可植入瓣膜及方法与流程

文档序号:14638449发布日期:2018-06-08 19:58阅读:398来源:国知局
可植入瓣膜及方法与流程

本申请要求2015年10月13日提交的在先美国临时申请序列号62/284,923的优先权,该申请通过引用的方式被全文合并在本文中。

技术领域

本发明涉及可植入血管或非血管瓣膜及方法,更具体来说涉及用于治疗静脉机能不全、相关的静脉瓣膜功能不全的可植入静脉瓣膜及方法。可植入瓣膜允许流体(优选地是血液)的主要是单向的最优流动;可植入瓣膜包括由部分地或完全嵌入在生物相容的抗血栓聚合物中的可伸展支架构成的框架,其中所述框架围绕、连接到并且是起作用的内瓣(inner-valve)的一部分。可以从脉管(vessel)内的导管(catheter)通过血管内方式递送可植入瓣膜,并且可植入瓣膜优选地可以从压缩配置伸展到伸展配置。



背景技术:

在人体外周循环系统中,腿中的经脉克服重力并且向心脏泵浦血液。经脉解剖的健康机能在很大程度上依赖于一系列单向瓣膜,所述单向瓣膜在静脉泵浦的帮助下打开和关闭通过肌肉收缩帮助血液循环的一些骨骼肌;所述瓣膜充当单向压力调节器以便抵消重力引发的流体静力血压,特别在立姿下可能会经历超过90mmHg的压力。当外周循环系统没有正确地起作用时,则会发生被称作静脉机能不全或者更详细地称作慢性静脉机能不全或CVI的病症。

CVI是由以下原因导致的:静脉瓣膜功能障碍和血液逆流;或者由于血栓而导致的静脉阻塞;或者二者的组合。静脉瓣膜逆流导致淤血堆积在腿中,从而导致流体/血细胞泄漏到皮肤和其他组织中。静脉瓣膜功能障碍主要是由先天性弱瓣膜导致的;或者次要地是由直接创伤、血栓、荷尔蒙改变(例如怀孕)和/或长时间站立或坐着而导致的。所述病症是通过身体检查、静脉双功能超声和静脉空气体积描记来诊断的,或者较不常见地是通过静脉造影来诊断的。

CVI既可以表现在浅静脉中也可以表现在深静脉中。由于浅静脉不与动脉配对,因此浅静脉中的CVI通常对健康的影响较小,并且可以更容易治疗或移除而不用担心循环系统健康。深静脉处在皮肤下方深处,并且与动脉配对。这些配对的静脉载送体内的大部分血液,并且鉴于其对循环的重要性通常不会被移除。与未经治疗的CVI有关的风险较为严重,并且包括由于深静脉血栓(DVT)而导致的重大伤害和死亡;DVT是通常在腿、大腿或骨盆中的深静脉中形成血凝块。在轻度情况下,CVI可能导致慢性皮肤瘙痒、轻微疼痛和肿胀;在中度到重度情况下,CVI可能导致对生活方式造成干扰的水肿、溃疡和感染(蜂窝组织炎、淋巴管炎)。

当前对于功能障碍瓣膜的CVI治疗包括从瓣膜的外科手术重建到血管内(基于导管的)技术。逆流瓣膜的外科手术矫正较为复杂并且昂贵。其长期结果不可预测并且手术风险较高。针对外科手术的血管内替换方案取得了很快的进展,比如静脉成形气球充气膨胀(venoplasty ballooning)、导管引导细胞溶解以及支架植入。虽然这些新的基于导管的技术提供了简化的治疗,但是其最佳结果被限制到静脉的再通,而不是最小化静脉逆流或反转CVI和急性DVT的长期症状。

在开发假体静脉瓣膜方面的早期尝试常常在递送瓣膜之后导致瓣膜倾斜、在瓣膜处形成血栓、由于叶片增厚而导致的持续逆流或者其他问题。



技术实现要素:

