101中的一者或两者的一个或多个可控制部件。在一些构型中,系统100、101中的一者或两者的一个或多个可控制部件的控制可以由多个控制器来处理。多个控制器可以被配置成彼此通信。

为了通过控制器118根据以上或者本说明书中别处所描述的功能来控制计量安排110的计量速率(例如,通过使用经测量流动值、水分值、和/或压力值;参见例如以下图2a-2e的描述),可以确定假设的、估计的、计算出的或者经测量的信号和值。在一些构型中,可以如以下所描述地确定信号和/或值。

可以选择预先确定的值来表示气体传递通过气体通道102的流速。通过非限制性实例,气体传递通过气体通道102的流速可以被假设为40l/min。

可以通过多种手段估计或者粗略估计气体流速值(相当于气体传递通过气体通道102的流速)。在一些情况下,流动发生器120包括机械鼓风机121。可以使用电动机感测模块130(例如如图1e所示)确定鼓风机121的电动机的电动机转速、电动机转矩、和/或电动机电流,该电动机感测模块包括例如一个或多个相关换能器。由电动机感测模块130所输出的信号或者根据这些信号导出的值中的一个或多个可以被输入到查找表或者查找方程中,该查找表或者查找方程中的任一个进而可以基于例如通过实验确定的一组输入和输出返回估计的或者粗略估计的气体流速值。

表示气体传递通过气体通道102的流速的流动信号可以由定位在气体通道102中的气体流动传感器134(参见图1e)生成。由气体流动传感器134所生成的信号可以被处理并且被转变成气体流速值。

可以选择预先确定的值来表示增湿外壳115的上游气体的相对湿度或者绝对湿度。说明性地,通过非限制性实例,增湿外壳115的上游气体的相对湿度可以被假设为50%,或者增湿外壳115的上游气体的绝对湿度可以被假设为15mg/l。

如果可以感测出或者以其他方式估计或确定传递通过气体通道102的气体的温度和相对湿度,可以使用例如克劳修斯-克拉贝龙方程导出气体的露点温度。如果可以感测出或者以其他方式估计或确定增湿外壳115的上游气体的温度和压力,相对湿度值可以被转变成绝对湿度值。

表示增湿外壳115的上游气体或者呼吸疗法系统100外部的周围气体的相对湿度或者绝对湿度的水分信号可以由定位在增湿外壳115上游或者呼吸疗法系统100外部的湿度传感器136(例如,如图1e所示)生成。由湿度传感器136所生成的信号可以被处理并且转变成水分值。

不同传感器模块也可以定位在气体通道102中、位于增湿外壳115下游。如图1e所展示,传感器模块可以包括例如流动传感器138、湿度传感器140(例如,包括绝对湿度传感器和/或相对湿度传感器)、温度传感器141、和/或压力传感器142。这些传感器中的一个或多个可以由控制器118使用来促进呼吸疗法系统100和/或呼吸增湿系统101的部件的控制,包括气体流动发生器120(包括例如鼓风机121的电动机转速)、加热装置114的热输出、计量安排110的计量速率、和/或某种其他部件的操作控制。

并且,如图1e所展示,气体浓度传感器135可以定位在气体通道102中。气体浓度传感器135可以被配置成感测气体流中的一种或多种气体的浓度。气体浓度传感器135可以包括被适配成感测例如氧气的超声波传感器。所感测气体可以包括例如通过气体浓度调节阀139从气体储器137引入到气体通道102的氧气、一氧化氮、二氧化碳、和/或氦氧混合气。气体浓度传感器135可以使用由气体浓度传感器135所生成的气体浓度信号来基于预先确定的所希望气体浓度(例如,由用户通过用户接口105所键入)控制气体浓度调节阀139(例如,经由闭环控制)。

在一些构型中,并且如图1e所展示,作为有助于避免过热气体灼伤患者的安全措施,流动传感器117可以与增湿外壳115和/或加热装置114通信。说明性地,流动传感器117可以被配置成在检测到增湿外壳115中和/或加热装置114中或上存在流体时生成信号。控制器118可以使用由流动传感器117所发射的信号来控制计量安排110的操作和/或加热装置114的操作。例如,计量安排110的计量速率和/或加热装置114的热输出可以被设定成由流动传感器117所生成的信号的函数。如果信号未指示增湿外壳115中或附近、或者加热装置的模块化区域上存在流体,计量安排110的计量速率可以增大,这是因为加热装置旨在由增湿流体膜所覆盖。同样地,如果信号未指示增湿外壳115中或附近、或者加热装置的模块化区域上存在流体,加热装置114的热输出可以减小或者被设定为零,以避免将气体加热至不安全温度。如果经确定当预计增湿区115中和/或加热装置114的加热表面上将存在流体时此类位置中不存在流体(例如,如果计量安排110试图以正速率对流体进行定量供给),流动传感器117可以因此用于协助计量安排110和/或加热装置114的控制。在一些构型中,呼吸疗法系统100或者它的部件(包括呼吸增湿系统101)可以被配置成在确定让用户了解应当纠正该情形时(例如,通过再填充流体储器106)生成警告或者将消息传达给用户(例如,通过用户接口105)。

然而,在一些构型中,增湿系统可以包括用于测量表面温度的单独传感器以及用于测量表面是否被浸湿的其他传感器(例如,优选地位于加热元件114的边缘处/附近的流体传感器117,这些流体传感器可以是温度传感器,但也可以是任何其他水检测器,诸如电阻式传感器或者电容式传感器),在其他构型中,有可能使用控制算法设定表面温度以便实现所希望的蒸发(浸湿)面积。算法可以基于系统测量结果(气体流速、水流速等,如以下所描述)和模型(例如,道尔顿蒸发定律)。流体传感器117因此可以充当安全机构以防止溢出并且作为纠正/调节算法的手段(通过提供校准点,在校准点处已知表面被浸透)。系统因此可以被配置成提供模块化安排,这样使得单个区或者选定区可以是潮湿的,并且该单个区或者那些选定区可以通电。并且,可以使用控制算法基于系统测量结果控制该模块化系统。单独传感器可以用于测量表面温度并且其他传感器用于测量表面是否被浸湿。流体传感器117可以用在关闭的反馈控制中以控制将水定量供给到一个或多个选定区,或者可替代地,控制算法可以使用模型来控制将水定量供给到一个或多个选定区,这样使得流体传感器117可以充当安全机构以防止溢出并且作为纠正/调节算法的手段(通过提供校准点,在校准点处已知表面被浸透)。

在一些构型中,流体传感器117可以包括电容式流体传感器。如果加热装置114的加热表面存在,电容式流体传感器可以例如包括定位在加热表面的相对侧上的一对导电感测电极。如果导电感测电极被连接在电路中并且施加电压,电路的电容将根据水的存在与否而改变。可以使用例如标准ac测量电路来测量电路的电容。许多其他感测系统(包括超声波水平或者光学水平感测系统)也可以用于确定流体的存在。

不同传感器模块可以由控制器118利用来控制呼吸疗法系统100和/或呼吸增湿系统101的不同部件。传感器模块可以包括用于检测气体通道102中或者呼吸疗法系统100中、周围或附近别处(包括气体入口123、气体出口127、患者接口122中或附近,或者位于增湿外壳115处、上游和/或下游)的气体的不同特性的一个或多个传感器,这些不同特性包括压力、气体流速、温度、绝对湿度、相对湿度、热含量、气体成分、氧浓度、二氧化碳浓度、周围温度、和/或周围湿度。这些传感器和/或传感器模块中的一个或多个可以例如用于促进流动发生器120的控制(包括由流动传感器120向下游推进的气体的压力和/或流速控制)、加热装置114的热输出控制(包括加热装置的温度控制)、和/或计量安排110的计量速率控制(包括施加给计量安排110的功率和/或电流控制)。