本发明提供一种用于治疗静脉机能不全的可植入瓣膜,所述可植入瓣膜包括可伸展支架,优选的是自我伸展的镍钛诺(Nitinol),其具有用于血液流入的远端节段、包含内瓣的中心节段以及用于血液流出的近端节段。中心节段优选地是远端节段与近端节段之间的扩大球根状节段,其邻近远端节段并且朝向近端节段锥化。所述球根状节段可以是环形的或者优选的是非环形的,其中瓣膜的最宽节段在一个方向上比给定的静脉更宽,并且当转动九十度时优选地与给定静脉大致一样宽或者更窄。换句话说,球根状节段在前后视图中比静脉更宽,但是在侧视图中与静脉具有大致相同的宽度或者优选地比静脉更窄。支架被完全或部分地嵌入在生物相容的抗血栓聚合物、分层的聚合物或者具有抗血栓涂层的聚合物中,从而遍及远端、中心和近端节段形成平滑的内表面,并且与支架内部基本上持平而不会将其暴露出来。优选的是,支架被嵌入在聚合物中,从而使其内部和外部都给出平滑的聚合物表面。被聚合物覆盖的支架在本文中被称作框架。框架用来支撑目标静脉,保持可植入瓣膜的形状,并且把可植入瓣膜锚定在静脉中。

作为所述设备的起作用的瓣膜部分的内瓣是与框架的聚合物壁集成在一起的叶片瓣膜。生物相容的抗血栓聚合物叶片与框架的聚合物壁一起形成被称作窦区(sinus region)的空间。内瓣被保持在框架的球根状或中心节段内,优选地处在邻近远端节段的大致下方四分之一中,或者更一般来说处在球根状节段的最宽部分中。叶片的远端部分与框架壁平滑地联结,叶片厚度从远端到近端锥化以便增加内瓣的灵活性,并且当瓣膜关闭时在瓣膜出口(valve outlet)处接触。叶片可以连续锥化,部分锥化,或者完全不锥化。

瓣膜出口横切球根状中心节段的更窄宽度,并且具有容易容纳血液流动的横向宽度。瓣膜出口可以是线性、S形、螺旋形或螺线形等等。瓣膜出口与近端节段之间的中心节段中的空间定义上方区段。

瓣膜的打开和关闭引发来自窦区的主要是仿生的血液涌流,以用于经过瓣膜的平滑、非创伤性血液流动并且只有很少的甚至没有滞流,并且因此降低血栓形成的风险。内瓣材料平滑并且耐久,以便在正常的打开和关闭功能期间耐受循环静脉流并且抑制窦区中的纤维化形成。由于被发明被使用在存在疾病的脉管中,因此其意图是尽可能地模拟自然,但是可能并不完美。

本发明还提供一种治疗患有静脉机能不全的方法,所述方法包括把本发明的瓣膜加载到适当的递送导管中,并且通过血管内方式把瓣膜递送到患者的受到影响的静脉位置。

附图说明

通过后面对于在附图中示出的本发明的(多个)优选实施例的详细描述,本发明的其中一个或多个前述和其他方面、新颖特征和优点将变得显而易见,其中:

图1A-G是具有环形配置和球根状中心节段的本发明的可植入瓣膜的透视图和剖面图;

图2A-F是具有环形配置的本发明的可植入瓣膜的透视图和剖面图;

图3A-G是具有环形配置和球根状中心节段的本发明的可植入瓣膜的透视图和剖面图;

图4A-F是具有环形配置的本发明的可植入瓣膜的透视图和剖面图;

图5A-H是具有非圆形球根状中心节段的本发明的可植入瓣膜的透视图和剖面图;

图6A和B是具有S形瓣膜出口的优选的叶片瓣膜的透视图,并且图6C-F是用于对图6A和B的叶片瓣膜进行浸渍成型的芯轴(mandrel)的透视图和平面图;

图7是具有环形配置和球根状中心节段的本发明的可植入瓣膜的透视图;

图8是具有环形配置和球根状中心节段的本发明的可植入瓣膜的透视图;

图9A-B是具有环形配置和球根状中心节段的本发明的可植入瓣膜的透视图;

图10是具有环形配置的本发明的可植入瓣膜的透视图;

图11是具有环形配置的本发明的可植入瓣膜的透视图;

图12是具有环形配置和球根状中心节段的本发明的可植入瓣膜的透视图;

图13A-E是具有环形配置和球根状中心节段的本发明的可植入瓣膜的透视图和剖面图;

图14A-E是具有环形配置和球根状中心节段的本发明的可植入瓣膜的透视图和剖面图;

图15A-D是使用在本发明中的叶片瓣膜的透视图和平面图;

图16A-D是使用在本发明中的叶片瓣膜的透视图和平面图;

图17A-D是使用在本发明中的叶片瓣膜的透视图和平面图;

图18-26是可以使用在本发明中的几种支架配置的平面图。

具体实施方式

出于一致性的目的,在这里定义或澄清与所述设备有关的特定术语。下面的术语可以互换使用:可植入瓣膜和设备;瓣膜叶片和叶片22;导管和递送系统;以及卷曲和压缩,其中二者都指代处于通常准备好被插入在导管中的更小配置中的设备。卷曲设备和导管一起形成所述系统。远端和近端并不指代动脉或静脉内的典型关系;远端指代流入侧或节段;近端指代流出侧或节段。当被封装或嵌入在聚合物中时,支架11被称作框架10。

正如本文中所使用的那样:前后视图是指当设备的最宽宽度朝向观看者时看向设备的视图,并且侧面侧视图是朝向观看者转动九十度(两个视图透视垂直视图);设备的垂直视图是指当垂直于纵轴看向设备时的设备视图(随着设备被沿着其纵轴旋转,可以看到无数个垂直视图;给定的垂直视图具有二维表示);垂直或横向平面是指垂直于纵轴的与设备相交的任何平面;轴向或横向视图是指当垂直于纵轴截断时所取得的设备的剖面图或轴向剖面(沿着纵轴有无数个轴向视图);近端轴向视图是指来自轴向节段12的轴向视图;并且远端轴向视图是指来自远端节段14的轴向视图。

本文中所使用的S形或线性是指同样也是瓣膜出口15的叶片接触点的近端轴向或横向视图。平行和螺旋是指所述S形可以相对于垂直平面采取的两条路径;但是所述S形不需要是完美的平行或螺旋以被分别称作平行或螺旋。本文中所使用的弦穿过给定剖面的中心;鉴于这一定义,给定圆的弦将是其直径。

本文中所使用的超尺寸是指设备相对于脉管的尺寸,其中设备的所有节段都大于脉管的直径,从而使得脉管贴合地围绕设备而没有显著的间隙;举例来说,如果远端节段14是管,则管的直径大于静脉20的平均直径。超尺寸还可以是指周长,其中设备的周长大于静脉20的周长。

现在参照附图,其中相同的单元具有相同的附图标记,图1-5示出了几个实施例,所述实施例示出了本发明的可植入设备包括被包装在聚合物或各层聚合物中的支架11,其在本文中被一起称作框架10,并且在静脉20中伸展。框架10包括用于通过箭头24示出的血液流入的远端节段14和用于血液流出(箭头25)的近端节段12,以及节段12和14之间的中心或球根状节段16。节段12和14的平均直径等于或大于静脉20的近似内直径。

框架10的支架11被嵌入在生物相容的抗血栓聚合物中,从而在一个实施例中形成遍及远端、中心和近端节段14、16和12的平滑内表面,所述表面与支架11内部基本上持平或齐平而不会将其暴露出来。

虽然支架11可以在外部被暴露出来,但是优选的是,抗血栓聚合物遍及远端节段14、中心节段16和近端节段12形成平滑的内表面和外表面,所述表面与框架10内部和外部基本上持平或齐平而不会暴露出支架11的任何部分。

中心节段16可以邻近远端节段14被扩大并且呈球根状,并且朝向近端节段12逐渐锥化(图1、3和5)。节段16可以与远端节段14和近端节段12近似具有相同的形状(图2和4)。