在一些构型中,可以使用以上或者本披露中别处所描述的传感器或感测模块中的一个或多个确定、估计或者计算出患者使用呼吸疗法系统100和/或呼吸增湿系统101进行的呼吸活动。控制器118可以控制呼吸疗法系统100和/或呼吸增湿系统101的不同部件,这样使得部件基于确定的呼吸活动或者呼吸状态进行操作。说明性地,通过非限制性实例,加热装置114可以被配置成仅在确定患者正吸气时通电或者蒸发显著量的流体。计量安排110可以被配置成仅在确定患者正吸气时对流体进行定量供给。流动发生器120可以被配置成仅在确定患者正吸气时生成流动或者增加所生成的流动。

另外,部件可以被控制成使得部件以同步方式与经确定的患者的瞬时呼吸活动或者呼吸状态共同作用,而不是被限制于二元操作状态。例如,加热装置114可以被配置成在开始吸气时具有相对低的热输出,在吸气最高点时热输出朝最大值增大,并且随后热输出朝向吸气尽头减小。计量安排110可以在开始吸气时定量供给相对少量的流体,在吸气最高点时计量速率朝最大值逐渐增大,并且随后速率朝向吸气尽头减小。流动生成器120可以被配置成在开始吸气时以相对低的流速生成或者推进气体,在吸气最高点时流速朝最大值逐渐增大,并且随后流速朝向吸气尽头减小。系统100、101中的一者或两者的其他部件可以被类似地控制。

在一些构型中,流动发生器120可以例如包括压缩气体(例如,空气、氧气等)源或者容器。如果使用容器,该容器可以包括阀,该阀可以被调节来控制离开容器的气体流动。在一些构型中,流动发生器120可以使用这种压缩气体源和/或另一个气体源来代替鼓风机121。在一些构型中,流动发生器120可以与鼓风机121一起使用这种压缩气体源和/或另一个气体源。鼓风机121可以包括机动鼓风机或波纹管安排或者被适配成生成气体流的某种其他结构。在一些构型中,流动发生器120可以通过气体入口123抽吸大气气体。在一些构型中,流动发生器120可以被适配成通过气体入口123抽吸大气气体并且可以被适配成通过同一气体入口123或者通过不同的气体入口(未示出)接受其他气体(例如,氧气、一氧化氮、二氧化碳等)。在一些构型中并且如图1b所展示,流动生成器120可以不存在并且呼吸疗法系统100可以被配置成使得只有未加压的周围空气被增湿并且被引导到出口/患者接口122。

在一些构型中并且如图1e所展示,呼吸疗法系统100和/或呼吸增湿系统101可以包括电磁辐射发射器151(定位在例如气体通道102中)。发射器151可以包括紫外光源(例如,uvled)、微波发射器、或者被配置成对气体流动路径进行杀菌的某种其他辐射体。用于对通路(气体通过该通路传递通过呼吸疗法系统100和/或呼吸增湿系统101)进行杀菌的手段可以减少通过引入所不希望的病原体而导致患者受到感染的忧虑。

在一些构型中并且如图1e所展示,呼吸疗法系统100和/或呼吸增湿系统101可以包括气体加热区132。气体加热区132可以在传递通过气体通道102的气体到达增湿外壳115之前对气体进行预加热。如果气体在被增湿之前被预加热,可以提高增湿效率。气体加热区132可以包括例如存在于气体通道102的内壁和/或外壁中、上、周围或者附近的一根或多根电热丝。气体加热区132可以由控制器118控制并且与控制器118处于电连通,该控制器可以使用传感器信号以例如类似于如本披露中别处所描述的控制加热装置114的热输出的方式控制气体加热区132的热输出。控制器118可以控制气体加热区132的温度和/或热输出,这样使得气体到达气体出口127、患者接口122、或者患者时的温度为大约31℃至大约43℃之间。在一些情况下,如果气体加热区132远离气体出口127或者患者接口122,气体加热区132可以将气体加热至高于大约37℃至大约43℃之间的温度,这样使得气体到达气体出口127、患者接口122、或者患者时具有所希望的温度(由于气体在沿着例如气体通道102传递时的温度损失所致)。为了找出正确的温度,可以在理论上或者以实验方式对传递通过呼吸疗法系统100的气体的温度损失进行建模。处于大约25℃至大约43℃、或者大约31℃至大约43℃、或者大约31℃至大约41℃、或者大约31℃至大约37℃范围内的气体一般被认为供患者使用是舒适的。

气体加热区132可以包括气体预加热器,该气体预加热器可以包括气体加热元件。气体加热元件可以是印刷电路板。印刷电路板可以具有电阻元件。气体加热元件可以是蚀刻箔膜(参见例如图4d和图4e)。气体加热元件可以是加热线圈。气体加热元件可以是ptc陶瓷。呼吸增湿系统100可以具有温度传感器。温度传感器可以定位在气体通道中、位于气体预加热器下游。温度传感器可以定位在气体通道中、位于气体预加热器上游,代替定位在气体预加热器下游的温度传感器或者除了该温度传感器之外。气体加热元件的特征可以用于确定气体的温度。递送到气体加热元件的功率水平的控制可以基于由定位在气体通道中、位于气体预加热器下游的温度传感器所提供的信息。递送到气体加热元件的功率水平的控制可以基于由气体流动传感器以及由定位在气体通道中、位于气体预加热器上游的温度传感器所提供的信息。所希望的气体的下游温度可以基于水从加热表面的蒸发速率来确定。所希望的气体的下游温度可以被设定以便确保基本上全部显热由气体预加热器供应。所希望的气体的下游温度可以被设定以便获得出口位置处的气体的所希望相对湿度水平。所希望的气体的下游温度可以被设定在0℃与大约5℃之间、高于出口位置处的气体的所希望温度。所希望的气体的下游温度可以被设定成出口位置处的所希望露点温度。所希望的下游温度可以被设定成大约25℃至大约43℃、或者大约31℃至大约43℃、或者大约31℃至大约41℃、或者大约31℃至大约37℃、或者大约37℃。加热表面可以包括被配置成向加热表面提供热量的加热元件。加热元件可以包括多根电阻条。加热元件可以是印刷电路板。印刷电路板可以具有电阻元件。气体加热元件可以是蚀刻箔膜(参见例如图4d和图4e)。

图2a-2e是例示本披露的不同控制特征的功能框图。在一些构型中,在此所描述的控制特征允许对增湿系统进行确定性控制或者开环控制。也就是说,有可能计算出实现特定湿度所要求的水的流速并且将该量的水送给到加热器之上。加热器可以使送给在其上的水蒸发以便获得所希望的露点温度。确定性控制可以消除测量输出湿度或者某种其他间接变量、并且随后通过闭环控制器反馈输出湿度或者某种其他间接变量以便实现具体的露点温度的需求(该需求存在于许多常规增湿系统中)。在一些构型中,在此所描述的控制特征允许增湿系统在正确的时间使仅正确量的水或者其他增湿液体蒸发以便精确地产生正确的湿度。在此所描述的控制特征可以被结合或者以其他方式被修改成包括到在此所描述的任何呼吸增湿系统中。在一些构型中,通过控制流向加热器表面的水流对湿度进行确定性控制共同允许在相对低温加热下对加热器表面进行加热。