中心节段16可以是环形并且轴向对称(图1-4),或者优选的是非环形并且轴向不对称(图5),其中中心节段16的最大延伸处的剖面配置可以是椭圆形(图5H)、跑道形(图5G)或者重叠非圆形形状,比如卵形(图5F)、重叠椭圆形、赛道形以及类似的非圆形形状。瓣膜的中心节段16可以在前视图中比自然脉管(比如静脉20)更宽,并且在侧视图中比脉管更窄或者近似具有相同的宽度。在一个制造实例中,首先形成支架,其中所有三个节段具有相同的直径;但是在次要形成操作中,通过夹捏中心节段而形成球根状节段16,从而使得对应于球根状节段16的至少一部分的轴向剖面形成赛道形,中心节段16的前视图和侧视图与支架11的其余部分相比分别是最宽和最窄的。

球根状节段16在前视图中优选地比静脉20更宽,例如参见图5C和E,并且当在侧视图中被转动九十度时更窄,优选的是与静脉20具有大致相同的尺寸(图5D)或者甚至比静脉20更窄。

图13和14示出了替换的实施例,其中球根状节段16在剖面中是椭圆形(图13E)或环形(图14E)并且具有S形瓣膜出口15。图14E和17A-B还示出了用以促进涌流并且防止血液停滞的瓣膜出口15的末端处的逆流开口170。可以允许受控的最小逆流以便进一步最小化滞流。窦袋(sinus pocket)中或沿着瓣膜出口的一个或多个有目的的孔洞可以提供最小逆流,从而使得血液能够以比朝向近端节段的流动小得多的体积朝向远端节段流动。这一流动将被产生以便防止停滞。

图5D是图5C的侧视图,并且示出了球根状节段11变窄到近似静脉20的宽度,同时在瓣膜叶片23与节段11联结处保留球根状配置的其余部分(图5C)。把图5D与图13C和14C进行比较,其中球根状节段11在侧视图中与远端节段14和近端节段12具有相同的宽度。在图5D、13C和14C中,球根状节段11的侧视图在远端节段14处或者邻近远端节段14可以更窄。这种配置减少了随着瓣膜在打开和关闭之间循环而被保留在中心节段16中的血液的数量。当比静脉更窄时,压力会增大,从而可以帮助血液流过瓣膜。

图5C-E、图13B-D、图14B-D示出了另一个实施例,其中形成瓣膜15的叶片22在球根状节段11的大致下方四分之一中终止,从而产生相对较浅的窦区21以便最小化血液停滞。换句话说,划分球根状节段16的中心线将定义节段16的下方一半,并且瓣膜出口15因此将处在节段16的大致下方四分之一中,正如图中所示出的那样。

聚合物叶片22具有交会并且形成单向瓣膜出口15的近端,所述瓣膜出口15响应于静脉血液流动而打开和关闭。叶片的远端部分与球根状节段16的远端或远端部分14的近端的聚合物内表面相连(优选地成型在一起)。

瓣膜出口15可以是线性的(图4、5和16)或者优选的是S形(图1-3、6-9和13-15)。瓣膜出口15还可以是平行的(图3-7、9和13-16)或者螺旋形(或螺线形——图1、2和8)。在任何情况下,瓣膜出口15的宽度将近似是自然瓣膜的宽度,从而允许不受阻碍的自然血液流动。S形出口具有在瓣膜被打开时所产生的特定偏置,从而促进瓣膜的关闭。图6示出了具有不同长度的叶片23;应当提到的是,圆柱形部分成为框架10的聚合物壁的一部分。图6C-F示出了可以被用来浸渍或喷射成型瓣膜叶片的芯轴,所述瓣膜叶片具有用以成型到内部框架的圆柱形部分。