为了进行确定性控制,可以根据以下方程计算出被送给到表面以便产生所希望的露点温度的水的流速。

可以参考表1理解用于以下方程的符号,表1还可以为每个变量提供相关联单位。另外,附加有下标a,b的符号指示位置b处的部件a。下标a、i、s以及o分别是指周围、入口、表面(加热器板)以及出口;下标w、wv以及air分别是指水、水蒸气以及干空气。因此,例如qair,i指示入口处的空气的质量流速。应当注意方程1-6在稳态下书写(或者同等地,假设所有变量瞬时响应)。

表1:命名

为了进行确定性控制,可以根据以下方程计算出送给到表面以便产生所希望的露点的水的流速:

qw=qair,i[hs(td,o,p)-hs(td,ip)]方程3

其中hs是比湿度。水从表面的蒸发速率由以下方程建模:

qw=kaf(v)[psat(ts)-φpsat(td,i)]方程4

其中a是表面积,k是有待针对任何特定表面确定的常数,并且f(v)是以经验为主确定的气体速度的函数。蒸发所要求的功率pl以及对水进行加热所要求的功率pw如下给出:

pw=cp,wqw(ts-ta)方程6

空气所要求的功率pair以及水蒸气所要求的功率pwv如下给出:

pair=cp,airqair,i(to-ti)方程7

pwv=cp,wv[qw(to-ts)+(qin-qair,i)(to-ti)]方程8

方程1-3表示系统的确定性控制或者开环控制的一般概念:实现特定露点温度所要求的水量。在所给出的表达中,可以充分确定所提供的qair,i、qw、td,i、以及p、出口处的露点温度td,o的测量结果。

有可能进行置换或者重排,以使得使用不同输入或者输出(例如,出口处的绝对湿度或者相对湿度、或者入口或不同位置处的体积流量等)。有可能避免对输入变量中的一些进行测量。td,i如果可以作出适当假设(例如,已知计算高度p),完全可以不测量p,或者如果引入的误差是可接受的(例如,如果td,i<<td,o),误差的影响会较小。在不测量qair,i或qw的情况下可能会不可能继续,这是因为它们是主导因子。有可能测量中的一些未直接进行。例如,没有必要直接测量td,i,相反传感器测量结果ti和φi(入口处的rh)可以用于计算td,i。其他变量同样如此。

方程1-6假设贯穿系统的压力是恒定的,尽管有可能修改方程以避免该假设。尽管压力遍布整个系统可以显著改变(例如,跨插管的压降),邻近蒸发表面和传感器的压力通常非常接近于常数,从而使得在一些构型中此类纠正没有必要。

方程4可以用于计算蒸发表面所要求的面积和温度并且用于对系统的控制响应进行建模。方程4是基于道尔顿蒸发定律,并且不同于先前方程,方程4是半经验的。因此,可以使用并不完全等效的其他方程。确切地说,方程4可以用于计算给定a的ts,或者反之亦然(该两者用于设计并且控制系统),或者用于计算有关qw的单独校验。一般地,方程4暗示流入气体的温度不会显著影响蒸发速率。然而,存在影响蒸发速率的两种机理,两种机理在一些情形中可能是重要的。首先,流入温度改变相对湿度φ。如果td,o接近于ts,该改变可以是显著的。其次,并且更重要的机理是热交换。如果ti<td,o,水蒸气必须对空气进行加热,并且如果水蒸气中没有足够的显热以使气体温度增加到高于td,o,一些水蒸气必须冷凝以便释放潜热。当考虑净蒸发速率时,这可能是主要复杂性;尽管表面可以轻易地驱使蒸发,冷空气使蒸气迅速地冷凝。这可以通过增加表面温度得以避免。该问题由于蒸发的实质而被进一步加重。因为表面附近存在边界层,水不能够立即蒸发成全部气体,所以水必须蒸发成全部气体并且随后扩散通过气体(以层流的方式)或者被混合(以湍流的方式)。边界层中的蒸气可以在表面温度下被浸透,从而抑制进一步蒸发,因此主要限制因子中的一个并不是表面处的蒸发速率,而是蒸气被扩散或者从边界层输送的速率。因此蒸气与空气之间的热交换发生在边界处并且蒸气必须更热以防止冷凝(因为大部分潜热是不可得到的)。这些影响不仅干扰系统使水蒸发的物理能力而且干扰蒸发模型的有效性。

方程5和6可以用于计算功率要求并且用于对系统的控制响应进行建模。这些方程作出100%效率的假设,该假设可能不是完全正确的,但是实验已经表明在此所披露的系统是非常有效的。在该假设是不正确的系统中,将不得不在以精度和简明性为代价的情况下做出适当纠正。方程5和6可以用于计算有关功率输入的单独校验(例如,以便限制热含量)。方程5和6还可以用于控制(例如用于开环控制)或者作为纠正反馈。

尽管已经使用这些方程得到可接受的结果,实现健康和稳定的系统可能要求进一步考虑,因为方程1-6仅在稳态下是精确的。例如,考虑水的流速:有限体积的水必须留在蒸发表面上,因此,水的蒸发速率并不是立刻等于水的流速,为此,隐藏的“缓冲变量”可能导致临时差值。

考虑有限水膜厚度作为启发性实例,如果表面上的水的质量为mw=aρwtw,其中tw是水的厚度(假设恒定),那么对于第一近似估算(假设加热器板仅供应用于蒸发的功率):

方程9通过考虑到达表面的水与正在蒸发的水相比的差值获得,并且方程10类似地通过考虑递送到表面的功率小于蒸发所消耗的功率获得。因此,表面温度和蒸发面积以时变的和非线性的方式联接,并且仅仅直接依赖于方程1-3的原理的简单化的控制器将仅在如果并且当以上系统稳定下来时产生所希望的湿度。这强调不稳定的重大可能性,即使当单独考虑时这些系统仅仅是一阶系统,当组合考虑时,这些系统可能会振荡或者是不稳定的。

假设对于水来说,ρw=1000kgm---3并且l=2.26mjkg---1,如果假设(基于通过测试原型系统所获得的合理数字)k=1μlmin---1cm---2kpa---1、tw=10μm、qw=0.9mlmin---1、td,i=15℃、φ=75%、f(v)=1、ms=0.025、cp,s=400jkg---1k---1以及在点a=30cm---2下操作的ps=34w并且ts=70℃,那么有可能使psat(ts)与1.353ts-63.28线性化,据此系统可以被表示为:

那么系统的雅可比行列式为:

或者,在操作点处:

j0的特征值是-18.3和0.0006,从而表明系统是不稳定的。该不稳定性的原因在于系统能够被以恒定功率驱动—任何失配将会导致水过量或者不足,从而分别会使表面完全浸透或者完全干燥。通过引进关于功率术语的成比例反馈,表面温度的表达变成:

那么:

那么特征多项式为λ2+λ(α+18.31)+3.015(α+15.29)-46.11=0,导出特征值:

据此可以示出对于λ<0(稳定性),α>0.0033。因此即使少量的反馈也将使系统至少在此操作点处稳定。

由于面积难以直接测量,值得检查这是否是可观察的状态。由于系统是非线性的,这难以评估,但是方程ts可以被重新表达为:

接着重新安排以便获得:

这通俗地表明面积处于可观察的状态,同时其他测量结果全部已知,而不是试图在一定极限下感测面积,方程可以随时间集成以便连续地计算a。当然,设计具有感测表面何时被浸透的能力的系统仍然可能是合乎希望的,但是这种模型允许平稳地控制面积而不是跳回硬极限。

大量因素限制控制响应时间。最根本的限制是瞬变期间蒸发表面的动力学。这主要出于热含量考虑是重要的,并且当实现呼吸相继湿度控制时同样是重要的。

如果表面温度保持恒定,可以改变蒸发面积以便控制湿度。湿度可以主动地增长(通过泵送水)但是仅仅被动地收缩(通过蒸发),从而限制对花费来蒸发该“储器”的水的时间的向下响应。例如,如果空气流速从20lmin---1下降至10lmin---1,对于名义上的条件(37℃露点温度等),初始蒸发速率将是0.7mlmin---1。如果初始面积是20cm-2并且下降至10cm-2(以便维持露点温度),并且水膜的厚度为10μm,必须蒸发0.1ml额外的水以便使面积收缩。即使泵关闭,将花费最少8.6s来收缩(以0.7mlmin---1收缩0.1ml)到最小,因为当面积收缩时蒸发速率下降至零,并且如果泵在该时间过程中打开,那么将进一步延缓响应。

如果蒸发面积保持恒定,表面温度必须改变,并且限制还是被动式冷却。具有10μm膜的40cm2板盛放0.4g水;以10lmin---1蒸发所要求的潜在功率将是约13w,并且使水温度降低20℃所要求的潜在功率是33.5j,相当于2.6s,类似于先前设想,假设加热器板在该时间过程中关闭并且忽略蒸发速率将随表面冷却而减小的事实。

即使在使用微通道的情况下,10μm可能是难以实现的水厚度;对于芯吸纸张或者芯吸织物,更合理的数字将是在0.1mm或者更大的范围内,从而导致按比例延长的响应时间。

在一些构型中,设计呼吸相继类型的增湿器需要薄的水膜;否则表面温度必须对响应时间进行折中(更高表面温度以便生成小的蒸发面积)。在极端情况下,这种折中结果造成非常热的表面(>100℃),非常热的表面使水汽化并且引发患者安全和材料相容性问题。

影响响应时间的另一个因子是加热器板的热质量和电阻。加热器板的热质量以与水相同的方式贡献,从而需要时间通过蒸发被动地冷却。增加的热电阻意味着更高的加热元件温度,更高的加热元件温度加重了热质量的影响(通过要求更大的温度变化)。

方程1-3假设全部水蒸发而计算水的流速。在一些构型中,控制系统的目标是确保水的确全部蒸发,以便改善瞬态响应并且控制系统的其他方面。在一些构型中,这可需要尽可能与单独输出同样多的单独输入,否则系统将不会是可控制的。在最基本的设想中,在该设想中不希望控制出口处的湿度,在这种情况下,一个相关控制输入(诸如水的流速)将会满足。然而,如果还希望控制出口处的温度,需要另一个控制输入—例如,另一个控制输入将会是递送到加热器板的功率。然而,如果希望使加热器板温度保持在特定界限内,将需要另一个控制输入。附加的输入可以是添加二级加热器以便对流入空气进行预加热。

在一些构型中,预加热空气的概念可以是重要的。尽管系统的目标是确定出口处的湿度,能够确定温度以防止冷凝同样是希望的。如以上所解释,递送到加热器板的功率将允许进行温度确定,但是使用来自蒸发表面的热量使两个问题卷绕在一起(蒸发水和加热空气)。对空气进行预加热使这两个问题分离并且产生若干优点,包括:

更易控制:由于潜热和显热被独立地添加,潜热和显热可以几乎被独立地控制。组合的控制系统将会是更复杂而不太稳固的。

改进的蒸发:如以上参考蒸发方程所解释,使水蒸发成温暖气体(即,ti>td,o)比蒸发成冷却气体(即,ti<td,o)更易于蒸发和建模)。

更低表面温度:遵循改进的蒸发,温暖的气体允许更低的表面温度,并且表面温度/面积可以被独立地控制。

功率:当空气被预加热时,加热器板上的压力将会减小,这会产生需要更小温度来驱使加热并且需要更好效率(因为温度降低)的撞击效应。

含热量/安全性:系统中的大部分含热量作为水蒸气中的潜热供应,在独立添加热量的情况下更易于确保含热量被保持在极值内,同时仍能够确保出口处的气体未被浸透(以防止冷凝)。在没有进行预加热的系统中,限制热含量的唯一方法是限制总功率,而不直接控制这是否会减少显热而不是潜热(并且因此导致冷凝)。

在类似的静脉中,系统还可以包括对水流进行预加热。这可以通过对水源进行加热、对给水管线进行加热、或者在加热器板上指定特殊区(例如,水在到达蒸发区之前芯吸在水预加热器上方,或者初始区具有更高的功率密度)来完成。

在一些构型中,对气体进行预加热允许将潜热和显热分开提供给系统。显热可以由预加热器提供,而潜热可以由水蒸气提供。结果在于加热器板可以被保持在较低温度下,这样具有优点,诸如患者安全性。更确切地说,当所递送热含量中的超越量被减少时,更低温度增强了安全性,处于37℃的表面将不会生成大于37℃的露点温度下的蒸气,并且因此患者从未发生烧伤。

分离潜热和显热的一个附属结果在于保持蒸发表面的受热部分被浸透变得是合乎希望的—如果加热表面的未受热部分被暴露,将促成对空气进行加热,从而使控制任务卷绕。因此之故,包括通过物理手段(温度降落、使导体短路、电容)或者原先存在的模型感测水何时到达表面的端部的方法可以是合乎希望的。这作为防止系统为水淹没的安全机构也是有用的。

图2a示出呼吸增湿系统101的整体控制拓扑结构,该整体控制拓扑结构以简单化的形式示出基本控制原理,其中已知量的空气加上已知两的水产生已知的湿度。通过控制水和温度,有可能有效地控制水从加热表面蒸发成气体的蒸发速率。在一些构型中,因为蒸发流速仅仅是其他输入变量的函数,没有必要测量蒸发流速。例如,有可能基于所希望的蒸发速率设定水的流速。在一些构型中,有可能基于表面温度和功率计算出正实际发生的蒸发作为校验。在所示的控制拓扑结构中,水被输入到液体流动调节器中并且被引导到加热器板控制器。空气和/或气体在入口处被接收以便于在被引导到加热器板控制器之前进行调节和测试。加热器板控制器根据流入水和空气和/或气体的已知(例如,直接确定或者通过传感器间接确定)参数控制露点温度td,o。

图2a中所表示的入口调节和测试可以包括气体供应位置处或者附近的入口子系统,包括一个或多个入口传感器,一个或多个入口传感器被配置成测量入口气体周围湿度、入口气体流、入口气体温度、以及气体通道的压力水平。入口气体加热器还可以被设置在气体供应位置处或者附近以便在气体进入并且传递通过气体通道时将气体预加热至所希望的(预先确定的)温度,这样使得气体到达增湿位置时具有所希望的温度。通过对气体进行分开预加热,递送到增湿区中的加热元件的能量可以用于使增湿流体蒸发,从而使在气体通道中对气体进行加热(通过供应来自气体预加热器的显热)以及对气体进行增湿(通过提供来自加热元件的潜热)的功能分离。有利地,这种功能分离容许加热元件在对应于较低温度水平的较低功率水平下进行操作,从而使得呼吸增湿系统更安全且更有效地进行操作。此外,受热气体的温度可以被快速改变,这样使得系统变得比对整个流体储器或者超过所需显著体积的流体储器进行加热的系统更加响应于变化。