叶片22、23是由生物相容的抗血栓聚合物形成的,并且通过球根状节段16定义主要是仿生的窦区21(图1、3和5)。瓣膜的打开引发来自窦区21的主要是仿生的血液涌流以及经过上方区段27的仿生血液流动,以用于经过所述瓣膜的平滑、非创伤性血液流动而不会有血栓形成。

图7-12示出了可植入瓣膜的替换实施例。在图7中,中心节段16总体上是球形的,并且S形瓣膜出口15被定位在节段16的中心处。在图8中,中心节段16是细长的,并且在中部具有与图1中一样的螺线配置的瓣膜。内瓣下方的中心节段部分被配置成匹配远端节段14的宽度。

图9A-B类似于图8,但是具有从远端节段14延伸到大致节段16的中心的细长叶片22,从而形成S形出口。

图10示出了一个环形实施例,其中节段16的下方部分总体上在节段16的中心处从远端节段14朝向叶片22发生内部锥化。与图13B中示出的瓣膜一样,叶片22形成S形瓣膜出口。图11类似于图13,但是其不同之处在于,球根状节段16以及远端和近端节段14和12被形成在环形聚合物框架10内。图12类似于图8,但是其不同之处在于,球根状节段16是倒卵形。

图18-26示出了适合于形成被用来产生聚合物包装的框架10的支架11的几种式样。可以设想到,在提到支架11时都可以是指自我伸展支架或者机械可伸展支架,比如气球式可伸展支架。所示出的这些是可以促进设备的制造和最终运作的支架设计的实例。

框架10可以相对于静脉是超尺寸的,以便把可植入瓣膜保持到所期望的位置。球根状中心节段11从远端节段14向外径向延伸;轴向剖面配置可以是环形(图13和14)或者优选的是非圆形,比如椭圆形(图5H)、重叠卵形(图5F)、赛道形(图5G)、沙漏形或类似形状,并且随后向内径向锥化以便联结框架10的近端节段12。图5F-H示出了对应于球根状节段16的优选实施例。

内瓣优选地具有两个叶片,其从框架10壁到瓣膜出口的长度等于一半到三个远端节段14直径,并且具有S形出口,其中所述叶片在被关闭时是平行的。例如具有三个叶片的三尖瓣膜也可以具有沿着分开每一个叶片的三条径向线的S形部分。

中心节段16在远端节段14与的流入侧的结合处包含单向内瓣V。箭头24定义流入到内瓣,箭头25定义从内瓣流出,二者都对应于朝向心脏的血液流动,并且箭头26对应于自我涌流。自我涌流26可以更靠近节段16的外壁,或者可以更靠近瓣膜,或者是二者的某种组合。此外,自我涌流26可以是在逆时针或顺时针方向上,或者可以具有作为二者的某种组合的多个流动。窦区21定义自我涌流的主要发生位置。在一个优选实施例中,所述框架由至少部分地被嵌入在生物相容的抗血栓聚合物内的支架构成。所述支架由例如镍钛诺之类的超弹性合金制成;球根状中心节段具有轴向剖面,其中最小弦(minimum chord)小于静脉直径,但是对应于该轴向剖面的周长大于静脉剖面的直径,从而使得所述设备(特别是球根状节段)是超尺寸的。该实施例可以在瓣膜开口处允许更小的开口,从而允许局部最大压力。叶片可以被锥化,其中优选的是各个叶片在瓣膜出口处分别是最细的以便最大化瓣膜出口处的灵活性,并且在与框架的连接处是最粗的以便最大化耐久性。此外,可能希望具有尽可能短的叶片同时仍然提供足够的瓣膜机能,以便最小化可能的叶片重叠区域以及可能的血液停滞区域。

可用的聚合物具有适合于身体内的高周次疲劳应用的优越的强度、伸长率和耐久性。叶片和框架聚合物可以从彼此邻近的不同聚合物产生,或者由单一连续聚合物材料或混合物构成。抗血栓性较低的聚合物可以与将作为用于血液接触的主要表面的另一种抗血栓聚合物或涂层相结合地使用。用于从浸渍涂覆、喷射涂覆或类似方法(其中聚合物被液化在溶剂中)产生设计的某些方面的替换方案包括从薄板、预成型模具或者类似的固体非液化材料进行制作。举例来说,可以从聚合物薄板切割出叶片,并且随后焊接或者通过其他方式附着到内瓣或框架的其他部分。

可用的聚合物包括聚氨酯或聚氨酯混合物、硅酮或硅酮混合物、聚碳酸酯或聚碳酸酯混合物或者包括用以增强抗凝血性的聚合物的各层混合物;并且所述聚合物可以提供平滑并且血液相容的表面,所述表面是可模塑、可浇铸并且能够通过浸渍涂覆、喷射涂覆或者类似的方法来施加。还可以把非聚合物材料与所述一种或多种聚合物相混合。所述聚合物或聚合物混合物可以针对抗血栓形成被优化,并且用以增强内皮细胞形成。如果所有聚合物都覆盖有抗凝血涂层,则所述聚合物可以不是特别抗凝血的。

所述可伸展支架并且因此还有所述框架和设备可以是气球式可伸展或者自我可伸展的。如果是自我可伸展,则可伸展支架可以由特定的可弹性形变的材料或设计制成,并且使用例如弹簧钢或镍钛诺之类的特定金属或者包括不同金属的复合物的类似材料;或者由刚性聚合物制成,例如包括不同聚合物的复合物的丙烯酸酯。此外,可伸展支架可以由编股或编织的线或管制成,或者由激光切割或机械加工的管材制成。自我可伸展和自我伸展可以互换使用。如果是气球式可伸展,则可伸展支架可以由特定的可弹性或永久形变的材料或设计制成,并且使用例如部分退火的不锈钢、钴铬、钽、马氏体镍钛之类的特定金属或者包括不同金属的复合物的类似材料;或者由包括不同金属的复合物的可形变聚合物制成。瓣膜可以具有由钽、金或铂合金或者其他不透射线的合金或复合物制成的不透射线的标记。

远端节段和近端节段具有一定管状长度,或者可以简单地充当只具有很小的长度或者不具有长度的小的通道或开口。远端节段和近端节段可以是不同的,比如远端节段是管状的并且近端节段是从球根状节段向外展开的,类似于石榴的顶部。

远端节段可以具有径向强度的梯度,从而使得靠近中心节段的强度更大并且趋向最远端的强度更弱。近端节段可以具有径向强度的梯度,从而使得靠近中心节段的强度更大并且趋向最近端的强度更弱。这些特征可以允许附加的超尺寸而不会对脉管造成过多的应力,并且/或者允许用于最佳的流体流动的更加逐渐的、创伤性较低的锥化。

在一个优选实施例中,静脉瓣膜被卷曲或压缩到导管中,并且在被部署在脉管中时可以径向地伸展,正如本领域内已知的那样。

所述可植入瓣膜和系统的各种变型可以被使用在静脉和其他身体脉管中,并且可以在任何脉管(不管是血管或非血管)中递送。

本发明可以被用来通过以下步骤治疗静脉机能不全:

a、提供例如在图5、13或14中示出的可植入瓣膜;

b、压缩可植入设备并且将其插入到静脉内递送导管中;

c、把导管定位在静脉中,并且把所述可植入瓣膜递送到静脉中的所期望的位置;以及

d、允许可植入瓣膜自我伸展,从而使得框架10相对于静脉20是超尺寸的,以用于把可植入瓣膜保持在所期望的位置或部位;;

图1、3和5示出了已伸展的球根状节段16,其中静脉遵循设备的轮廓。

经皮可植入瓣膜递送

优选地从身体脉管内的经皮导管递送假体可植入瓣膜。假体可植入瓣膜优选地适于经导管经皮递送,并且可以从适合于通过导管递送系统引入到治疗点的压缩递送状态移动到用于保持在身体脉管内的治疗点处的径向伸展植入状态。径向可伸展支撑框架包括自我可伸展或气球式可伸展框架。全部这两种类型的支撑框架的结构特性在本领域内是已知的,并且在本文中不作详述。意图用于植入在周围血管中的根据本发明的可植入瓣膜(比如假体静脉瓣膜)有利地包括自我可伸展的支撑框架。