图2a中所表示的液体流动控制器可以包括增湿流体流动控制子系统,增湿流体流动控制子系统监测并且控制流体被定量供给到增湿区、并且更确切地说定量供给到加热元件的速率。流体流动传感器测量增湿流体的流动并且将测量结果提供给流体流动控制器。控制器将经测量流体流速与所希望流体流速(所希望流体流速可以是预定义的、估计的或者确定性导出的)进行比较,并且相应地调节通向计量安排的功率水平。在一些实施例中,增湿流体在被递送到加热元件之前被预加热以便于蒸发,从而减少加热元件使增湿流体蒸发所需的潜热的量。可以使用对增湿流体进行预加热的不同模式,包括对流体储器进行加热、对流体供给管线进行加热、或者在到达蒸发区之前在加热元件上指定特殊流体预加热区。根据某些实施例,止回阀先于计量安排被布置在流体供给管线内以防止增湿流体回流。在一些实施例中,安全阀先于计量安排被布置在流体供给管线内以便释放管线中由于泵衰竭以及其他可能的原因所导致的压力。

图2a中所表示的加热器板控制器可以包括受热表面子系统,受热表面子系统监测并且控制加热元件的温度。加热表面包括增湿流体被分布在之上并且由加热表面所提供的热能所蒸发的面积。芯吸元件被设置在加热表面的至少一部分上方。芯吸元件被配置成接收并且分布增湿流体层,该层具有递送热量以便使流体蒸发的加热表面的一个或多个部分上方的厚度。芯吸元件可以包括纸张、织物、微纤维、或者微结构,包括微流体通道。加热表面可以包括加热板、电阻加热板、或者具有电阻条的电路板,仅举数例。在一些实施例中,加热表面是由热塑性材料包覆模制的电路板。在一些实施例中,可以使用多个加热表面或者区。每个加热表面可以被维持在相同或者不同的温度水平。加热表面温度传感器与加热表面处于热接触并且与加热表面温度控制器通信。表面加热器(表面加热器也与表面温度控制器通信)被配置成根据加热表面的构型控制加热表面或者多个加热表面或加热区的温度。

图2b-2d示出了与图2e的整体控制器的构型一起工作来确定性地控制如在此所描述的增湿系统的不同控制子系统的构型。

图2b是根据本披露的实施例的入口和预加热控制子系统的功能框图。预加热器不是必须的,但是可以包括在一些构型中。入口传感器可以由等效测量结果或者适当假设和/或如以上所解释的计算结果替代。在一些构型中,还可以使用功率方程以开环方式控制ti。在一些构型中,周围湿度td,i在增湿之前可以随时被感测到,尽管在预加热器之前进行感测是优选的。如果在预加热器之后进行感测,该预加热器可以与入口传感器ti合并。

图2b的入口和预加热控制子系统可以使用入口传感器(例如,以上参考图1e所描述的那些)测量进入系统中的空气和/或气体以便确定周围湿度td,i、流入空气流速qi、以及流入空气压力p。如上所述,气体随后可以由预加热器进行加热,尽管这在所有实施例中并不是必要的。预加热器下游的入口温度传感器测量受热气体的温度ti并且将测量结果提供给预加热控制器。预加热控制器可以将ti与由以下图2e的整体控制器所确定的计算出的温度ti,set进行比较,并且相应地向预加热器发送信号以便调节温度。

图2c是根据本披露的实施例的水流动控制子系统的功能框图。在一些构型中,如果使用充分良好表征且稳定的泵,流动传感器和反馈(液体流动控制器)可以省略。子系统还可以包括如在此在别处所描述的水预加热器。止回阀还可以先于泵用于防止水的回流。如果泵易于发生故障,安全阀还可以先于泵使用。系统还可以包括无源水计量计和流动传感器,例如压力供给(诸如重力供给)以及比例阀以代替泵。

在图2c的构型中,水从水源进入水泵。水泵可以将水泵送到系统中。水泵可以是上述泵中的任一种。水流动传感器定位在泵的下游并且测量水的流速qw,水的流速qw被输出到液体流动控制器。液体流动控制器提供反馈回路,水泵由反馈回路基于qw与计算出的水的流速qw,set处的比较结果进行调节。计算出的水的流速qw,set由以下所描述的图2e的整体系统控制器确定。

图2d是根据本披露的实施例的受热表面控制子系统的功能框图。尽管仅示出一个表面,可以使用多个表面。可以存在多个表面加热区和多个温度传感器。在一些构型中,存在两个加热区和温度传感器。还可以包括出口温度传感器以便协助控制。可以通过使用表面加热器的电阻或者其他特征替代或者补充表面温度传感器。例如,在当前实现方式中,铜条的电阻表示平均加热温度。在一些构型中,表面温度传感器给出真实表面温度的尽可能接近的测量结果可以是优选的,这将会有益于上述蒸发模型。

在图2d的所示构型中,水流和气体流,例如图2b和图2c的子系统的输出,在表面上方被引导。如贯穿本申请所描述,表面可以是加热源。表面可以包括一个或多个表面温度传感器,一个或多个表面温度传感器将表面温度的测量结果ts提供给表面温度控制器。表面温度控制器提供反馈和控制机构,与表面处于热连通的表面加热器由反馈和控制机构进行调节。表面温度控制器可以将ts与计算出的表面温度ts,set进行比较。计算出的表面温度ts,set由以下图2e的整体系统控制器确定。

图2e是根据本披露的实施例的整体控制器的功能框图。图2e示出了将以上图2b-2d的三个控制器绑定在一起的整体控制器的实例。如图2e所示,在一些构型中,因为数字指示控制仅仅是基于输入的开环设定点,不存在有关出口露点温度的闭环反馈。输入变量被分成两组以便表示一组td,i、qi、p以及td,o,set对于控制器是基本的,而另一组在更简易的控制器中可以省略。在最基本的控制器中,可以根据基本系统方程设定三个输出变量,换句话说,qw,set可以由方程1-3确定,ti,set可以被设定成所希望气体入口温度的所希望输出,并且ts,set可以由方程4确定。在一些构型中,不使用pair、ps以及任何其他额外变量或者仅作为系统校验使用。

图3a是根据本披露的一个实施例的示例性集成增湿系统300的示意性透视图。图3b是示出了增湿系统300的气流的示意性竖直截面图。图3c是示出了增湿系统300的水流的示意性竖直截面图。图3d是增湿系统300的示意性水平截面图。在一些构型中,增湿系统300可以是使用周围空气并且依赖正常患者呼吸生成气体流的独立式增湿器。在一些构型中,增湿系统300可以是呼吸电路的附加装置以用于与任何流动生成系统(例如与通风机)一起使用。图3e-3f示出了被安装以用于与集成系统中的流动生成系统一起使用的增湿系统300。

如图3a所示,增湿系统300包括外壳303、气体入口331以及气体出口333。气体入口331被配置成将气体接收到增湿系统300中。在一些构型中,气体入口331被适配成与气体入口管、流动生成系统或者其他气体源相连接。气体出口333被配置成将已增湿气体递送出增湿系统300并且递送给患者。在一些构型中,气体出口333被适配成连接到气体出口管上,例如,连接到患者接口上的呼吸管(例如插管)。增湿系统300还包括一个或多个进水口308,该一个或多个进水口被配置成允许从水流动控制器所接收的水进入增湿系统300中。在一些实施例中,增湿系统300包括进水口和出水口。在一些实施例中,因为输入到系统中的所有水被蒸发以便对气体进行增湿,增湿系统300只包括入口。增湿系统300还包括电连接器351,该电连接器用于向系统供应功率并且用于与系统的不同部件通信。增湿系统还可以用于向受热呼吸管和嵌入式传感器提供功率,这样使得设计充当需要功率或者通信的下游系统部件的导管。

图3b是示出了图3a的增湿外壳的气流的示意性竖直截面图。如图3b所示,外壳303限定气体流动路径338。在该构型中,气体在气体入口331处进入增湿系统300,并且由内壁337向下引导。内壁337的底部的开口338允许气体传递到内壁337的另一侧,气体在另一侧被向上引导并且在气体出口333处被引导出增湿系统300。外壳303可以包括内部挡板305。气体沿着流动路径335由从加热元件314蒸发掉的已蒸发水进行增湿。在图3a中可以透过气体入口331部分地看见加热元件314,并且加热元件314的截面图在图3c和图3d中是可见的。以下参考图4a-4c,加热元件314的示例性构型被描述为加热元件400。