虽然本文中所讨论的许多优选实施例讨论了将设备植入在静脉中,但是其他实施例提供了其他身体脉管内的植入。存在许多类型的身体管道、血管、输送管、软管以及其他身体通道,并且术语“脉管”意图包括所有这样的通道。

可以使用包括导管的系统把可植入瓣膜递送到身体内腔中。在某些实施例中,可以通过腔内方式利用导管在身体内部递送可植入瓣膜,所述导管支持在卷曲配置中把可植入瓣膜输送到例如身体脉管内的所期望的递送位置。当到达位置时,可植入瓣膜可以被伸展并且被牢固地放置在脉管内,这例如是通过牢固地接合管腔的壁面。伸展机制可以涉及强制金属或聚合物框架向外径向伸展,这例如是通过形成在导管的远端部分中的气球的充气,从而使得框架发生弹性形变并且将其固定在与腔壁接触的预定伸展位置处。随后可以将膨胀气球放气并且移除导管。在另一种技术中,可植入瓣膜由将在被卷曲之后自我伸展的弹性材料形成。在引入到身体内的过程中,自我伸展可植入瓣膜被约束在导管腔中。当把框架递送到所期望的植入位置时,所述约束或护套被移除,或者类似地将所述设备推出,从而允许可植入瓣膜通过其自身的内部弹性恢复力自我伸展到腔壁。随后通过在与递送方向相反的方向上拉动导管而从身体内取出导管,并且把已伸展的假体留在身体内的脉管中。

叶片打开以便提供球根状节段的流出侧的机械涌流,从而防止血栓形成。打开几何结构提供经过腔内过渡和叶片的平滑、非创伤性的流动。在窦袋中或者沿着S形可以有一个或多个有目的的逆流开口或孔洞,从而使得血液能够以比朝向近端节段的流动小得多的体积朝向远端节段流动。这一流动防止停滞。

实例

如下制造代表图5的早期原型可植入瓣膜:

工具制作

a、在CAD中设计浸渍涂覆瓣膜成型模具并且在ABS塑料中3D打印,并且将其机械加工成热定形框架的最终伸展内部直径的意图负形,并且具有意图用于瓣膜结构的体内机械加工和圆化特征。将瓣膜成型模具浸渍在溶剂中以便调节并且平整表面。随后将瓣膜成型模具涂覆硅酮薄层,以便产生用于意图的聚合物材料二次成型(over-mold)的平滑、非创伤性的表面;

b、从10mm不锈钢条把热定形芯轴制作成最终伸展瓣膜和热定形框架的意图负形,从而使其具有8mm末端和10mm直径的凸起以及用于意图的瓣膜结构和框架的体内圆化特征;

框架制作

a、针对集成的瓣膜结构和不透射线的标记设计圆周模制框架。

b、从具有处于意图的卷曲直径和伸展直径之间的直径的镍钛诺管材激光切割出支架;

c、对所切割的支架式样的内部直径进行表面珩磨;

d、对所切割的支架式样的外部直径进行微爆(microblast);

e、将支架伸展并且热定形到8mm内部直径,并且在框架中将附着意图的瓣膜结构的位置处具有10mm凸起特征;

f、随后通过电解抛光对支架进行表面磨光;

g、将不透射线的钽标记锻制到支架式样中的指定特征中;

瓣膜制作

a、准备用于基于溶剂的浸渍涂覆的通风橱,同时对空气环境进行温度和湿度控制;

b、准备溶解在四氢呋喃中的聚氨酯聚碳酸酯的5-20%热塑性聚氨酯(TPU)混合物的溶液,并且将其保持在通风橱中的2000mL玻璃容器中;

c、在意图的瓣膜方向的远端部分地浸渍涂覆镍钛诺支架,从而用TPU混合物封装直到意图的瓣膜位置的长度;

d、在通风橱中机械旋转部分地浸渍涂覆的支架,以便在溶剂蒸发期间分配和平整TPU溶液,从而导致TPU凝固。重复所述部分支架浸渍涂覆处理,以便把(例如产生框架的)支架特征完全封装在网状隔膜(web membrane)中,并且在框架和瓣膜成型模具特征上获得2-7毫米的最终固化TPU壁厚度。在<30分钟的相继浸渍时间之间并且在<30%湿度和20-60℃下实施这一处理;

e、随后把部分涂覆的支架组装在瓣膜成型模具上,具体来说是把部分浸渍涂覆的末端定位在8mm直径的支撑节段上,并且关于热定形框架10mm直径凸起定位具有瓣膜成型模具特征的框架。

f、在近端瓣膜方向上在TPU溶液中浸渍涂覆瓣膜成型模具和支架套件直到先前浸渍的远端,并且在通风橱中机械旋转,以便在溶剂蒸发期间分配和平整TPU溶液,从而导致TPU凝固。重复这一套件浸渍涂覆处理,以便把所有支架特征完全封装在网状隔膜中,并且获得2-7毫米的最终固化TPU壁厚度以便形成最终的框架和瓣膜成型模具特征;

g、在<20%湿度和60℃下把最终涂覆的套件硬化24小时,随后从瓣膜成型模具移除,注意不要损坏TPU成型的瓣膜特征;

h、按照对于双叶片瓣膜的操作所意图的那样,在成型的瓣膜特征中切割出开口。在必要时从框架和成型瓣膜叶片修剪掉过多的材料;

i、在<20%湿度和60℃下把最终的无支撑部件完全固化24-48小时。

使用牵引漏斗(pull-through funnel)方法和径向卷曲头全部二者从伸展状态径向卷曲所述原型静脉瓣膜,从而把所述设备加载到由外部护套和把手/推进器套件构成的10French可收回导管护套递送系统中。已加载的10F导管被定位在8mm模拟脉管中,并且将设备部署到目标位置,这是通过在近端移动外部护套以便抽出设备并且同时保持把手静止。聚合物涂覆的支架(也就是框架)针对模拟脉管的内壁自我伸展,采取10mm凸起节段的形状,并且保持目标位置。

把小样测试(bench top test)模型与模拟脉管硅酮管材组装在一起,所述管材被垂直定位成使得底部入口附着到循环泵,所述循环泵将在正向泵浦流动循环之间卸载并且允许反向流动,其被设计成提供代表行走中的人的骨骼肌泵浦的流动和定时。储槽被定位在泵浦上方的一定距离处,以便引发代表直立和行走中的人的头压。所述储槽将允许以特定的填充水平把溢流(overflow)返回到下方泵浦,从而保持高度和流体静力压力,以便在环路上产生虹吸。用水填充测试模型环路,并且把原型瓣膜设备部署在模拟脉管环路中的在高度方面代表腿中的深静脉的位置处。一旦被循环,水环路将使得所述原型受到经过瓣膜(在功能上打开)的正向流动,随后卸载。在卸载阶段期间,原型瓣膜(在功能上关闭)将在其近端侧受到流体静力压力,从而有效地测试瓣膜防止回流或逆流的能力。在所部署的圆形瓣膜附近注入颗粒染料,以用于视觉显现测试条件下的流动动态。

虽然本发明被描述成具有优选的序列、范围、比例、步骤、步骤顺序、材料、结构、符号、记号、图形、(多种)颜色方案、形状、配置、特征、组件或设计,但是应当理解的是,在总体上遵循本发明的原理的情况下,本发明可以有另外的修改、使用和/或适配,并且包括落在本发明的相关领域内的已知或惯常实践内的与本公开内容的偏离,并且可以被应用于前文中所阐述的中心特征,并且落在本发明以及这里所附或以后给出的权利要求的限制的范围内。因此,本发明不限于本文中所示出/描述的(多个)优选实施例。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1