图3c是示出了图3a的增湿外壳的水流的示意性竖直截面图。在所示的构型中,在入口308处进入的水通过通道318被分布以便接触加热元件314。在所示的构型中,通道318部分地位于内壁337内。

图3d是图3a的增湿外壳的示意性水平截面图。如图3d所示,加热元件314使外壳303在第一方向上分离,并且内壁337使外壳303在与第一方向正交的第二方向上分离。因此,加热元件314被浸透在流动路径中。在一些构型中,由于有效地加倍了表面积、提供功率效率的急剧增加、使得表面温度更精确地读取、并且允许外壳303被保持相对冷却(并且因此安全)的原因,这是优选的。在图3d的实施例中,挡板305被包括在空气流动路径中。

图3e-3f示出了被安装以用于与流动生成系统390的实施例一起使用的增湿系统300。流动生成系统390可以包括用于连接到外部气体源上的气体入口391以及可以被适配成连接到增湿系统300的气体入口331上的气体出口393。在所示的构型中,流动生成系统390包括多个输入控件395。在一些构型中,流动生成系统390可以是可购自新西兰奥克兰费雪派克医疗保健公司(fisher&paykelhealthcareofauckland,nz)的艾尔沃(airvo)。

图4a是根据本披露的实施例的加热元件400的示意性透视图。图4b是加热元件400的示意性俯视图。图4c是加热元件400的局部示意性俯视图。在一些构型中,印刷电路板加热元件400可以用作以上参考图3a-3f所描述的增湿系统300的加热装置314,或者用作在此所描述的任何其他加热装置(例如,图1a-1e的加热装置114)。

加热装置400可以包括印刷电路板401以便于提供加热。印刷电路板401可以具有多根电阻条411。电阻条411可以是铜。加热元件400的外表面可以包括芯吸表面。芯吸表面可以由印刷电路板401上的包覆模具提供。包覆模具中可以具有微通道(以下更详细地描述微通道)。包覆模具可以是热塑性材料。加热元件400可以具有模块化区。例如,在所示的实施例中,电阻条411被分成三个模块化区403、405a、405b。在一些构型中,模块化区404a和405b被串联连接。在一些构型中,加热元件400可以具有被配置成对水进行预加热的第一区以及被配置成使水蒸发的第二区,如将参考图4c所描述。单个区可以是潮湿的,并且该单个区可以通电。这赋予控制器灵活性。可替代地,整个加热表面可以通电,并且整个加热表面可以被保持潮湿而不是在所分离区中进行操作。

如图4b所示,加热元件400可以包括电触点457(用于功率转换或者通信),这些电触点可以用于为呼吸增湿系统的附加部件供电。例如,电触点457可以向受热呼吸管(hbt)供电。作为另一个实例,电触点457可以用于向附加传感器(例如,温度传感器、压力传感器、或者如在此所描述的其他传感器)供电或者与附加传感器通信。

微通道可以提供芯吸表面。芯吸表面可以与气体的预加热协同工作以便允许加热表面被维持在相对低的温度下。这是因为更低温需要更大表面积生成必要的蒸气流量,并且更大的面积需要更有效的机构来使液体分散以便使更多受热表面用于蒸发。

在一些构型中,微通道可以是形成在表面上的小规模(例如,微尺度)凹槽。表面可以是平坦的或者弯曲的。在一些构型中,微通道可以是高度有序的。在一些构型中,微通道以一定图案被安排(参见例如图5a和图5b,图5a示出了网格结构图案的一个实例,图5b示出了径向图案的一个实例;这些实例是非限制性的并且其他图案是可能的)。在一些构型中,微通道的目的是使液体遍布表面分散,从而针对给定体积增大表面积。在一些构型中,微通道沿着微通道的长度具有大约均匀的截面轮廓。例如,微通道可以具有圆形或者半圆形、椭圆形或者半椭圆形、矩形、三角形(v形)、或者梯形截面。在一些构型中,微通道可以包括圆形边缘和/或拐角。在一些构型中,微通道可以具有在微通道的长度内改变的可变截面轮廓。例如,微通道沿着微通道的长度可以变得更深和/或更宽。微通道可以是“开放式”微通道,“开放式”微通道包括向环境开放的至少一个侧面。例如,微通道可以是形成到表面中的v形凹槽,并且微通道中或者上的液体可以在v的至少一个开口侧通向环境。因为微通道的开口侧提供被蒸发流体所去的地点,此类微通道可以促进液体的蒸发。例如,开放式微通道的开口侧可以通向气体通路。微通道上或中的液体可以蒸发,并且所蒸发液体可以被夹带在流动通过气体通路的气体中。在一些构型中,微通道可以具有在1-1000μm范围内的深度(深度还可以被看作高度)。在一些构型中,微通道的深度是在20-200μm之间。在一些构型中,微通道的宽度可以是在1-1000μm之间。在一些构型中,微通道的宽度是在20-200μm之间。在一些构型中,微通道的侧壁的倾斜可以在0-45度范围内。如在此所使用,在壁与垂直线之间(换句话说,在壁和与微通道形成的表面垂直的轴线之间)测量侧壁的倾斜。也就是说,0度的壁倾斜表示完全竖直的壁。例如,如果微通道的侧壁包括0度壁倾斜,微通道可以是大约正方形的,并且正方形的顶部可以是开放的。作为另一个实例,如果微凹槽的侧壁包括45度壁倾斜,当倾斜壁直接交叉时微通道可以是大约v形的,或者当侧壁与微通道的水平平坦底表面交叉时是大约梯形,并且微通道的顶部可以是开放的。在一些构型中,微通道的侧壁的倾斜可以在5-20度范围内。微通道可以通过芯吸(毛细作用)、或者在一些情形中通过液体通过通道的重力流使液体分散。在一些构型中,微通道可以由延伸超过表面的突起限定,其中微通道由突起之间的空间形成。

在一些构型中,加热元件400包括一个或多个传感器以用于测量加热元件400的表面温度。一个或多个传感器可以是热敏电阻器421。在一些构型中,可以至少部分地通过确定加热元件400的电阻水平或者其他特性计算出加热表面温度。加热元件的电阻水平可以用于指示加热表面的平均温度。加热元件可以被安排成在加热元件的指定区中递送与递送给加热元件的其他区的功率密度相比更高的功率密度。加热元件的指定的更高密度区可以位于水向加热表面的供应出口处。加热元件的指定的更高密度区可以位于加热表面上的水预加热区域处。呼吸增湿系统可以包括位于气体通道的出口位置处的温度传感器,温度传感器可以充当安全阀。

电阻条411和/或传感器(例如,热敏电阻器421)可以被电连接到定位在印刷电路板401的接触区451上的电触点452上。接触区451可以被定位成与增湿系统300的电连接器351相配对。

在一些构型中,加热元件400被配置成向水提供某种“预加热”。在一些构型中,这可以简单地通过增加水被引入区域的条(并且因此功率)密度来实现。该区将使功率密度增加对小区域内的水进行加热所需的额外的量。例如,如图4c所示,如果水在位置408处被引入到加热元件400并且加热元件的表面被配置成在箭头方向上芯吸遍布加热元件400上的水,加热元件400可以包括位置418处和周围的位置处(换句话说,靠近水被引入的位置408)的更大密度的电阻条411以及位置428周围的位置处(换句话说,远离位置418)的更低密度的电阻条411。

潜热和显热所需的功率大约是(其中l是蒸发潜热,cp是水的比热容,是水的流速,ts是表面温度,并且tw是水的温度)。显热与潜热的比率于是为因为水的流速抵消,足以恒定地设计出高于板的剩余部分的某种固定比率的功率密度区并且实现所希望的效果。由于ts-tw可能改变显著量,这未必总是精确的,但是在一些构型中,并不需要过度精确。

对水进行预加热一般是系统的没有对空气进行预加热重要的方面,因为对水进行的预加热是所需总热量的更小分量(与空气相比约一半)并且对蒸发不太有影响并且对出气条件几乎没有影响。并且,在一些构型中,对水进行加热消耗高达系统的9%的功率,因此并不是无关紧要的。在不进行预加热的情况下,所具有的影响在于在水升温时跨表面将存在温度梯度,这会减小这些区域的蒸发速率并且使蒸发模型变得更加复杂。

用于为水提供预加热的另一个选项是在供水管线中包括加热器(即,位于泵/流动传感器与表面的联接件之间),加热器可以是ptc(正温度系数)元件、或者加热线圈、或者与水流处于热接触的任何其他加热器,加热器将水加热至与加热元件400的表面相同的温度。

虽然以上参考对水进行加热描述了加热元件400,类似的加热元件400也可以用于对气体进行加热,例如作为气体预加热器。

图4d示出了根据本披露的实施例的加热元件400a、400b的两个替代实施例的示意性俯视图。加热元件400a、400b可以包括蚀刻箔膜401a、401b。蚀刻箔膜401a、401b可以包括多根电阻条411a、411b。加热元件400a、400b还可以各自包括电连接451a、451b。

图4e示出了处于轧制构型的加热元件400a的实施例。

在一些构型中,增湿系统包括不同部件(例如,分布和/或芯吸系统)以便将增湿流体递送到加热元件。在一些构型中,将水递送到加热元件表面遍布整个表面、换句话说使加热元件表面浸透是优选的。意识到分布/芯吸系统需要能够维持流速是重要的。在一些构型中,如果分布器不能够足够快地芯吸水以便保持加热元件被浸透,不足以使水分布在表面上方。在一些构型中,维持液体流速高达5mlmin---1是优选的。

分布和/或芯吸系统可以包括两个部分:芯吸表面,芯吸表面使水遍布表面分布;以及联接件,联接件在一个或多个点处将供水系统连接到表面上。联接件还可以进行部分水分布(例如,通过在区或者线而不是在点处联接水)。可以用于联接和芯吸的技术包括但不限于:织物/纸张(例如,金百利克拉克(kimberly-clark)hydroknit);微通道;亲水性涂层(例如,荷叶涂层hydrophil);毛细/接触吸液芯(定制设计)和/或多孔聚合物(例如,宝利事(porex)纤维)。

对联接件的需求主要地基于表面的性质。如果表面是各向同性的(在所有方向上芯吸相同),那么联接件只需要在单点处将水联接到表面上。如果表面是各向异性的(取决于方向),将需要一些附加特征对此进行解释,即,将需要实际上在某个区上方引导水以便确保芯吸是均匀的。各向异性还取决于表面的疏水性—亲水性表面容易吸收水,因此联接件只需要使水与表面接触不良,而疏水性表面需要联接件,联接件需要“迫使”水抵靠表面以防止水仅仅“滚”离,或者在与表面对接时向增湿流体提供具有更大亲和力的中间机构。

例如,芯吸表面的织物可以非常接近于各向异性的和基本上亲水性的,使得点源是充分的。拿出将液体递送到与表面相接触的管可以足以生成流动(高达特定表面大小并且取决于取向)。在一些构型中,并且在一些基质诸如硅酮上,芯吸表面包括可以仅在通道方向上芯吸、并且具有差的亲水性的微通道。当使用在一个方向上芯吸和/或是不太亲水性的表面时,具有分布器可以是友谊的,分布器使水固持在位直到被微通道抽吸掉为止、并且还可沿着另一个(例如,垂直)方向引导水可以是有益的。

在一些构型中,芯吸表面可以是微通道表面,微通道表面可以包括仅在一个方向上的平行通道;连接到更大数量主通道上的一小组分布通道;和/或从单点径向分布的通道等其他可能的构型。芯吸表面还可以是吸收织物或者吸收纸张、超亲水性涂层表面、或者薄的多空介质。

在一些构型中,联接件可以是连接到表面上的一段芯吸介质,一段芯吸介质可以包括多孔聚合物或者纤维聚合物。织物/纸张和/亲水性区段。联接件还可以是与芯吸表面形成锐角的第二表面,第二表面通过毛细作用抽吸水,第二表面可以包括抵靠表面成低角的平坦滑动件(诸如玻璃滑动件),或者可替代地包括抵靠表面的圆棒,圆棒在接触点处形成低接触角。芯吸表面还可以包括与表面相接触的空腔,空腔可以包括与供水空腔直接面对并且抵靠按压的平面,表面具有沿着表面的边缘连接的c形管。在一些构型中,这些联接方法中的任一种可以是线源(当表面是各向异性的时是有用的,例如微通道,在这种情况下线源垂直于表面的主要芯吸方向;例如,多孔聚合物的薄段跨通道搁置);点源(当表面是各向同性的或者包含嵌入式配水装置时是有用的);径向源;或者多个线源/点源/径向源(当存在两个分离芯吸表面(例如,加热器板的侧面)或者表面的芯吸速度不足以使表面由单个源浸透可以是有用的)。

现在将通过举例而不是限制描述芯吸表面和/或联接件的具体实例。

图5a是示出了根据本披露的实施例的网格结构微通道水分布图案500a的示意图。分布图案500a包括水输入区域501a、第一微通道502a、以及第二微通道503a。第一微通道502a可以充当将水分布到第二微通道503a的分布通道。第二微通道503a使水遍布表面分布。网格结构的微通道水分布图案500a可以应用到加热元件400的表面。网格结构的微通道水分布图案500a是如在此所描述的芯吸元件的一个实例。在一些构型中,第一微通道502a使水在第一方向上移动并且第二微通道503a使水在与第一方向正交的第二方向上移动。然而,网格结构的微通道水分布图案500a可以被修改成包括第一微通道502a,该第一微通道相对于第二微通道503a定位在其他位置处。在一些构型中,网格结构的微通道水分布图案500a包括仅第一微通道502a或者仅第二微通道503a。一般地,网格结构的微通道水分布图案500a是微通道对水进行分布的系统:水被供应至若干分布通道,若干分布通道分成跨大部分表面进行芯吸的许多通道。

图5b示出了根据本披露的实施例的径向微通道水分布图案500b。图5b是从视频中截取的静止图像,视频示出了对荧光染料进行芯吸的径向微通道。荧光染料被滴到中心点501b之上并且由通道向外芯吸。径向微通道水分布图案500b包括从水被引入的中心点501b径向散开的微通道。在一些构型中,为了保持通道密度一致,微通道可以在从中心点501b辐射时分裂。径向微通道水分布图案500b还可以包括周向延伸的微通道。

图6a是根据本披露的实施例的包括玻璃滑动联接件631的呼吸增湿系统600的示意性透视轴向截面图。图6b是图6a的呼吸增湿系统600的示意性透视截面侧视图。图6c图6a的呼吸增湿系统600的示意性侧视图。图6d是图6a的呼吸增湿系统600的组装而成的示意性透视轴向图。玻璃滑动联接件631可以被认为是接触角/毛细管线分布器。

在所示的实施例中,呼吸增湿系统600包括气体入口601和气体出口603,同时具有在气体入口与气体出口之间延伸的气体流动通道605。当气体从入口601移动到出口603时,气体在流动通道605中被增湿。呼吸增湿系统600还包括微泵621,该微泵被适配成将水从水源供应到系统中。水通过水管入口621从微泵621被递送到流动通道605中。呼吸增湿系统进一步包括玻璃滑动联接件631,该玻璃滑动联接件抵靠加热元件614的表面633被固持成锐角625(参见图6c)。表面633包括在箭头的方向上并且垂直于玻璃滑动件631延伸的微通道。供水管623被放置在玻璃滑动联接件631与表面633的交汇处。由于玻璃滑动联接件631与表面633之间的锐角625(参见图6c),水沿着交汇处被芯吸,并且随后由微通道遍布表面633芯吸。值得注意地,联接件600仅在一侧使加热元件614暴露;然而,在一些构型中,可以修改设计以便在两侧使加热元件614暴露。呼吸增湿系统600还可以包括气体流动路径605中的蜂巢气体扩散器645。

图7是根据本披露的实施例的卷绕在加热元件714的边缘上方的分布管联接件700的示意性透视图。该绘图示出了被用作联接件或者分布器的管701。管701夹在加热元件714上方,并且随后水被泵送到管701中。当管714充满时,水跨加热元件714被抽吸。值得注意地,管联接件700可以将水分布到加热元件714的顶表面714a和底表面714b之上。

图8是根据本披露的实施例的多孔介质联接件800的示意图。联接件800被示出为沿着加热元件814的表面延伸的散列条带。联接件可以是例如一件织物。水被送给到织物之上以便允许水沿着μ通道分布。在一些构型中,联接件800可以是薄的多孔介质,诸如多孔聚合物或者烧结聚合物。

图9a是根据本披露的实施例的径向联接件900的示意性透视图。图9b是图9a的径向联接件900的示意性透视截面图。径向联接件900可以被认为是空腔/面部联接件。一般地,联接件900推动水撞击加热元件的表面。在一些构型中,联接件900被配置成与充分亲水性的或者吸收性的表面一起工作。在一些构型中,联接件900被适配成使得当存在多个出口时,出口被保持平衡例如使得水不会简单地青睐一条路径而完全在该方向上流动。

联接件900在入口901处接收所供应水并且在加热元件的中心处并且向两侧径向地供水。如图9b所示,水从入口901向下流动通过一系列通道903到达加热元件(未示出)。联接件900可以包括多个出口905。在一些构型中,联接件900还递送水通过中心通道907,该中心通道穿过加热元件中的孔延伸到另一侧上的类似的系统。在图9b中,箭头被添加来示出水的流动。

图10a是根据本披露的实施例的多层联接件1000的示意性透视图。图10b是图10a的多层联接件1000的示意性透视截面图。联接件1000包括本体1001,该本体具有一个或多个凸出区段1003。出水口1005可以定位在凸出区段1003的向内表面中的一个或者每个向内表面上。如图10b所示,联接件1000包括进水口1011以及将水递送到出水口1005的内部通道。箭头已经被添加到图10b以便示出水的流动。加热元件(如图10c和图10d所示)可以定位在凸出区段1003之间并且接收来自出口1005的水。

图10c是根据本披露的实施例的附接到增湿外壳303上的图10a的多层联接件1000的示意性截面图。图10d是根据本披露的实施例的附接到增湿外壳303上的图10a的多层联接件1000的示意性截面图,增湿外壳303包括印刷电路板加热元件400。外壳303可以类似于参考图3a-3d所描述的增湿系统300的外壳303并且加热元件400可以类似于参考图4a-4c所描述的加热元件400。

已经测试了如在此所描述的增湿系统的实施例并且得到关于可达到露点温度和控制精度的令人满意的结果。例如,气体流动高达大约45lmin---1并且在海平面下可以实现露点温度td=37℃,以60lmin---1的流动下降至大约td=35℃。这与利用具体pcb设计可达到的最大功率一致。

图11a和图11b示出了根据本披露的实施例的呼吸增湿系统的精度性能。系统在如上所述的开环控制下跨一定范围的流量和露点进行操作,其中出口处的露点温度被单独测量,并且由系统所预测出的露点温度通过转化方程3计算得出:

图11a是经测试呼吸增湿的露点温度精度的图,并且示出了根据经预测露点温度绘制的经测量露点温度。加热器板由于功率低下而被浸透的两个点在图上是不可见的,但是因为这种状况是可检测到的而可以被忽略。大多数点处于±2℃经测量露点温度内。图11b是遍布经测试呼吸增湿系统的气体流速的露点温度误差的图。

图12a是根据本披露的实施例的增湿系统1200的替代实施例的示意性透视图。图12b是图12a的增湿系统1200的示意性截面图。如图12b所示,增湿系统1200包括顶层和底层。图12c是示出了图12a的增湿系统1200的顶层的示意性截面图。图12d是示出了图12a的增湿系统1200的底层的示意性截面图。

增湿系统1200包括气体入口1201和气体出口1202。增湿系统可以包括鼓风机1231,该鼓风机被配置成将来自气体入口1201的气体移动到气体出口1202。入口1201和出口1202可以由通道连接。流动感测装置1251和气体感测装置1281可以位于通道内。增湿系统1200包括功率/通信连接器1203。

增湿系统1200可以包括加热表面空腔1211,该加热表面空腔被配置成接收如在此别处所描述的加热元件。加热表面空腔还包括给水区段1261,该给水区段可以配置有将水应用到加热元件的联接件。给水区段1261可以与液体流动模块1241、进水口1242、止回阀1243以及微泵1244处于流体连通。增湿系统1200还可以包括通过端口1272是可访问的电子空腔1271。

图13是根据本披露的一个实施例的内嵌式增湿系统的示意图。图13的内嵌式增湿系统包括入口与出口之间的气体通路中的预加热器和加热器(加热器由受热表面表示)。加热器控制器被连接到预加热器和加热器上。预加热器在气体到达加热器之前对气体进行加热。加热器还被连接到将水分配到加热表面之上的水控制器上。由水控制器所应用的水的量以及由加热器控制器所施加的热量可以根据在此所描述的原理确定性地控制以便使水蒸发并且对气体进行增湿。系统的出口可以被连接到受热呼吸管(hbt)(即,递送吸入管)上。hbt所必要的功率和感测系统可以由增湿系统整体地提供,或者单独提供或在外部提供。包括增湿系统作为递送管的一部分的优势是简单性、成本减少、以及通过确保根据需要替代的质量控制。

以上描述详细说明了在此所披露的系统、装置以及方法的某些实施例。然而,应当理解不管以上描述在上下文如何详细说明,系统、装置以及方法可以以许多方式来实践。如也在上文所陈述的一样,应当指出在描述本发明的某些特征或方面时具体术语的使用不应被视为暗示该术语在此被重新定义为局限于包括与该术语相关的本技术的这些特征或方面的任何具体特征。“大约”或者在此所使用的类似术语应当被理解为意味着在指定项的可接受公差内(例如参考,大约可以意味着可以在可接收公差,例如像在±3℃)

对本领域的技术人员而言将了解的是可以在不背离本技术的的范围的情况下进行各种修改和变化。此类修改和改进希望落在实施例的范围内。对本领域的技术人员而言还将了解的是在一个实施例中所包括的零件与其他实施例是可互换的;来自所描绘实施例的一个或多个零件可以以任何组合与其他所描绘实施例相包括。例如,在此所描述和/或图中所描绘的不同部件中的任一个可以与其他实施例相结合、与其他实施例互换、或者从其他实施例排除。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1